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1. Introduction

The concept of generalized hypersubstitutions was introduced by Leeratanavalee and
Denecke [1]. We use it as a tool to study strong hyperidentities and use strong hyperidentities
to classify varieties into collections called strong hypervarieties. Varieties which are closed
under arbitrary application of generalized hypersubstitutions are called strongly solid.

A generalized hypersubstitution of type τ = (ni)i∈I , for short, a generalized
hypersubstitution is a mapping σ which maps each ni-ary operation symbol of type τ to
the setWτ(X) of all terms of type τ built up by operation symbols from {fi | i ∈ I}where fi is
ni-ary and variables from a countably infinite alphabet of variablesX := {x1, x2, x3, . . .}which
does not necessarily preserve the arity.We denote the set of all generalized hypersubstitutions
of type τ by HypG(τ). First, we define inductively the concept of generalized superposition of
terms Sm : Wτ(X)m+1 → Wτ(X) by the following steps:

(i) if t = xj , 1 ≤ j ≤ m, then Sm(xj , t1, . . . , tm) := tj ;

(ii) if t = xj , m < j ∈ N, then Sm(xj , t1, . . . , tm) := xj ;
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(iii) if t = fi(s1, . . . , sni), then

Sm(t, t1, . . . , tm
)
:= fi

(
Sm(s1, t1, . . . , tm

)
, . . . , Sm(sni , t1, . . . , tm

))
. (1.1)

We extend a generalized hypersubstitution σ to a mapping σ̂ : Wτ(X) → Wτ(X)
inductively defined as follows:

(i) σ̂[x] := x ∈ X;

(ii) σ̂[fi(t1, . . . , tni)] := Sni(σ(fi), σ̂[t1], . . . , σ̂[tni]), for any ni-ary operation symbol
fi supposed that σ̂[tj], 1 ≤ j ≤ ni are already defined.

Then we define a binary operation ◦G on HypG(τ) by σ1◦Gσ2 := σ̂1◦σ2 where ◦ denotes
the usual composition of mappings and σ1, σ2 ∈ HypG(τ). Let σid be the hypersubstitution
which maps each ni-ary operation symbol fi to the term fi(x1, . . . , xni). We proved the
following propositions.

Proposition 1.1 (see [1]). For arbitrary terms t, t1, . . . , tn ∈ Wτ(X) and for arbitrary generalized
hypersubstitutions σ, σ1, σ2 one has

(i) Sn(σ̂[t], σ̂[t1], . . . , σ̂[tn]) = σ̂[Sn(t, t1, . . . , tn)];

(ii) (σ̂1 ◦ σ2)̂ = σ̂1 ◦ σ̂2.

Proposition 1.2 (see [1]). HypG(τ) = (HypG(τ); ◦G, σid) is a monoid and the set of all
hypersubstitutions of type τ forms a submonoid of HypG(τ).

The order of the element a is defined as the order of the cyclic subsemigroup 〈a〉. The
order of any hypersubstitution of type τ = (2) was determined in [2].

Theorem 1.3 ([2]). Let τ = (2) be a type. The order of any hypersubstitution of type τ is 1,2 or
infinite.

In Section 4, we characterize the order of generalized hypersubstitutions of type τ =
(2).

2. Idempotent elements in HypG(2)

In this section, we consider especially the idempotent elements of HypG(2). We have only
one binary operation symbol, say f . The generalized hypersubstitution σ which maps f to
the term t is denoted by σt. For any term t ∈ W(2)(X), the set of all variables occurring in t is
denoted by var(t). First, we will recall the definition of an idempotent element.

Definition 2.1. For any semigroup S, an element e ∈ S is called idempotent if ee = e. In
general, by E(S)we denote the set of all idempotent elements of S.
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Proposition 2.2. An element σt ∈ HypG(2) is idempotent if and only if σ̂t[t] = t.

Proof. Assume that σt is idempotent, that is, σ2
t = σt. Then

σ̂t[t] = σ̂t

[
σt(f)

]
= σ2

t (f) = σt(f) = t. (2.1)

Conversely, let σ̂t[t] = t. We have (σt◦Gσt)(f) = σ̂t[σt(f)] = σ̂t[t] = t = σt(f). Thus σ2
t = σt.

Proposition 2.3. For every xi ∈ X, σxi and σid are idempotent.

Proof. Since for every xi ∈ X, σ̂xi[xi] = xi. By Proposition 2.2 we have σxi is idempotent. σid is
idempotent because it is a neutral element.

Proposition 2.4. For every i, j ∈ N, the generalized hypersubstitutions σf(x1,xj ) and σf(xi,x2) are
idempotent.

Proof. Let i, j ∈ N. Then we have

σ̂f(x1,xj )
[
f(x1, xj)

]
= S2(σf(x1,xj )(f), x1, xj

)
= S2(f

(
x1, xj

)
, x1, xj

)
= f

(
x1, xj

)
,

σ̂f(xi,x2)
[
f(xi, x2)

]
= S2(σf(xi,x2)(f), xi, x2

)
= S2(f

(
xi, x2

)
, xi, x2

)
= f

(
xi, x2

)
.

(2.2)

Note that for any t ∈ W(2)(X) \ X and x1, x2 /∈ var(t), σt is idempotent. Since there is
nothing to substitute in the term σ̂t[t], thus σ̂t[t] = t.

Proposition 2.5. Let t ∈ W(2)(X) \X. Then the following propositions hold:

(i) if x2 /∈ var(t), then σf(x1,t) is idempotent;

(ii) if x1 /∈ var(t), then σf(t,x2) is idempotent.

Proof. (i) Let x2 /∈ var(t). Then

σ̂f(x1,t)
[
f
(
x1, t

)]
= S2(σf(x1,t)(f), x1, σ̂f(x1,t)[t]

)
= S2(f

(
x1, t

)
, x1, σ̂f(x1,t)[t]

)
= f

(
x1, t

)
.
(2.3)

(ii) Let x1 /∈ var(t). Then

σ̂f(t,x2)
[
f
(
t, x2

)]
= S2(σf(t,x2)(f), σ̂f(t,x2)[t], x2

)
= S2(f

(
t, x2

)
, σ̂f(t,x2)[t], x2

)
= f

(
t, x2

)
. (2.4)

3. Nonidempotent elements of HypG (2)

In this section, we characterize all elements of HypG(2) which are not idempotent.

Proposition 3.1. If i, j ∈ N with i /= 1 and j /= 2, then σf(x2,xj ) and σf(xi,x1) are not idempotent.

Proof. Let i, j ∈ N with i /= 1 and j /= 2. Since j /= 2, σ̂f(x2,xj )[f(x2, xj)] = S2(f(x2, xj), x2, xj)/=
f(x2, xj). Since i /= 1, σ̂f(xi,x1)[f(xi, x1)] = S2(f(xi, x1), xi, x1)/= f(xi, x1).
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Proposition 3.2. Let t ∈ W(2)(X) \X. Then the following propositions hold:

(i) if x2 ∈ var(t), then σf(x1,t) is not idempotent;

(ii) if x1 ∈ var(t), then σf(t,x2) is not idempotent;

(ii) σf(t,x1) and σf(x2,t) are not idempotent;

(iv) if x1 ∈ var(t) or x2 ∈ var(t), then σf(xi,t) and σf(t,xi) are not idempotent for any i ∈ N with
i > 2.

Proof. (i) Let x2 ∈ var(t). Then we have σ̂f(x1,t)[f(x1, t)] = S2(f(x1, t), x1, σ̂f(x1,t)[t]). Since
x2 ∈ var(t), then we have to substitute x2 in the term t by σ̂f(x1,t)[t]. S2(f(x1, t), x1,
σ̂f(x1,t)[t])/= f(x1, t).

The proofs of (ii), (iii), and (iv) are similar to (i).

Proposition 3.3. Let t1, t2 ∈ W(2)(X) \X. If x1 ∈ var(t1) ∪ var(t2) or x2 ∈ var(t1) ∪ var(t2), then
σf(t1,t2) is not idempotent.

Proof. The proof is similar to that of Proposition 3.2.

By Sections 2 and 3, we get PG(2)∪EG
x1
∪EG

x2
∪G∪ {σid} is the set of all idempotent ele-

ments in HypG(2)where PG(2) := {σxi ∈ HypG(2) | i ∈ N, xi ∈ X}, EG
x1 := {œf(x1,s) ∈ HypG(2) |

s ∈ W(2)(X), x2 /∈ var(s)}, EG
x2

:= {σf(s,x2) ∈ HypG(2) | s ∈ W(2)(X), x1 /∈ var(s)}, and
G := {σs ∈ HypG(2) | s ∈ W(2)(X) \X, x1, x2 /∈ var(s)}.

4. The order of generalized hypersubstitutions of type τ = (2)

In this section, we characterize the order of generalized hypersubstitutions of type τ = (2).
First, we introduce some notations. For s, f(c, d) ∈ W(2)(X), xi, xj ∈ X, i, j ∈ N we denote

vb(s) := the total number of variables occurring in the term s;

leftmost(s) := the first variable (from the left) that occurs in s;

rightmost(s) := the last variable that occurs in s;

WG
(2)({x1}) := {s ∈ W(2)(X) | x1 ∈ var(s), x2 /∈ var(s)},

WG
(2)({x2}) := {s ∈ W(2)(X) | x2 ∈ var(s), x1 /∈ var(s)},

f(c, d) := the term obtained from f(c, d) by interchanging all occurrences of the
letters x1 and x2, that is, f(c, d) = S2(f(c, d), x2, x1) and f(c, d) = S2( f(c, d), x2, x1);

f(c, d)′ := the term defined inductively by x′
i = xi and f(c, d)′ = f(d′, c′);

xiC[f(c, d)] := the term obtained from f(c, d) by replacing each of the occurrences
of the letter x1 by xi, that is, xiC[f(c, d)] = S2(f(c, d), xi, x2);

Cxi[f(c, d)] := the term obtained from f(c, d) by replacing each of the occurrences
of the letter x2 by xi, that is, Cxi[f(c, d)] = S2(f(c, d), x1, xi);

xiCxj[f(c, d)] := the term obtained from f(c, d) by replacing each of the occurrences
of the letter x1 by xi and the letter x2 by xj , that is, xiCxj[f(c, d)] = S2(f(c, d), xi, xj).

An element a in a semigroup S is idempotent if and only if the order of a is 1. Then
we consider only the order of generalized hypersubstitutions of type τ = (2) which are not
idempotent. We have the following lemmas and propositions.
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Lemma 4.1. Let f(c, d), f(u, v) ∈ W(2)(X) and σf(c,d)◦Gσf(u,v) = σw. Then vb(w) > vb(f(c, d))
unless f(c, d) and f(u, v) match one of the following 16 possibilities:

E(1) σf(c,d)◦Gσf(u,v) = σf(c,d) where σf(c,d) ∈ G;

E(2) σf(c,d)◦Gσf(x1,x1) = σCx1 [f(c,d)];

E(3) σf(c,d)◦Gσf(x2,x2) = σ
x2C[f(c,d)];

E(4) σf(c,d)◦Gσid = σf(c,d);

E(5) σf(c,d)◦Gσf(x1,xi) = σCxi
[f(c,d)] where xi ∈ X, i > 2;

E(6) σf(c,d)◦Gσf(x2,x1) = σ f(c,d);

E(7) σf(c,d)◦Gσf(x2,xi) = σx2Cxi
[f(c,d)] where xi ∈ X, i > 2;

E(8) σf(c,d)◦Gσf(xi,x1) = σxi
Cx1 [f(c,d)] where xi ∈ X, i > 2;

E(9) σf(c,d)◦Gσf(xi,x2) = σxi
C[f(c,d)] where xi ∈ X, i > 2;

E(10) σf(c,d)◦Gσf(xi,xj ) = σ
xi
Cxj

[f(c,d)] where xi, xj ∈ X, i, j > 2;

E(11) σf(c,d)◦Gσf(x1,v) = σf(c,d) where v /∈X, f(c, d) ∈ WG
(2)({x1});

E(12) σf(c,d)◦Gσf(x2,v) = σ f(c,d) where v /∈X, f(c, d) ∈ WG
(2)({x1});

E(13) σf(c,d)◦Gσf(xi,v) = σxi
C[f(c,d)] where xi ∈ X, i > 2, v /∈X, f(c, d) ∈ WG

(2)({x1});
E(14) σf(c,d)◦Gσf(u,x1) = σ f(c,d) where u/∈X, f(c, d) ∈ WG

(2)({x2});
E(15) σf(c,d)◦Gσf(u,x2) = σf(c,d) where u/∈X, f(c, d) ∈ WG

(2)({x2});
E(16) σf(c,d)◦Gσf(u,xi) = σCxi

[f(c,d)] where xi ∈ X, i > 2, u/∈X, f(c, d) ∈ WG
(2)({x2}).

Proof. Assume that f(c, d), f(u, v) ∈ W(2)(X) and σf(c,d)◦Gσf(u,v) = σw. We want to
compare vb(w) with vb(f(c, d)). From σf(c,d)◦Gσf(u,v) = σw, it follows that w =
S2(f(c, d), σ̂f(c,d)[u], σ̂f(c,d)[v]). If σf(c,d) ∈ G, then w = f(c, d) and we have E(1). Assume
that σf(c,d) /∈G. Then x1 ∈ var(f(c, d)) or x2 ∈ var(f(c, d)). We will consider the following
cases.

Case 1. If u, v ∈ X, then σ̂f(c,d)[u] = u and σ̂f(c,d)[v] = v. This gives 9 possible subcases:

(1) u = v = x1: then we have σf(c,d)◦Gσf(x1,x1) = σCx1 [f(c,d)], which is E(2);

(2) u = v = x2: then we have σf(c,d)◦Gσf(x2,x2) = σ
x2C[f(c,d)], which is E(3);

(3) u = x1, v = x2: then we have σf(c,d)◦Gσid = σf(c,d), which is E(4);

(4) u = x1, v = xi, i > 2: then we have σf(c,d)◦Gσf(x1,xi) = σCxi
[f(c,d)], which is E(5);

(5) u = x2, v = x1: then we have σf(c,d)◦Gσf(x2,x1) = σ f(c,d), which is E(6);

(6) u = x2, v = xi, i > 2: then we have σf(c,d)◦Gσf(x2,xi) = σx2Cxi
[f(c,d)], which is E(7);

(7) u = xi, v = x1, i > 2: then we have σf(c,d)◦Gσf(xi,x1) = σxi
Cx1 [f(c,d)], which is E(8);

(8) u = xi, v = x2, i > 2: then we have σf(c,d)◦Gσf(xi,x2) = σ
xi
C[f(c,d)], which is E(9);

(9) u = xi, v = xj , i, j > 2: then we have σf(c,d)◦Gσf(xi,xj ) = σxi
Cxj

[f(c,d)], which is E(10).

Case 2. If u = x1 and v /∈X, then w = S2(f(c, d), x1, σ̂f(c,d)[v]). If f(c, d) ∈ WG
(2)({x1}), then

w = f(c, d), as in E(11). Assume that x2 ∈ var(f(c, d)). Since vb(σ̂f(c,d)[v]) > 1 and we have
to substitute x2 in f(c, d) by σ̂f(c,d)[v], we get vb(w) > vb(f(c, d)).



6 International Journal of Mathematics and Mathematical Sciences

Case 3. u = x2 and v /∈X. In this case we get E(12) or vb(w) > vb(f(c, d)).

Case 4. u = xi, i > 2 and v /∈X. In this case we get E(13) or vb(w) > vb(f(c, d)).

Case 5. u/∈X and v = x1. In this case we get E(14) or vb(w) > vb(f(c, d)).

Case 6. u/∈X and v = x2. In this case we get E(15) or vb(w) > vb(f(c, d)).

Case 7. u/∈X and v = xi, i > 2. In this case we get E(16) or vb(w) > vb(f(c, d)).

Case 8. If u, v /∈X, then vb(σ̂f(c,d)[u]) > 1 and vb(σ̂f(c,d)[v]) > 1. Since vb(σ̂f(c,d)[u]) > 1,
vb(σ̂f(c,d)[v]) > 1 and we have to substitute x1 in f(c, d) by σ̂f(c,d)[u] or x2 in f(c, d) by
σ̂f(c,d)[v], we get vb(w) > vb(f(c, d)).

Lemma 4.2. Let s ∈ W(2)(X) \ X, x1, x2 ∈ var(s), t ∈ W(2)(X) and xi ∈ X where i ∈ N. If
xi ∈ var(t), then xi ∈ var(σ̂s[t]).

Proof. If t ∈ X, then t = xi. So σ̂s[t] = xi and thus xi ∈ var(σ̂s[t]). Assume that t = f(t1, t2)
for some t1, t2 ∈ W(2)(X). Then xi ∈ var(t1) or xi ∈ var(t2). Assume that xi ∈ var(t1) and
xi ∈ var(σ̂s[t1]). Consider σ̂s[t] = σ̂s[f(t1, t2)] = S2(s, σ̂s[t1], σ̂s[t2]). Since x1 ∈ var(s) and
xi ∈ var(σ̂s[t1]), we get xi ∈ var(σ̂s[t]). By the same way, we can show that if xi ∈ var(t2),
then xi ∈ var(σ̂s[t]).

Lemma 4.3. Let s ∈ W(2)(X) \X. If x1, x2 ∈ var(s), then x1, x2 ∈ var(σn
s (f)) for all n ∈ N.

Proof. Assume that s = f(s1, s2) for some s1, s2 ∈ W(2)(X). For n = 1, σ1
s (f) = σs(f) = s.

So x1, x2 ∈ var(σ1
s (f)). Assume that x1, x2 ∈ var(σn

s (f)). Consider σ
n+1
s (f) = (σn

s ◦Gσs)(f) =
σ̂n
s [σs(f)] = σ̂n

s [s] = σ̂n
s [f(s1, s2)] = S2(σn

s (f), σ̂
n
s [s1], σ̂

n
s [s2]). If x1, x2 ∈ var(s1), then by

Lemma 4.2 we get x1, x2 ∈ var(σ̂n
s [s1]). Since x1 ∈ var(σn

s (f)) and x1, x2 ∈ var(σ̂n
s [s1]), we

get x1, x2 ∈ var(σn+1
s (f)). If s1 ∈ WG

(2)({x1}), then x2 ∈ var(s2). By Lemma 4.2, we get x1 ∈
var(σ̂n

s [s1]) and x2 ∈ var(σ̂n
s [s2]). Since x1, x2 ∈ var(σn

s (f)), we get x1, x2 ∈ var(σn+1
s (f)).

If s1 ∈ WG
(2)({x2}), then by the same proof as for the case s1 ∈ WG

(2)({x1}) we get x1, x2 ∈
var(σn+1

s (f)). If x1, x2 /∈ var(s1), then x1, x2 ∈ var(s2). By the same proof as for the case x1, x2 ∈
var(s1), we get x1, x2 ∈ var(σn+1

s (f)).

Lemma 4.4. Let s ∈ W(2)(X) \ X and s ∈ WG
(2)({x1}). If leftmost(s) = xi where xi ∈ X, i > 2,

then x1, x2 /∈ var(σ2
s (f)).

Proof. Assume that s = f(s1, s2) for some s1, s2 ∈ W(2)(X). Consider σ2
s (f) = (σs◦Gσs)(f) =

σ̂s[σs(f)] = σ̂s[s] = σ̂s[f(s1, s2)] = S2(s, σ̂s[s1], σ̂s[s2]). If s1 ∈ X, then s1 is the leftmost
variable of s, so s1 = xi. Thus σ̂s[s1] = xi. Since s ∈ WG

(2)({x1}), x1, x2 /∈ var(σ̂s[s1])
and σ2

s (f) = S2(s, σ̂s[s1], σ̂s[s2]), we get x1, x2 /∈ var(σ2
s (f)). Assume that s1 = f(s3, s4)

for some s3, s4 ∈ W(2)(X). Consider σ̂s[s1] = σ̂s[f(s3, s4)] = S2(s, σ̂s[s3], σ̂s[s4]). If
s3 ∈ X, then s3 is the leftmost variable of s, so s3 = xi. Thus σ̂s[s3] = xi. Since s ∈
WG

(2)({x1}), x1, x2 /∈ var(σ̂s[s3]) and σ̂s[s1] = S2(s, σ̂s[s3], σ̂s[s4]), we get x1, x2 /∈ var(σ̂s[s1]).
This implies x1, x2 /∈ var(σ2

s (f)). This procedure stops after finitely many steps at
leftmost(s) = xi.

Lemma 4.5. Let s ∈ W(2)(X) \X. If leftmost(s) = x1, then leftmost(σn
s (f)) = x1 for all n ∈ N.
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Proof. Assume that s = f(s1, s2) for some s1, s2 ∈ W(2)(X). For n = 1, σ1
s (f) =

σs(f) = s. So leftmost(σ1
s (f)) = x1. Assume that leftmost(σn

s (f)) = x1. Consider
σn+1
s (f) = (σn

s ◦Gσs)(f) = σ̂n
s [σs(f)] = σ̂n

s [s] = σ̂n
s [f(s1, s2)] = S2(σn

s (f), σ̂
n
s [s1], σ̂

n
s [s2]).

If s1 ∈ X, then s1 is the leftmost variable of s, so s1 = x1. Thus σ̂n
s [s1] =

x1. Since σn+1
s (f) = S2(σn

s (f), σ̂
n
s [s1], σ̂

n
s [s2]), leftmost(σn

s (f)) = x1 and σ̂n
s [s1] =

x1, we get leftmost(σn+1
s (f)) = x1. Assume that s1 = f(s3, s4) for some s3, s4 ∈

W(2)(X). Consider σ̂n
s [s1] = σ̂n

s [f(s3, s4)] = S2(σn
s (f), σ̂

n
s [s3], σ̂

n
s [s4]). If s3 ∈ X, then

s3 is the leftmost variable of s, so s3 = x1. Thus σ̂n
s [s3] = x1. Since σ̂n

s [s1] =
S2(σn

s (f), σ̂
n
s [s3], σ̂

n
s [s4]), leftmost(σn

s (f)) = x1 and σ̂n
s [s3] = x1, we get leftmost(σ̂n

s [s1]) =
x1. This implies leftmost(σn+1

s (f)) = x1. This procedure stops after finitely many steps at
leftmost(s) = x1.

Lemma 4.6. Let s ∈ W(2)(X) \ X and s ∈ WG
(2)({x2}). If rightmost(s) = xi where xi ∈ X, i > 2,

then x1, x2 /∈ var(σ2
s (f)).

Proof. The proof is similar to the proof of Lemma 4.4.

Lemma 4.7. Let s ∈ W(2)(X) \ X. If rightmost(s) = x2, then rightmost(σn
s (f)) = x2 for all

n ∈ N.

Proof. The proof is similar to the proof of Lemma 4.5.

Note that {σn
f(x2,x1)

| n ∈ N} = {σid, σf(x2,x1)}, and that the order of σf(x2,x1) is 2.

Proposition 4.8. Let s ∈ W(2)(X), x1, x2 ∈ var(s), σs be not idempotent and not equal to σf(x2,x1).
Then the order of σs is infinite.

Proof. Let n ∈ N. Let σn
s (f) = w. By Lemma 4.3, we get x1, x2 ∈ var(w). Then the equation

σn+1
s = σn

s ◦Gσs does not fit any of E(1) to E(16), so by Lemma 4.1, we have that the term for
σn+1
s is longer than w. This implies the order of σs is infinite.

Proposition 4.9. Let s ∈ WG
(2)({x1}), and σs be not idempotent. If leftmost(s) = x1, then the order

of σs is infinite.

Proof. Let n ∈ N. Let σn
s (f) = w. By Lemma 4.5, we get leftmost(w) = x1. Then the equation

σn+1
s = σn

s ◦Gσs does not fit any of E(1) to E(16), so by Lemma 4.1 we have that the term for
σn+1
s is longer than w. This implies the order of σs is infinite.

Proposition 4.10. Let s ∈ WG
(2)({x1}) and σs be not idempotent. If leftmost(s) = xi where xi ∈ X,

i > 2, then the order of σs is 2.

Proof. Let σ2
s (f) = w. By Lemma 4.4, we get x1, x2 /∈ var(w). This implies σn

s = σ2
s for all n ∈ N

where n ≥ 2. So the order of σs is 2.

Proposition 4.11. Let s ∈ WG
(2)({x2}) and σs be not idempotent. If rightmost(s) = x2, then the

order of σs is infinite.

Proof. The proof is similar to the proof of Proposition 4.9.

Proposition 4.12. Let s ∈ WG
(2)({x2}) and σs be not idempotent. If rightmost(s) = xi where xi ∈ X,

i > 2, the order of σs is 2.
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Proof. The proof is similar to the proof of Proposition 4.10.

Now we have the main result.

Theorem 4.13. The order of any generalized hypersubstitution of type τ = (2) is 1,2 or infinite.

Proof. Let σt ∈ HypG(2). If σt is idempotent, then the order of σt is 1. If σt is not idempotent,
then x1 ∈ var(t) or x2 ∈ var(t). Assume that x1, x2 ∈ var(t). If σt = σf(x2,x1), then the order of
σt is 2. If σt /=σf(x2,x1), then by Proposition 4.8 we get the order of σt is infinite. Assume that
x1 ∈ var(t) and x2 /∈ var(t). If leftmost(t) = x1, then by Proposition 4.9 we get the order of σt

is infinite. If leftmost(t) = xi where i > 2, then by Proposition 4.10 we get the order of σt is 2.
By the same way we can show that if x2 ∈ var(t) and x1 /∈ var(t), then the order of σt is 2 or
infinite.
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