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1. Introduction

LetX be a real linear space. A quasinorm is a real-valued function onX satisfying the following
conditions.

(i) ‖x‖ ≥ 0 for all x ∈ X, and ‖x‖ = 0 if and only if x = 0.

(ii) ‖λx‖ = |λ|‖x‖ for all λ ∈ R and all x ∈ X.

(iii) There is a constant K ≥ 1 such that ‖x + y‖ ≤ K(‖x‖ + ‖y‖) for all x, y ∈ X.

The pair (X, ‖ · ‖) is called a quasinormed space if ‖ · ‖ is a quasinorm on X. The smallest
possible K is called the modules of concavity of ‖ · ‖. By a quasi-Banach space we mean a
complete quasinormed space, that is, a quasinormed space in which every Cauchy sequence
converges in X.

This class includes Banach spaces. The most significant class of quasi-Banach spaces,
which are not Banach spaces, is Lp-spaces for 0 < p < 1 equipped with the Lp-norms ‖ · ‖p.
A quasinorm ‖ · ‖ is called a p-norm (0 < p < 1) if ‖x + y‖p ≤ ‖x‖p + ‖y‖p for all x, y ∈ X.
In this case, a quasinormed (quasi-Banach) space is called a p-normed (p-Banach) space. By
the Aoki-Rolewicz theorem [1], each quasinorm is equivalent to some p-norm. Since it is much
easier to work with p-norms than with quasinorms, henceforth we restrict our attentionmainly
to p-norms. See [2–4] for more information.
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If x∗ is in X∗, the dual of X, and x ∈ X we write x∗(x) as 〈x∗, x〉. We also consider
quasinorms with K > 1. The case where K = 1 turns out to be the classical normed spaces, so
we will not discuss it and refer the interested reader to [5–7] for analogue results concerning
normed spaces.

In this paper, using some strategies from [5–7], we study the farthest point mapping in
a p-normed space X in virtue of subdifferential of r(x) = sup{‖x − z‖p : z ∈ M}, where M is
a weakly sequentially compact subset of X. We show that the set of all points in X which have
farthest point inM contains a dense Gδ subset of X.

LetX be a p-normed space and letM be a nonempty bounded subset ofX. The mapping
QM : X → 2M defined by QM(x) = {z ∈ M : ‖x − z‖p = supt∈M‖x − t‖p} is called the farthest
point map of M. We call M a remotal (uniquely remotal, resp.) set if for each x ∈ X the set
QM(x) is not empty (is singleton, resp.) [8–10].

2. Main results

Let X be a p-normed space and letM be a bounded subset of X. For each x ∈ X, we define the
subdifferential of a function f at x by

∂f(x) =
{
x∗ ∈ X∗ : sgn

〈
x∗, y − x

〉∣∣〈x∗, y − x
〉∣∣p + f(x) ≤ f(y) ∀y ∈ X

}
. (2.1)

This set may be empty even if we consider X to be a Banach space [7, Example 3.8]. In a p-
normed space, it may happen that ∂r(x) /= ∅, although we should note that a p-normed space
may have a trivial dual as well as it might have a nontrivial dual, see [11, Chapter 3], for some
examples. To see the nonemptiness, suppose that X is a p-normed space, x ∈ X, and M = {x}.
Thus, r(x) = 0 and obviously 0 ∈ ∂r(x). Also for each x∗ ∈ X∗ with ‖x∗‖ ≤ 1, we have

∣
∣〈x∗, y − x

〉∣∣p ≤ ∥
∥x∗∥∥p‖y − x‖p ≤ ‖y − x‖p ≤ r(y) = r(y) − r(x) (y ∈ X). (2.2)

It follows that sgn〈x∗, y − x〉|〈x∗, y − x〉|p + r(x) ≤ r(y) (y ∈ X), and so ∂r(x) /= ∅. Throughout
the rest, we assume ∂r(x) /= ∅ when we deal with this set. For an arbitrary nonempty bounded
subset M of X, finding the set of all x for which ∂r(x) /= ∅ remains an open question.

Lemma 2.1. Let X be a p-Banach space and letM be a bounded subset inX. Then for each x ∈ X, each
element of ∂r(x) has norm less than or equal to 1 and hence ∂r(x) is w∗-compact.

Proof. Let x ∈ X and x∗ ∈ ∂r(x). We have sgn〈x∗, y − x〉|〈x∗, y − x〉|p + r(x) ≤ r(y) (y ∈ X). By
definition of r(x)we have |r(y) − r(x)| ≤ ‖x − y‖p for all y ∈ X [10, 12].

Hence sgn〈x∗, y − x〉|〈x∗, y − x〉|p ≤ ‖x − y‖p and therefore ‖x∗‖ ≤ 1.

Note that −r(x) ≤ −‖x−y‖p ≤ −sgn〈x∗, x−y〉|〈x∗, x−y〉|p = sgn〈x∗, y −x〉|〈x∗, y −x〉|p,
thus infz∈Msgn〈x∗, z − x〉|〈x∗, z − x〉|p ≥ −r(x).

Now we have the following proposition which is interesting on its own right.

Proposition 2.2. Let X be a p-Banach space and let M be a bounded subset of X. Then the set F =
{x ∈ X : infz∈M sgn〈x∗, z − x〉|〈x∗, z − x〉|p > −r(x) for some x∗ ∈ ∂r(x)} is of the first category
in X.
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Proof. Let

Fn :=
{
x ∈ X : inf

z∈M
sgn

〈
x∗, z − x

〉∣∣〈x∗, z − x
〉∣∣p ≥ −r(x) + 1

n
for somex∗ ∈ ∂r(x)

}
. (2.3)

Then F =
⋃∞

n=1Fn. We will show that for each n,

(i) Fn is a norm closed subset of X;

(ii) Fn has empty interior.

To see (i), let {xm} be a sequence in Fn which converges to an element x in X. For each m,
choose x∗

m ∈ ∂r(xm) such that

inf
z∈M

sgn
〈
x∗
m, z − xm

〉∣∣〈x∗
m, z − xm

〉∣∣p ≥ −r(xm

)
+
1
n
. (2.4)

By Lemma 2.1 ‖x∗
m‖ ≤ 1 for all m. Without loss of generality, we assume that {x∗

m} converges
weak∗ to x∗. For every y ∈ X, we have
∣∣〈x∗

m, y − xm

〉 − 〈
x∗, y − x

〉∣∣ ≤ ∣∣〈x∗
m, y − xm

〉 − 〈
x∗
m, y − x

〉∣∣ +
∣∣〈x∗

m, y − x
〉 − 〈

x∗, y − x
〉∣∣

≤ ∥∥xm − x
∥∥ +

∣∣〈x∗
m − x∗, y − x

〉∣∣.
(2.5)

This shows that {〈x∗
m, y − xm〉}∞m=1 converges to 〈x∗, y − x〉. Since x∗

m ∈ ∂r(xm),

sgn
〈
x∗
m, y − xm

〉∣∣〈x∗
m, y − xm

〉∣∣p + r
(
xm

) ≤ r(y) (y ∈ X), (2.6)

or equivalently

〈
x∗
m, y − xm

〉∣∣〈x∗
m, y − xm

〉∣∣p−1 + r
(
xm

) ≤ r(y) (y ∈ X). (2.7)

It follows that

〈
x∗, y − x

〉∣∣〈x∗, y − x
〉∣∣p−1 + r(x) ≤ r(y) (y ∈ X) (2.8)

and hence

sgn
〈
x∗, y − x

〉∣∣〈x∗, y − x
〉∣∣p + r(x) ≤ r(y) (y ∈ X). (2.9)

This shows that x∗ ∈ ∂r(x). It follows from (2.4) that

sgn
〈
x∗
m, z − xm

〉∣∣〈x∗
m, z − xm

〉∣∣p ≥ −r(xm

)
+
1
n

(z ∈ M). (2.10)

We use the fact that sgn〈x∗
m, y − xm〉|〈x∗

m, y − xm〉|p = 〈x∗
m, y − xm〉|〈x∗

m, y − xm〉|p−1 once more
to obtain the inequality

sgn
〈
x∗, z − x

〉∣∣〈x∗, z − x
〉∣∣p ≥ −r(x) + 1

n
(z ∈ M). (2.11)

Therefore x ∈ Fn. So Fn is a closed subset of X.
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To see (ii), suppose that some Fk has nonempty interior. Then, there exists an open ballU
in X of radius λ(2r(y0))

1/p for some λ > 0 and center at y0 such that U ⊆ Fk. Let α = 1/λp, β =
1/(λ + 1)p, and ε ≤ ((1 + λ)p −1)/k(α+β+1)((1+λ)p)min{r1/p(y0), 1} and choose z0 ∈ M such
that

r
(
y0
) − ε <

∥∥y0 − z0
∥∥p ≤ r

(
y0
)
. (2.12)

Let x0 = y0 + λ(y0 − z0) then

x0 − z0 = (1 + λ)
(
y0 − z0

)
. (2.13)

Choose x1 ∈ U ⊆ Fk such that
∥∥x1 − x0

∥∥p = ε. (2.14)

Then there exists x∗
1 ∈ ∂r(x1) such that

inf
z∈M

sgn
〈
x∗
1, z − x1

〉∣∣〈x∗
1, z − x1

〉∣∣p ≥ −r(x1
)
+
1
k
. (2.15)

We will show that

sgn
〈
x∗
1, y0 − x1

〉∣∣〈x∗
1, y0 − x1

〉∣∣p + r
(
x1
)
> r

(
y0
)
. (2.16)

This will contradict the fact that x∗
1 is a subdifferential of r at x1 and the proof would be com-

pleted. To achieve a contradiction, we will consider four cases as follows.

(i) sgn〈x∗
1, z0 − x1〉 < 0 and sgn〈x∗

1, y0 − x1〉 > 0.

(ii) sgn〈x∗
1, z0 − x1〉 > 0 and sgn〈x∗

1, y0 − x1〉 > 0.

(iii) sgn〈x∗
1, z0 − x1〉 > 0 and sgn〈x∗

1, y0 − x1〉 < 0.

(iv) sgn〈x∗
1, z0 − x1〉 < 0 and sgn〈x∗

1, y0 − x1〉 < 0.

We investigate case (i) in detail. The other cases can be studied similarly. First of all note that

z0 − x1 = z0 − y0 + y0 − x1 =
y0 − x0

λ
+ y0 − x1 =

(

1 +
1
λ

)
(
y0 − x1

)
+
1
λ

(
x1 − x0

)
. (2.17)

Now, we have

r
(
y0
) − r

(
x1
)
<
∥∥y0 − z0

∥∥p + ε − r
(
x1
)

=
1

|1 + λ|p
∥∥x0 − z0

∥∥p + ε − r
(
x1
)

(by (2.13))

≤ 1
(1 + λ)p

[∥∥x0 − x1
∥∥p +

∥∥x1 − z0
∥∥p] + ε − r

(
x1
)

=
(
1 − 1

(1 + λ)p

)
( − r

(
x1
))

+
(

1
(1 + λ)p

+ 1
)
ε (by the defination of r(·))

≤
(
1 − 1

(1 + λ)p

)[
sgn

〈
x∗
1, z0 − x1

〉∣∣〈x∗
1, z0 − x1

〉∣∣p − 1
k

]
+
(

1
(1 + λ)p

+ 1
)
ε

≤
(
1 − 1

(1 + λ)p

)[
− ∣∣〈x∗

1, z0 − x1
〉∣∣p − 1

k

]
+
(

1
(1 + λ)p

+ 1
)
ε
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≤
(
1 − 1

(1 + λ)p

)[
−
∣∣∣∣

〈
x∗
1,
λ + 1
λ

(
y0 − x1

)
+
x1 − x0

λ

〉∣∣∣∣

p

− 1
k

]

+
(

1
(1 + λ)p

+ 1
)
ε (by

(
2.17)

)

≤
(
1 − 1

(1 + λ)p

)[
−
∣∣
∣
∣

〈
x∗
1,
λ + 1
λ

(
y0 − x1

)
〉∣∣
∣
∣

p

+
∣
∣∣
∣

〈
x∗
1,
x1 − x0

λ

〉∣∣∣
∣

p

− 1
k

]

+
(

1
(1 + λ)p

+ 1
)
ε

(
by the fact that − |a + b|p ≤ −|a|p + |b|p)

≤
(
1 − 1

(1 + λ)p

)(
λ + 1
λ

)p[ − 〈
x∗
1, y0 − x1

〉∣∣p] +
ε

λp

(
1 − 1

(1 + λ)p

)

+
(
1 − 1

(1 + λ)p

)(
− 1
k

)
+
(

1
(1 + λ)p

+ 1
)
ε

≤
(
1 − 1

(1 + λ)p

)
[ − ∣∣〈x∗

1, y0 − x1
〉∣∣p] ≤ sgn

〈
x∗
1, y0 − x1

〉∣∣〈x∗
1, y0 − x1

〉∣∣p.
(2.18)

We recall that a set G ⊂ X is said to be weakly sequentially compact if each sequence of
elements of G contains a subsequence converging weakly to some element x ∈ G.

Theorem 2.3. Let M be a weakly sequentially compact subset in a p-Banach space X. Then the set
{x ∈ X : ‖x − z‖p = r(x) for some z ∈ M} contains a dense Gδ-set in X. In particular, the set of
farthest points of S is nonempty.

Proof. Let F and Fn bedefined as in Proposition 2.2 and let D(M) = X \ F. Then

D(M) = X \
⋃

n∈N
Fn =

⋂

n∈N

(
X \ Fn

)
, (2.19)

where each X \ Fn is an open dense subset of X. Hence D(M) is a dense Gδ-set in X. For each
x ∈ D(M) and x∗ ∈ ∂r(x), we have

inf
z∈M

sgn
〈
x∗, z − x

〉∣∣〈x∗, z − x
〉∣∣p = −r(x). (2.20)

By the weak compactness ofM, there exists a point z ∈ M with sgn〈x∗, z0 − x〉|〈x∗, z0 − x〉|p =
−r(x). Hence

r(x) ≥ ∥∥x − z0
∥∥p ≥ sgn

〈
x∗, x − z0

〉∣∣〈x∗, x − z0
〉∣∣p = −sgn〈x∗, z0 − x

〉∣∣〈x∗, z0 − x
〉∣∣p = r(x).

(2.21)

This shows that D(M) ⊆ {x : ‖x − z‖p = r(x) for some z ∈ M}.
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