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1. Introduction

Let S be a locally compact (Hausdorff) semigroup such that its multiplication is separately
continuous. We denote by m(S) the Banach algebra under the supremum norm of all
bounded real-valued functions on S. For a topological semigroup S, let BM(S) and CB(S) be
the closed subalgebras ofm(S) consisting of all Borel measurable functions and all continuous
functions on S, respectively. Let C0(S) be the subalgebra of CB(S) consisting of the functions
which vanish at infinity. LetM(S) be the Banach space of all bounded regular Borel (signed)
measures on S with a total variation norm. Let M0(S) = {μ ∈ M(S) : μ ≥ 0 and ‖μ‖ = 1} be
the set of all probability measures inM(S).

It is known that M(S) � C0(S)
∗ via the correspondence μ → μ, where μ(f) =

∫
f dμ

for any f in C0(S) [1, Section 14]. Consider the continuous dualM(S)∗ ofM(S). An element
M in M(S)∗∗ is called a mean on M(S), if M(1) = 1 and M(F) ≥ 0, whenever F ≥ 0. An
equivalent definition for a mean is that

inf
{
F(μ) : μ ∈ M0(S)

} ≤ M(F) ≤ sup
{
F(μ) : μ ∈ M0(S)

}
, (1.1)
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for any F in M(S)∗. We also note that M ∈ M(S)∗∗ is a mean if and only if ‖M‖ = M(1) = 1.
Each probability measure μ in M0(S) is a mean on M(S)∗∗ if we put μ(F) = F(μ), for any
F in M(S)∗. An application of Hahn-Banach separation theorem shows that M0(S) is weak∗

dense in the set of all means onM(S)∗.
Under point-wise operations and the supremum norm, C0(S) becomes a Banach

algebra. Arens product can thus be defined in C0(S)
∗∗. In particular, we have the following

defining formulas for any f, g in C0(S),m in C0(S)
∗, and θ, φ in C0(S)

∗∗:

(m � f)(g) = m(fg),

(φ �m)(f) = φ(m � f),

(θ � φ)(m) = θ(φ �m).

(1.2)

This product induces a multiplication in M(S)∗ via the identification M(S) ∼= C0(S)
∗.

SinceM(S) is a set of measures beside being the continuous dual of C0(S), this multiplication
inM(S)∗ is richer in content than just a generic Arens product in the second dual of a Banach
algebra, and it is different from the point-wise multiplication in C0(S).

For F,G inM(S)∗, we denote the multiplication of F andG by F ×G. In [2], it is shown
that F ×G is defined via the following three steps.

(a) For any μ ∈ M(S) and f ∈ C0(S), the measure μf ∈ M(S) is defined by

∫
g dμf =

∫
gf dμ, ∀g ∈ C0(S). (1.3)

(b) For any μ ∈ M(S) and F ∈ M(S)∗, the measure F × μ ∈ M(S) is defined by

∫
f d(F × μ) = F

(
μf

)
, ∀f ∈ C0(S). (1.4)

(c) For any F,G ∈ M(S)∗, the functional F ×G ∈ M(S)∗ is defined by

(F ×G)(μ) = F(G × μ), ∀μ ∈ M(S). (1.5)

We can conclude that M(S)∗ becomes a commutative Banach algebra with an identity [2].
For the topological semigroup S, we define

(
rsf

)
(t) = f(ts),

(
lsf

)
(t) = f(st), (1.6)

where s ∈ S, t ∈ S, and f ∈ m(S). Hence, rs and ls are the operators defined on m(S) onto
m(S). A subset X ofm(S) is called a left (right) translation invariant, if lsX ⊆ X (rsX ⊆ X) for
all s ∈ S. It is well known that both BM(S) and CB(S) are left and right translation invariants
[1]. Let S be a topological semigroup, which for each compact subset E of S and a ∈ S,

a−1E =
{
s ∈ S : as ∈ E

}
,

(
Ea−1 =

{
s ∈ S : sa ∈ E

})
(1.7)

is compact. Then, C0(S) is a left (right) translation invariant.
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Let X be a left (right) translation invariant subspace of m(S) containing the constant
function 1. A mean m on X is called a left (right) invariant, if

m
(
lsf

)
= m(f)

(
m
(
rsf

)
= m(f)

)
, (1.8)

for every s ∈ S and f ∈ X [1]. If m(S) has a left invariant mean, then S is said to be left
amenable [3]. If m(S) has a multiplicative left-invariant mean, then S is said to be extremely
left amenable (see [4, 5] for more details).

Suppose that S is a locally compact semigroup, then for μ, ν ∈ M(S), the convolution
μ∗ν is defined by

∫
f dμ∗ν =

∫∫
f(st)dμ(s)dν(t) =

∫∫
f(st)dν(t)dμ(s), (1.9)

where f ∈ C0(S). Hence, M(S)with a convolution μ∗ν as multiplication is a Banach algebra.
Now, for F ∈ M(S)∗ and μ ∈ M(S), the linear functional lμ : M(S)∗ → M(S)∗ is

defined by

(
lμF

)
(ν) = F(μ∗ν), ∀ν ∈ M(S). (1.10)

We denote lμF by μ � F. Similarly, the rμF = F � μ is defined by

(
rμF

)
(ν) = (F � μ)(ν) = F(ν∗μ), ∀ν ∈ M(S). (1.11)

AmeanM onM(S)∗ is called left invariant (LIM) ifM(lεaF) = M(εa � F) = M(F) for
all F ∈ M(S)∗ and for all a ∈ S. Also, a mean M on M(S)∗ is called topological left invariant
(TLIM) ifM(lμF) = M(μ�F) = M(F) for all F ∈ M(S)∗ and for all μ ∈ M0(S). A topological
left invariant mean M on M(S)∗ is called a multiplicative topological left-invariant mean
(MTLIM) ifM(F ×G) = M(F)M(G) for all F,G ∈ M(S)∗. If there is an MTLIM onM(S)∗, we
say that S is extremely topological left amenable (ETLA). For results concerning ETLA and
ELA semigroups, see [1, 6].

In this paper, we demonstrate that the Arens product and multiplication on M(S)∗

defined by (1.3), (1.4), and (1.5) are associative (see Lemma 2.4). In [7], it is proved that

(F ×G) � μ = (F � μ) × (G � μ) (1.12)

is valid, for all μ ∈ M0(S) and F,G ∈ M(S)∗. This means that Arens product � distributes
over multiplication × onM(S)∗ from right, for all μ ∈ M0(S) and F,G ∈ M(S)∗. Note that the
multiplication inM(S)∗ is different from the point-wisemultiplication inC0(S). We show that
Arens product � distributes over multiplication × on M(S)∗ from left, when F,G ∈ M(S)∗,
and μ is a Dirac measure (see Lemma 2.2(ii)). Also, it is shown that if S is a locally compact
semigroup with a right identity and Arens product � distributes from left over multiplication
×, then μ must be a Dirac measure (see Theorem 3.1). In the rest of this paper, we give some
characterizations on ETLA of locally compact semigroups.
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2. Preliminaries

In this section, we offer some results which are useful in the sequel. For more details, refer to
[1, 2, 8]. Let |μ| be the total variation of μ, where μ ∈ M(S) and L∞(S, |μ|) = BM(S)/N(μ)are
the quotient Banach algebra with a quotient norm ‖·‖μ,∞; N(μ) is the closed ideal of BM(S)
consisting of all locally |μ|-null functions. Consider the product linear space

∏{
L∞

(
S, |μ|) : μ ∈ M(S)

}
. (2.1)

An element f = {fμ}μ∈M(S) is called a generalized function on S, if the following
conditions are satisfied:

(a) ‖f‖ = sup{‖fμ‖μ,∞ : μ ∈ M(S)} < ∞,

(b) for μ, ν inM(S)with μ � ν, we have fμ = fν|μ|-a.e.
Let GL(S) be the linear space of all generalized functions on S. It is known that GL(S) is a
Banach space with the norm defined by the formula (a) and that GL(S) ∼= M(S)∗ via the
isometric Banach space isomorphism, ϕ : GL(S) → M(S)∗, where (ϕf)(μ) =

∫
fμ dμ for any

μ in M(S) and f in GL(S) (see [8, 9]). A function f in BM(S) can be treated as an element in
GL(S)with fμ = f for all μ inM(S). The space BM(S) is thus a subspace of GL(S).

For f ∈ BM(S), μ ∈ M(S), and ν ∈ M(S), we define f � μ and μ � f in L∞(S, |ν|) by

f � μ(s) =
∫
f(st)dμ(t) =

∫
lsf dμ |ν|-a.e.,

μ � f(s) =
∫
f(ts)dμ(t) =

∫
rsf dμ |ν|-a.e.

(2.2)

It is shown that f � μ, μ � f ∈ GL(S) [8]. If f ∈ CB(S), then the above equalities hold
everywhere, and f � μ and μ � f are in CB(S). Also, if f ∈ BM(S) and a ∈ S, then

f � εa(s) =
∫
f(st)dεa(t) = f(sa) =

(
raf

)
(s), (2.3)

εa � f(s) =
∫
f(ts)dεa(t) = f(as) =

(
laf

)
(s). (2.4)

Hence, f � εa and εa � f belong to BM(S).

Lemma 2.1. The map ϕ : GL(S) → M(S)∗ defined by (ϕf)(μ) =
∫
fμ dμ for any μ inM(S) and f

in GL(S) satisfies the following statements.

(i) For any f ∈ BM(S) and μ ∈ M(S),

ϕ(μ � f) = μ � ϕf, ϕ(f � μ) = ϕf � μ. (2.5)

(ii) For any a ∈ S and f ∈ BM(S),

ϕ
(
laf

)
= εa � ϕf, ϕ

(
raf

)
= ϕf � εa. (2.6)



Hashem Masiha 5

Proof. We have (μ � f)ν = μ � fμ∗ν for any ν ∈ M(S) [8]. Hence,

ϕ(μ � f)(ν) =
∫
(μ � f)νdν

=
∫
(
μ � fμ∗ν

)
(s)dν(s)

=
∫∫

fμ∗ν(ts)dμ(t)dν(s)

=
∫
fμ∗νdμ∗ν

= ϕf(μ∗ν)
= (μ � ϕf)(ν).

(2.7)

Thus, ϕ(μ � f) = μ � ϕf . Similarly, ϕ(f � μ) = ϕf � μ. This proves (i). From (i) and (2.4), part
of (ii) is trivial.

Lemma 2.2. For each a ∈ S and F,G ∈ M(S)∗, we have

(i) (F ×G) � εa = (F � εa) × (G � εa),

(ii) εa � (F ×G) = (εa � F) × (εa �G).

Proof. (i) For each μ ∈ M(S), from (2.3), we have

(
(F ×G) � εa

)
(μ) = rεa(F ×G)(μ)

= (F ×G)
(
μ∗εa

)

= F
(
G × (

μ∗εa
))
.

(2.8)

But, for g ∈ C0(S), from (1.4) and (1.9), we have

∫
gd

(
G × (

μ∗εa
))

= G
((
μ∗εa

)
g

) (
by (1.4)

)

= G
(
μrag∗εa

)

=
(
G � εa

)(
μrag

)

=
∫
(
rag

)
(y)d

((
G � εa

) × μ
)
(y)

(
by (1.4)

)

=
∫
g(ya)d

((
G � εa

) × μ
)
(y)

=
∫∫

g(yx)d
((
G � εa

) × μ
)
(y)dεa(x)

(
by (1.9)

)

=
∫
gd

(((
G � εa

) × μ
)∗εa

)
.

(2.9)
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Hence, by the Riesz representation theorem, G × (μ∗εa) = ((G � εa) × μ)∗εa. Thus,

(
(F ×G) � εa

)
(μ) = F

(
G × (

μ∗εa
))

= F
(((

G � εa
) × μ

)∗εa
)

=
(
F � εa

)((
G � εa

) × μ
)

=
((
F � εa

) × (
G � εa

))
(μ).

(2.10)

Therefore, (F ×G) � εa = (F � εa) × (G � εa).
(ii) For each μ ∈ M(S), equality (2.4) implies that

(
εa � (F ×G)

)
= lεa(F ×G)(μ)

= (F ×G)
(
εa∗μ

)

= F
(
G × (

εa∗μ
))
.

(2.11)

Now, for g ∈ C0(S), from (1.4) and (1.9), we obtain

∫
gd

(
G × (

εa∗μ
))

= G
((
εa∗μ

)
g

)

= G
(
εa∗μlag

)

=
(
εa �G

)(
μlag

)

=
∫
(
lag

)
(y)d

((
εa �G

) × μ
)
(y)

=
∫
g(ay)d

((
εa �G

) × μ
)
(y)

=
∫∫

g(xy)dεa(x)d
((
εa �G

) × μ
)
(y)

=
∫
gd

(((
εa �G

) × μ
)∗εa

)
.

(2.12)

Hence, by the Riesz representation theorem, G × (εa∗μ) = ((εa �G) × μ)∗εa. Thus

(
εa � (F ×G)

)
(μ) = F

(
G × (

εa∗μ
))

= F
(((

εa �G
) × μ

)∗εa
)

=
(
εa � F

)((
εa �G

) × μ
)

=
((
εa � F

) × (
εa �G

))
(μ).

(2.13)

Therefore, εa � (F ×G) = (εa � F) × (εa �G).
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Remarks 2.3. (a) In the proof of Lemma 2.2, we use the equalities (μ∗εa)g = μrag∗εa and
(εa∗μ)g = εa∗μlag . For f ∈ C0(S), we have

∫
fd

(
μ∗εa

)
g =

∫
gfd

(
μ∗εa

) (
by (1.3)

)

=
∫∫

(gf)(xy)dμ(x)dεa(y)
(
by (1.9)

)

=
∫
(gf)(xa)dμ(x)

=
∫
g(xa)f(xa)dμ(x)

=
∫
(
rag

)(
raf

)
dμ

(
by (1.6)

)

=
∫
(
raf

)
(x)dμrag(x)

(
by (1.3)

)

=
∫
f(xa)dμrag(x)

(
by (1.9)

)

=
∫∫

f(xy)dμrag(x)dεa(y)
(
by (1.6)

)

=
∫
fd

(
μrag∗εa

)
.

(2.14)

Hence, by the Riesz representation theorem, (μ∗εa)g = μrag∗εa. Similarly, (εa∗μ)g = εa∗μlag .
(b) The statement (i) of Lemma 2.2 has a general form as replacing a Dirac measure by

μ ∈ M0(S) [7]. It is natural to ask for which μ inM0(S), the equality

μ � (F ×G) = (μ � F) × (μ �G), ∀F,G ∈ M(S)∗ (2.15)

is valid?
Now, we demonstrate that the multiplication on M(S)∗ defined by (1.3), (1.4), and

(1.5) is associative.

Lemma 2.4. The multiplication × defined by (1.3), (1.4), and (1.5) on M(S)∗ is associative.

Proof. We know that the Arens product � is associative [3, Lemma 1, page 527]. Let π :
C0(S)

∗ → M(S) be isometric order-preserving linear space isomorphism in [1, Theorem
14.10, page 170], namely, for any m ∈ C0(S)

∗ and f ∈ C0(S),

∫
fdπ(m) = m(f). (2.16)
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Now, let f, g ∈ C0(S)
∗,m ∈ C0(S)

∗, and F,G ∈ M(S)∗, then (1.3) implies that

∫
gdπ(m)f =

∫
fgdπ(m)

= m(fg)

= (m � f)(g)

=
∫
gdπ(m � f).

(2.17)

Thus, π(m)f = π(m � f). Also, from (1.4), we have

∫
fd

(
F × π(m)

)
= F

(
π(m)f

)

= F
(
π(m � f)

)

= π∗(F)(m � f)

=
(
π∗(F) �m

)
(f)

=
∫
fdπ

(
π∗(F) �m

)
.

(2.18)

Hence, F × π(m) = π(π∗(F) �m). Also, from (1.5), we have

(
π∗(F ×G)

)
(m) = (F ×G)

(
π(m)

)

= F
(
G × π(m)

)

= F
(
π
(
π∗(G) �m

))

=
(
π∗(F)

)(
π∗(G) �m

)

=
(
π∗(F) � π∗(G)

)
(m).

(2.19)

Therefore, π∗(F ×G) = π∗(F) � π∗(G). Now, for any F,G,H ∈ M(S)∗,

π∗((F ×G) ×H
)
= π∗((F ×G) � π∗(H)

)

=
(
π∗(F) � π∗(G)

) � π∗(H)

= π∗(F) � (
π∗(G) � π∗(H)

)

= π∗(F) � (
π∗(G ×H)

)

= π∗(F × (G ×H)
)
.

(2.20)

So, (F ×G) ×H = F × (G ×H), and thus the multiplication of × is associative.

Remark 2.5. We note that one can go through a process analogous to Day’s proof [3] and
establish the associativity of × via the demonstration of the following identities one by one.

(i) For any μ ∈ M(S) and f, g ∈ C0(S),

(
μf

)
g
= μfg. (2.21)
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(ii) For any F ∈ M(S)∗, μ ∈ M(S) and f ∈ C0(S),

F × (
μf

)
= (F × μ)f . (2.22)

(iii) For any F,G ∈ M(S)∗ and μ ∈ M(S),

(F ×G) × μ = F × (G × μ). (2.23)

(iv) For any F,G,H ∈ M(S)∗,

F × (G ×H) = (F ×G) ×H. (2.24)

The proofs of (i), (ii), and (iii) use the Riesz representation theorem and the relations
(1.3), (1.4), and (1.5). The proof of (iv) follows from (iii) using definition.

3. Main results

Each probability measure μ inM0(S) is a mean onM(S)∗, if we put μ(F) = F(μ) for any F in
X. We give a partial answer to the question: For which μ ∈ M0(S), is the equality

μ � (F ×G) = (μ � F) × (μ �G), ∀F,G ∈ M(S)∗ (3.1)

valid?
Let f ∈ GL(S), from the isometric Banach space isomorphism ϕ : GL(S) → M(S)∗,

we have ϕf = F which is in M(S)∗, where F(μ) = (ϕf)(μ) =
∫
fμdμ, for any μ in M(S). For

μ ∈ M(S) and g ∈ C0(S),we have

∫
gd(F × μ) = F

(
μg

)

= (ϕf)
(
μg

)

=
∫
fμgdμg

=
∫
fμdμg

=
∫
fμgdμ

=
∫
gdμfμ .

(3.2)

Therefore, F × μ = ϕf × μ = μfμ . In particular, ϕf × μ � μ and so 1 × μ1 = μ1 = μ. In view of
(1.4), if F ∈ M(S)∗ and μ ∈ M(S), then

(F × μ)(S) =
∫
d(F × μ) = F

(
μ1
)
= F(μ). (3.3)
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Hence, if F ≥ 0 and μ ≥ 0, then

‖F × μ‖ = (F × μ)(S) = F(μ). (3.4)

Also, since ‖G‖ 1 −G ≥ 0, we have

(‖G‖ 1 −G
) × μ ≥ 0, (3.5)

and hence, G × μ ≤ ‖G‖ 1 × μ = ‖G‖ μ whenever μ ≥ 0.

Theorem 3.1. Let S be a locally compact semigroup with a right identity and that 0 < μ ∈ M(S). If
μ � (F ×G) = (μ � F) × (μ �G) for any F,G ∈ ϕ(C0(S)), then μ is a Dirac measure.

Proof. For f, g ∈ C0(S), we have

ϕ
(
μ � (fg)

)
= μ � ϕ(fg)

(
by Lemma 2.1(i)

)

= μ � (ϕf × ϕg)

= (μ � ϕf) × (μ � ϕg)

= ϕ(μ � f) × ϕ(μ � g)
(
by Lemma 2.1(i)

)

= ϕ
(
(μ � f)(μ � g)

)
.

(3.6)

Thus, for any f, g ∈ C0(S), from (3.6), we have

μ � (fg) = (μ � f)(μ � g). (3.7)

Now, let er be a right identity of S, that is, ser = s for any s ∈ S, then for any f ∈ C0(S), we
have

(μ � f)
(
er
)
=
∫
f
(
ter

)
dμ(t) =

∫
f(t)dμ(t). (3.8)

Hence, for each f, g ∈ C0(S),

∫
fgdμ =

(
μ � (fg)

)(
er
)

= (μ � f)
(
er
)
(μ � g)

(
er
)

=
(∫

fdμ

)(∫
gdμ

)
.

(3.9)

In (3.9), we put f = g, then for any f ∈ C0(S),

∫
f2dμ =

(∫
fdμ

)2

, (3.10)
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so for each f, g ∈ C0(S),

(∫
fgdμ

)2

=
[(∫

fdμ

)(∫
gdμ

)]2

=
(∫

fdμ

)2(∫
gdμ

)2

=
(∫

f2dμ

)(∫
g2dμ

)
,

(3.11)

and by Holder’s inequality, there exist real numbers α and β, not being zero, such that

αf2 = βg2 a.e. (μ). (3.12)

Now, if A and B are the disjoint compact subsets of S with μ(A) > 0 and μ(B) > 0, by
the Urysohn’s lemma, there exist f and g in C00(S) such that

f(A) = 0 = g(B), f(B) = 1 = g(A). (3.13)

But from (3.12) and μ(A) > 0, there is x0 ∈ A such that

αf
(
x0
)2 = βg

(
x0
)2
. (3.14)

So, 0 = βg(x0)
2 = β. Also, μ(B) > 0 follows that there is y0 ∈ B, such that

αf
(
y0
)2 = βg

(
y0
)2
, (3.15)

and therefore 0 = αf(y0)
2 = α. This contradicts the fact that α and β are not both zero. Hence,

if A is a compact subset of S with μ(A) > 0 and B is another compact subset of S disjointed
from A, then we must have μ(B) = 0. Therefore, μ(Ac) = 0, that is, μ(A) = μ(S). This proves
that if A is a compact subset S, then either μ = 0 or μ(A) = μ(S).

Now, the regularity of μ follows that for each Borel subset B of S, μ(B) = 0 or μ(B) =
μ(S). Hence, either μ = 0 or the measure μ/μ(S) is a Dirac measure, say μ/μ(S) = εa [2].

Now, put μ = μ(S)εa, we have

μ(S) =
∫
dμ =

∫
12dμ =

(∫
1dμ

)2

=
(∫

dμ

)2

= μ(S)2, (3.16)

and so μ(S) = 1. Thus, μ = εa.
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Remark 3.2. If S is a discrete semigroup, then C0(S)
∗ = 
1(S), and so M0(S)

∗ = C0(S)
∗∗ =


1(S)
∗ = m(S) [1]. In this case, the multiplication on M(S)∗ is just the point-wise

multiplication as inm(S). Let e be the right identity of S, then

(
μ � (F ×G)

)(
εe
)
= (F ×G)

(
μ∗εe

)

= (F ×G)(μ)

= μ(F ×G),
(
(μ � F) × (μ �G)

)(
εe
)
= (μ � F)

(
εe
)
(μ �G)

(
εe
)

= μ(F)μ(G),

(3.17)

since both μ � F and μ � G are in M(S)∗ = m(S). Hence, μ ∈ M(S) is multiplicative, if the
condition of Theorem 3.1 is satisfied. Therefore, μ must be either 0 or a Dirac measure. But,
when S is a topological semigroup, the multiplication in M(S)∗ defined by (1.3), (1.4), and
(1.5) is just a generic Arens product in the second dual of a Banach algebra, which is different
from the point-wise multiplication.

It is known thatM0(S) is weak∗ dense in the set of all means onM(S)∗. We give some
characterizations theorems for the extreme amenability of locally compact semigroup.

Lemma 3.3. LetM(S)∗ be TLA. The following statements are equivalent:

(i) M(S)∗ is ETLA,

(ii) for every F ∈ M(S)∗ and μ ∈ M0(S), there exists a mean M on M(S)∗ such that M(F ×
F) = M(μ � F)2,

(iii) for every F ∈ M(S)∗ and μ ∈ M0(S), there exists a mean M on M(S)∗ such that M(F ×
F) = M(F)M(μ � F),

(iv) for every F ∈ M(S)∗ and μ ∈ M0(S), there exists a mean M on M(S)∗ such that M(μ �
(F × F)) = M(F)2.

Proof. (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) are obvious.
(iv) ⇒ (i). Suppose that F,G ∈ M(S)∗ and μ ∈ M0(S). For F +G by (iv), there exists a

mean M on M(S)∗ such that

M
(
μ � (

(F +G) × (F +G)
)
= M(F +G)2

)
= M(F)2 + 2M(F)M(G) +M(G)2, (3.18)

and to expand the right-hand side, we get

M
(
μ � (F ×G)

)
= M(F)M(G). (3.19)

Since M(S)∗ is topological left invariant, hence, M(F × G) = M(F)M(G). Therefore, M(S)∗

is ETLA.
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Theorem 3.4. Let M be a topological left invariant mean on M(S)∗. The following statements are
equivalent:

(i) M is a multiplicative,

(ii) there exists a net {μα} inM0(S) such that for any μ inM0(S) and G inM(S)∗,

w∗ − lim
α

(
G × (

μ∗μα

) −M(G)μα

)
= 0. (3.20)

Proof. (i) ⇒ (ii). Let M be a multiplicative topological left invariant mean on M(S)∗. By
Lemma 3.3, for any F ∈ M(S)∗ and μ ∈ M0(S),

M
(
μ � (F × F)

)
= M(F)2. (3.21)

Let F,G ∈ M(S)∗, then

M
(
μ � (

(F +G) × (F +G)
))

= M(F +G)2. (3.22)

We have

M
(
μ � (F × F + 2F ×G +G ×G)

)
=
(
M(F) +M(G)

)2
. (3.23)

So,

M
(
μ � (F × F)

)
+ 2M

(
μ � (F ×G)

)
+M

(
μ(G ×G)

)
= M(F)2 +M(G)2 + 2M(F)M(G).

(3.24)

Thus,

M
(
μ � (F ×G)

)
= M(F)M(G). (3.25)

Note that we apply the commutativity of × in M(S)∗. Since M is a mean on M(S)∗

and M0(S) is weak∗ dense in the set of all means on M(S)∗, hence, there exists a net {μα} in
M0(S) such that M = w∗ − limαμα inM(S)∗∗. Now for F ∈ M(S)∗,

w∗ − lim
α

F
(
G × (

μ∗μα

) −M(G)μα

)
= w∗ − lim

α

(
μα

(
μ � (F ×G)

) −M(G)μα(F)
)

= M
(
μ � (F ×G)

) −M(F)M(G)

= 0.

(3.26)

Thus,

F
(
w∗ − lim

α

(
G × (

μ∗μα

) −M(G)μα

))
= 0, (3.27)
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that is,

w∗ − lim
α

(
G × (

μ∗μα

) −M(G)μα

)
= 0. (3.28)

(ii) ⇒ (i). Since M is a topological left invariant mean on M(S)∗, there exists a net
{μα} in M0(S) such that M = w∗ − limαμα inM(S)∗∗. If μ ∈ M0(S),

M(F ×G) −M(F)M(G) = M
(
μ � (F ×G)

) −M(F)M(G)

= w∗ − lim
α

μα

(
μ � (F ×G)

) −M(G)
(
w∗ − lim

α
μα(F)

)

= w∗ − lim
α

(
(F ×G)

(
μ∗μα

) −M(G)F
(
μα

))

= w∗ − lim
α

(
F
(
G × (

μ∗μα

)) − F
(
M(G)μα

))

= w∗ − lim
α

F
(
G × (

μ∗μα

) −M(G)μα

)

= F
(
w∗ − lim

α

(
G × (

μ∗μα

) −M(G)μα

))

= F(0)

= 0.

(3.29)

Therefore, M(F × G) = M(F)M(G), that is, M(S)∗ is extremely topological left amenable
(ETLA).

Lemma 3.5. If M is a multiplicative topological left invariant mean on M(S)∗, then there is a net
{μβ} inM0(S) such that for any μ inM0(S) and F inM(S)∗,

lim
β

∥∥F × (
μ∗μβ

) −M(F)μβ

∥∥ = 0. (3.30)

Proof. We consider M(S) with the norm topology. Let P = M(S)M(S)∗×M0(S) with the product
of the norm topologies, where M(S)∗ ×M0(S)is the set theoretic cartesian product. Then, P
is a locally convex topological vector space [10]. Now, by Theorem 3.4 corresponding to M,
there exists a net {μα} inM0(S) such that for any μ inM0(S) and F in M(S)∗,

w∗ − lim
α

(
F × (

μ∗μα

) −M(F)μα

)
= 0. (3.31)

We define a linear map P : M(S) → P by

P(ν)(F, μ) = F × (μ∗ν) −M(F)ν, (3.32)

for all (F, μ) ∈ M(S)∗ ×M0(S). Hence,

w∗ − lim
α

P
(
μα

)
(F, μ) = 0, (3.33)
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that is, P(μα) → 0 in the product of weak topologies [10]. Therefore, 0 lies in the weak closure
of the convex set P(M0(S)), and so is in the closure of P(M0(S)) in the original topology of
P. So, there is a net {μβ} inM0(S) such that for all (F, μ) ∈ M(S)∗ ×M0(S),

lim
β

∥
∥P

(
μβ

)
(F, μ)

∥
∥ = 0, (3.34)

that is,

lim
β

∥
∥F × (

μ∗μβ

) −M(F)μβ

∥
∥ = 0, (3.35)

and the proof is complete.

Theorem 3.6. Let S be a locally compact semigroup. The following statements are equivalent:

(i) M(S)∗ is extremely topological left amenable,

(ii) there exists a net {μβ} inM0(S) such that for any μ inM0(S) and F inM(S)∗,

lim
β

∥∥μ∗μβ − μβ

∥∥ = 0, lim
β

∥∥F × μβ − F
(
μβ

)
μβ

∥∥ = 0, (3.36)

(iii) there exists a net {μγ} inM0(S) such that for any μ inM0(S) and F inM(S)∗,

w∗ − lim
γ

(
μ∗μγ − μγ

)
= 0, (3.37)

w∗ − lim
γ

(
F × μγ − F

(
μγ

)
μγ

)
= 0. (3.38)

Proof. (i) ⇒ (ii). LetM be a multiplicative left invariant mean onM(S)∗. Theorem 3.4 implies
that there exists a net {μα} in M0(S) such that for any μ in M0(S) and F inM(S)∗,

w∗ − lim
α

(
F × (

μ∗μα

) −M(F)μα

)
= 0. (3.39)

By Lemma 3.5, there exists a net {μβ} inM0(S) such that for any μ inM0(S) and F inM(S)∗,

lim
β

∥∥F × (
μ∗μβ

) −M(F)μβ

∥∥ = 0. (3.40)

Without the loss of generality, we may assume that μβ → M1 σ(M(S)∗∗,M(S)∗) for some
mean M1 in M(S)∗∗. Therefore, for any F,G inM(S)∗ and μ inM0(S), we have

M1
(
μ � (G × F)

) −M(F)M1(G) = lim
β

{(
μ � (G × F)

)(
μβ

) −M(F)M1(G)
}

= lim
β

[
G
(
F × (

μ∗μβ

)) −G
(
M(F)μβ

)]

= lim
β

G
(
F × (

μ∗μβ

) −M(F)μβ

)

= 0.

(3.41)
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In (3.41), we put F = 1 = G, then

M1
(
μ � (1 × 1)

)
= M(1)M1(1),

M1(μ � 1) = M(1)M1(1),

M(1) = 1.

(3.42)

Also, for F = 1 and G inM(S)∗,

M1(μ �G) = M1(G), (3.43)

and for G = 1 and F inM(S)∗,

M1(μ � F) = M1(F). (3.44)

Therefore, for any F inM(S)∗, we have

M(F) = M1(μ � F) = M1(F). (3.45)

Now, from (3.30) for F = 1, we get

lim
β

∥∥μ∗μβ − μβ

∥∥ = 0. (3.46)

Also, let F inM(S)∗ and ε > 0 be given. Since

M(F) = M1(F), F
(
μβ

) −→ M(F),
∥∥μβ

∥∥ ≤ 1, (3.47)

it follows from (3.30) that for any μ inM0(S),

lim
β

∥∥F × (
μ∗μβ

) −M1(F)μβ

∥∥ = 0. (3.48)

Now fix an arbitrary μ ∈ M0(S). This together with (3.46) implies that there exists a β0 such
that

∥∥μ∗μβ − μβ

∥∥ <
ε

3
(‖F‖ + 1

) , ∀β � β0,

∥∥F × (
μ∗μβ

) −M1(F)μβ

∥∥ <
ε

3
.

(3.49)

Also, we may assume that

∣∣F
(
μβ

) −M1(F)
∣∣ <

ε

3
. (3.50)
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Consequently,

∥
∥F × μβ − F

(
μβ

)
μβ

∥
∥

≤ ∥
∥F × μβ − F × (

μ∗μβ

)∥∥ +
∥
∥F × (

μ∗μβ

) −M1(F)μβ

∥
∥ +

∥
∥M1(F)μβ − F

(
μβ

)
μβ

∥
∥

≤ ‖F‖∥∥μ∗μβ − μβ

∥
∥ +

∥
∥F × (

μ∗μβ

) −M1(F)μβ

∥
∥
∥
∥μβ

∥
∥
∣
∣M1(F) − F

(
μβ

)∣∣

<
ε

3
+
ε

3
+
ε

3

= ε, ∀β � β0.

(3.51)

Obviously, (ii) ⇒ (iii).
(iii) ⇒ (i). SinceM0(S) is weak∗ dense in the set of all means onM(S)∗, by passing to

a subnet if necessary, we may assume that μγ → M weakly∗ in M(S)∗∗ for some mean M.
Thus, the assertion of (3.37) implies that M is a topological left invariant mean. Also, (3.38)
implies that M is multiplicative because for any F,G inM(S)∗ and μ in M0(S),

M(G × F) −M(G)M(F) = w∗ − lim
γ

{
(G × F)

(
μγ

) −G
(
μγ

)
F
(
μγ

)}

= w∗ − lim
γ

{
G
(
F × μγ

) −G
(
F
(
μγ

)
μγ

)}

= w∗ − lim
γ

G
(
F × μγ − F

(
μγ

)
μγ

)

= G(0) = 0.

(3.52)

Therefore, M(G × F) = M(G)M(F), that is, M(S)∗ is extremely left amenable.

Remark 3.7. The conclusions of Theorem 3.6 are different from the classical characterizations
of extremely left amenable discrete semigroups [4, Theorem 2]. This difference in the two
situations is that anymultiplicativemean onm(S) is theweak∗ limit of evaluation functionals,
while taking weak∗ limits of all convergent nets of Dirac measures inM(S)∗ does not exhaust
all multiplicative means onM(S)∗ [2, Theorem 2.7].

Theorem 3.8. Let S be a locally compact semigroup. Define a function T : M(S)∗ → m(S) by

(
T(F)

)
(a) = F � εa, ∀a ∈ S. (3.53)

Then,

(i) T is bounded and linear,

(ii) T(1) = 1,

(iii) T(F) ≥ 0 whenever F ≥ 0,

(iv) T(F ×G) = T(F)T(G) for all F and G inM(S)∗,

(v) lb(T(F)) = T(εb � F) for all b ∈ S and F ∈ M(S)∗.
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Proof. (i), (ii), and (iii) are obvious.
(iv) For any a ∈ S, we have

(
T(F ×G)

)
(a) = (F ×G) � εa

=
(
F � εa

) × (
G � εa

) (
by Lemma 2.2(i)

)

= T(F)(a) × T(G)(a)

=
(
T(F) × T(G)

)
(a)

=
(
T(F)T(G)

)
(a).

(3.54)

In the final equality, we use the fact that multiplication inm(S) is a point-wise multiplication,
see Remark 3.2 of Theorem 3.1.

(v) Let a ∈ S and F ∈ M(S)∗, then

lb
(
T(F)

)
(a) =

(
T(F)

)
(ba) = F � εba

= F
(
εb∗εa

)
=
(
εb � F

)(
εa
)

=
(
T
(
εb � F

))
(a).

(3.55)

So, lb(T(F)) = T(εb � F).

Remark 3.9. From Theorem 3.8, it follows that the map T∗ : m(S)∗ → M(S)∗∗ carries means
to means, multiplicative means to multiplicative means, left invariant means to left invariant
means, and multiplicative left invariant means to multiplicative left invariant means. But T∗

does not carry a type of means inm(S)∗ onto the same type of means inM(S)∗∗. Indeed, ifM
is a multiplicative topological left invariant mean which is not weak∗ limit of all convergent
nets of Dirac measures inM(S)∗, thenM does not belong to T∗(M), whereM is the set of all
means on m(S).
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