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1. Introduction

Let A denote the class of functions analytic in the open unit disc

U :=
{
z : z ∈ C, |z| < 1

}
(1.1)

and let A0 be the class of functions f inA given by the normalized power series

f(z) = z +
∞∑

n=2

anz
n (z ∈ U). (1.2)

Also let S, S∗(β), CV(β), and K denote, respectively, the subclasses of A0 consisting of
functions which are univalent, starlike of order β, convex of order β (cf. [1]), and close-to-convex
(cf. [2]) in U. In particular, S∗(0) = S∗ and CV(0) = CV are the familiar classes of starlike and
convex functions in U (cf. [2]).

Given f and g inA, the function f is said to be subordinate to g in U if there exits a func-
tionω ∈ A satisfying the conditions of the Schwarz Lemma such that f(z) = g(ω(z)), (z ∈ U).
We denote the subordination by

f(z) ≺ g(z) (z ∈ U) or f ≺ g in U. (1.3)
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It is well known [2] that if g is univalent in U, then f ≺ g in U is equivalent to f(0) = g(0) and
f(U) ⊂ g(U).

For the functions f and g given by the power series

f(z) =
∞∑

n=0

anz
n, g(z) =

∞∑

n=0

bnz
n (z ∈ U), (1.4)

their Hadamard product (or convolution), denoted by f∗g, is defined by

(f∗g)(z) =
∞∑

n=0

anbnz
n = (g∗f)(z) (z ∈ U). (1.5)

Note that f∗g ∈ A.
By making use of the Hadamard product, Carlson-Shaffer [3] defined the linear operator

L(a, c) : A → A by

(L(a, c)f
)
(z) := Φ(a, c; z)∗f(z) (z ∈ U, f ∈ A), (1.6)

where

Φ(a, c; z) :=
∞∑

k=0

(a)k
(c)k

zk+1
(
z ∈ U, c/∈Z

−
0 = {0} ∪ {−1,−2,−3, . . .}) (1.7)

and (λ)k is the Pochhammer symbol (or shifted factorial) defined in terms of the gamma function
by

(λ)k =
Γ(λ + k)
Γ(λ)

=

{
1 (k = 0),

λ(λ + 1)(λ + 2) · · · (λ + k − 1)
(
k ∈ N := {1, 2, . . .}). (1.8)

It can be readily verified that L(a, a) (a/∈Z
−
0) is the identity operator; the operators

L(a, b), L(c, d) commute, where b, d/∈Z
−
0 , that is,

L(a, b)L(c, d)f = L(c, d)L(a, b)f (f ∈ A), (1.9)

and the transitive property, that is,

L(a, b)L(b, c)f = L(a, c)f
(
b, c /∈Z

−
0 , f ∈ A)

, (1.10)

holds. Each of the following definitions will also be required in our present investigation.

Definition 1.1 (cf. [4, 5], see also [6]). Let the function f be analytic in a simply connected region
of the z-plane containing the origin. The fractional derivative of f of order λ is defined by

(
Dλ

zf
)
(z) =

1
Γ(1 − λ)

d

dz

∫z

0

f(ζ)

(z − ζ)λ
dζ (0 ≤ λ < 1), (1.11)

where the multiplicity of (z − ζ)λ is removed by requiring log(z− ζ) to be real when (z− ζ) > 0.



A. K. Mishra and P. Gochhayat 3

Using Definition 1.1 and its known extensions involving fractional derivatives and frac-
tional integrals, Owa and Srivastava [5] introduced the fractional differintegral operator Ωλ

z :
A0 → A0 defined by

(
Ωλ

zf
)
(z) = Γ(2 − λ)zλ

(
Dλ

zf
)
(z) (λ/= 2, 3, . . . , z ∈ U). (1.12)

Note that Ω0
zf(z) = f(z), Ω1

zf(z) = zf ′(z), and
(
Ωλ

zf
)
(z) =

(L(2, 2 − λ)f
)
(z) (0 ≤ λ < 1, z ∈ U). (1.13)

Definition 1.2 (cf. [7]). For the function f given by (1.2) and q ∈ N := {1, 2, 3, . . .}, the qth Hankel
determinant of f is defined by

∣∣∣∣∣∣∣∣∣∣

an an+1 · · · an+q−1
an+1 an+2 · · · an+q
...

...
...

...
an+q−1 an+q · · · an+2q−2

∣∣∣∣∣∣∣∣∣∣

. (1.14)

We now introduce the following class of functions.

Definition 1.3. The function f ∈ A0 is said to be in the class Rλ(α, ρ) (0 ≤ λ < 1, |α| < π/2, 0 ≤
ρ ≤ 1) if it satisfies the inequality

R

{
eiα

Ωλ
zf(z)
z

}
> ρ cosα (z ∈ U). (1.15)

Write

Rλ(0, ρ) := Rλ(ρ). (1.16)

Let P be the family of functions p ∈ A satisfying p(0) = 1 and R(p(z)) > 0 (z ∈ U).
It follows from (1.15) that

f ∈ Rλ(α, ρ) ⇐⇒ eiα
Ωλ

zf(z)
z

=
[
(1 − ρ)p(z) + ρ

]
cosα + i sinα, (1.17)

where α is real, |α| < π/2, and p(z) ∈ P.
We note that

R0(α, ρ) :=
{
f ∈ A0 | R

{
eiα

f(z)
z

}
> ρ cosα

}
,

R1(α, ρ) :=
{
f ∈ A0 | R

{
eiαf ′(z)

}
> ρ cosα

}
,

(1.18)

and the class Rλ(ρ) has been studied in [8].
It is well known (cf. [2]) that for f ∈ S and given by (1.2), the sharp inequality |a3−a2

2| ≤
1 holds. This corresponds to the Hankel determinant with q = 2 and n = 1. For a given family
F of functions in A0, the more general problem of finding sharp estimates for |μa2

2 − a3| (μ ∈
R or μ ∈ C) is popularly known as the Fekete-Szegö problem for F. The Fekete-Szegö problem
for the families S, S∗, CV, K has been completely solved by many authors including [9–12].

In the present paper, we consider the Hankel determinant for q = 2 and n = 2 and we
find the sharp bound for the functional |a2a4 − a2

3| (f ∈ Rλ(α, ρ)). We also obtain some basic
properties of the class Rλ(α, ρ). Our investigation includes a recent result of Janteng et al. [13].
We also generalize some results of Ling and Ding [8].
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2. Preliminaries

To establish our results, we recall the following.

Lemma 2.1 (see [2]). Let the function p ∈ P and be given by the series

p(z) = 1 + c1z + c2z
2 + · · · (z ∈ U). (2.1)

Then, the sharp estimate
∣∣ck

∣
∣ ≤ 2 (k ∈ N) (2.2)

holds.

Lemma 2.2 (cf. [14, page 254], see also [15]). Let the function p ∈ P be given by the power series
(2.1). Then,

2c2 = c21 + x
(
4 − c21

)
(2.3)

for some x, |x| ≤ 1, and

4c3 = c31 + 2(4 − c21
)
c1x − c1(4 − c21

)
x2 + 2(4 − c21

)
(1 − |x|2)z (2.4)

for some z, |z| ≤ 1.

Lemma 2.3 (see [16]). Let F and G be univalent convex functions in U. Then, the Hadamard product
F∗G is also a univalent convex function in U.

Lemma 2.4 (see [17]). Let F and G be univalent convex functions in U. Also let f ≺ F and g ≺ G in
U. Then, f∗g ≺ F∗G in U.

Lemma 2.5 (see [16], also see [8]). Let f and g be starlike of order 1/2. Then, for each function F(z),
satisfying R(F(z)) > α (0 ≤ α < 1, z ∈ U), one has

R

(
f(z)∗F(z)g(z)

f(z)∗g(z)
)

> α (z ∈ U). (2.5)

Lemma 2.6 (see [8]). Let the function h(z) = 1 + h1z + h2z
2 + · · · be univalent convex in U. For

0 ≤ λ < 1 if Ωλ
zf(z)/z ≺ h(z) (z ∈ U), then

f(z)
z

≺ {L(2 − λ, 2)
[
zh(z)

]}
(z ∈ U). (2.6)

3. Main results

We prove the following.

Theorem 3.1. Let the function f given by (1.2) be in the class Rλ(α, ρ) (0 ≤ λ < 1, − π/2 < α <
π/2, and 0 ≤ ρ ≤ 1). Then,

∣∣a2a4 − a2
3

∣∣ ≤ (1 − ρ)2(2 − λ)2(3 − λ)2cos2α
9

. (3.1)

The estimate (3.1) is sharp.
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Proof. Let f ∈ Rλ(α, ρ) (0 ≤ λ < 1, − π/2 < α < π/2, and 0 ≤ ρ ≤ 1). Then, by (1.17),

eiα
Ωλ

zf(z)
z

=
[
(1 − ρ)p(z) + ρ

]
cosα + i sinα (z ∈ U), (3.2)

where p ∈ P and is given by (2.1). Using (1.6), (1.7), and (1.13), we write

Ωλ
zf(z) = z +

∞∑

n=2

Γ(n + 1)Γ(2 − λ)
Γ(n + 1 − λ)

anz
n, (z ∈ U). (3.3)

Comparing the coefficients, we get

eiα
2

(2 − λ)
a2 = (1 − ρ)c1 cosα,

eiα
6

(2 − λ)(3 − λ)
a3 = (1 − ρ)c2 cosα,

eiα
24

(2 − λ)(3 − λ)(4 − λ)
a4 = (1 − ρ)c3 cosα.

(3.4)

Therefore, (3.4) yields

∣∣a2a4 − a2
3

∣∣ =
(1 − ρ)2(2 − λ)2(3 − λ)(cos2α)

12

∣∣∣∣

(
(4 − λ)c1c3

4
− (3 − λ)c22

3

)∣∣∣∣. (3.5)

Since the functions p(z) and p(eiθz), (θ ∈ R) are members of the class P simultaneously, we
assume without loss of generality that c1 > 0. For convenience of notation, we take c1 = c (c ∈
[0, 2]).

Using (2.3) along with (2.4), we get

∣∣a2a4 − a2
3

∣∣ =
(1 − ρ)2(2 − λ)2(3 − λ)(cos2α)

12

×
∣∣∣∣
(4 − λ)c

16
{
c3 + 2

(
4 − c2

)
cx − c

(
4 − c2

)
x2 + 2(4 − c2

)(
1 − |x|2)z}

∣∣∣∣

=
(1 − ρ)2(2 − λ)2(3 − λ)(cos2α)

48

×
∣∣∣∣

(
(4 − λ)

4
− 3 − λ

3

)
c4 +

((4 − λ)
(
4 − c2

)
c2

2
− 2c2(3 − λ)

(
4 − c2

)

3

)
x

−
((4 − λ)

(
4 − c2

)
c2

4
+
(3 − λ)

(
4 − c2

)2

3

)
x2 +

(4 − λ)
(
4 − c2

)
c
(
1 − |x|2)z

2

∣
∣∣∣

=
(1 − ρ)2(2 − λ)2(3 − λ)

(
cos2α

)

48

×
∣∣∣∣
λc4

12
+
λ
(
4 − c2

)
c2x

6
−
(48 − λ

(
16 − c2

)

12

)
(
4 − c2

)
x2+

(4 − λ)
(
4 − c2

)
c
(
1 − |x|2)z

2

∣∣∣∣.

(3.6)
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An application of triangle inequality and replacement of |x| by μ give

∣∣a2a4 − a2
3

∣∣ ≤ (1 − ρ)2(2 − λ)2(3 − λ)
(
cos2α

)

48

×
[
λc4

12
+
λ
(
4 − c2

)
c2μ

6
+

(
4 − c2

)[
48 − λ

(
16 − c2

)]
μ2

12
+
(4 − λ)

(
4 − c2

)
c

2

− (4 − λ)
(
4 − c2

)
cμ2

2

]

=
(1 − ρ)2(2 − λ)2(3 − λ)

(
cos2α

)

48

×
[
λc4

12
+
(4 − λ)

(
4 − c2

)
c

2
+
λ
(
4 − c2

)
c2μ

6

+
λ
[
c2 − 6(4 − λ

)
c/λ + 16(3 − λ

)
/λ

]
(4 − c2

)
μ2

12

]

=
(1 − ρ)2(2 − λ)2(3 − λ)

(
cos2α

)

48

×
[
λc4

12
+
(4 − λ)

(
4 − c2

)
c

2
+
λ
(
4 − c2

)
c2μ

6
+
λ
(
c − β1

)(
c − β2

)(
4 − c2

)
μ2

12

]

:= F(c, μ) (say),

(3.7)

where

β1 = 2, β2 =
8(3 − λ)

λ
, 0 ≤ c ≤ 2, 0 ≤ μ ≤ 1. (3.8)

We next maximize the function F(c, μ) on the closed square [0, 2] × [0, 1]. Since

∂F

∂μ
=
(1 − ρ)2(2 − λ)2(3 − λ)cos2α

48

[
λ
(
4 − c2

)
c2

6
+
λ
(
4 − c2

)
(c − 2)

(
c − 8(3 − λ)/λ

)
μ

6

]
, (3.9)

c − 2 < 0, and c − 8(3 − λ)/λ < 0, we have ∂F/∂μ > 0 for 0 < c < 2, 0 < μ < 1. Thus F(c, μ)
cannot have a maximum in the interior of the closed square [0, 2] × [0, 1]. Moreover, for fixed
c ∈ [0, 2],

max
0≤μ≤1

F(c, μ) = F(c, 1) = G(c) (say). (3.10)

Next,

G′(c) =
−(1 − ρ)2(2 − λ)2(3 − λ)

(
c2 − (7λ − 12)

)
c cos2 α

72
, (3.11)

so that G′(c) < 0 for 0 < c < 2 and has real critical point at c = 0. Also G(c) > G(2). Therefore,
max0≤c≤2 occurs at c = 0. Therefore, the upper bound of (3.7) corresponds to μ = 1 and c = 0.
Hence,

∣∣a2a4 − a2
3

∣∣ ≤ (1 − ρ)2(2 − λ)2(3 − λ)2cos2α
9

(3.12)
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which is the assertion (3.1). Equality holds for the function

f(z) = Φ(2 − λ, 2; z)∗e−iα
[
z

(
1 + (1 − 2ρ)z2

1 − z2
cosα + i sinα

)]
. (3.13)

The proof of Theorem 3.1 is complete.

The choice of α = 0 yields what follows.

Corollary 3.2. Let the function f given by (1.2) be a member of the class Rλ(ρ). Then,

∣
∣a2a4 − a2

3

∣
∣ ≤ (1 − ρ)2(2 − λ)2(3 − λ)2

9
. (3.14)

Equality holds for the function

f(z) = L(2 − λ, 2)∗z
(
1 + (1 − 2ρ)z2

)

1 − z2
. (3.15)

Remark 3.3. Taking λ → 1, α = 0, and ρ = 0, we get a recent result due to Janteng et al. [13].

Theorem 3.4. Suppose −π/2 < α < π/2, 0 ≤ ρ < 1, and 0 ≤ μ < λ < 1. Then,

Rλ(α, ρ) ⊂ Rμ(α, ρ). (3.16)

Proof. Let

f ∈ Rλ(α, ρ)
(
0 ≤ μ < λ < 1, − π

2
< α <

π

2
, 0 ≤ ρ ≤ 1

)
. (3.17)

Using the associative and commutative properties of the operator L, we write

Ωμ
zf(z) = L(2, 2 − μ)f(z)

= L(2 − λ, 2)L(2, 2 − λ)L(2, 2 − μ)f(z)

= L(2 − λ, 2 − μ)Ωλ
zf(z)

= Φ(2 − λ, 2 − μ; z)∗Ωλ
zf(z),

(3.18)

where the function Φ is defined by (1.7). Therefore,

eiαΩμ
zf(z)
z

=
Φ(2 − λ, 2 − μ; z)∗(eiαΩλ

zf(z)/z
)·z

Φ(2 − λ, 2 − μ; z)∗z

=
f(z)∗F(z)g(z)

f(z)g(z)
,

(3.19)

where f(z) = Φ(2 − λ, 2 − μ; z), g(z) = z, F(z) = eiαΩλ
zf(z)/z. We note that g ∈ S∗(1/2), and

R(F(z)) > ρ cosα (0 ≤ ρ ≤ 1, − π/2 < α < π/2). Moreover, it is well known (cf. [18]) that
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Φ(2 − λ, 2 − μ; z) ∈ S∗(1/2). Therefore, by Lemma 2.5,

R

(
eiαΩμ

zf(z)
z

)
> ρ cosα

(
− π

2
< α <

π

2
, z ∈ U, 0 ≤ ρ ≤ 1

)
. (3.20)

Hence, f(z) ∈ Rμ(α, ρ), and the proof of Theorem 3.4 is complete.

Theorem 3.5. Let f ∈ S∗(1/2) and g ∈ Rλ(α, ρ) (0 ≤ ρ ≤ 1, − π/2 < α < π/2, 0 ≤ λ < 1). Then
the Hadamard product

f∗g ∈ Rλ(α, ρ). (3.21)

Proof. Since the Hadamard product is associative and commutative, we have

Ωλ
z(f∗g)(z) = f(z)∗Ωλ

zg(z). (3.22)

Therefore,

eiαΩλ
z(f∗g)(z)
z

=
f(z)∗(eiαΩλ

zg(z)/z
)·z

f(z)∗z . (3.23)

Now applying Lemma 2.5, we get

R

(
eiαΩλ

z(f∗g)(z)
z

)
> ρ cosα. (3.24)

Hence, f∗g ∈ Rλ(α, ρ), and the proof of Theorem 3.5 is complete.

Theorem 3.6. Let f ∈ Rλ(α, ρ) (0 ≤ λ < 1, − π/2 < α < π/2, 0 ≤ ρ ≤ 1). Then, the function I(f)
defined by the integral transform

I(f)(z) = γ + 1
zγ

∫z

0
tγ−1f(t)dt (z ∈ U, γ > −1) (3.25)

is also in Rλ(α, ρ).

Proof. The Integral transform I(f) can be written in terms of Carlson-Shaffer operator as

(I(f))(z) = (L(γ + 1, γ + 2)f
)
(z). (3.26)

Hence,

(
Ωλ

zI(f)
)
(z) = L(γ + 1, γ + 2)Ωλ

zf(z) = Φ(γ + 1, γ + 2; z)∗Ωλ
zf(z). (3.27)

Therefore,

eiα
(
Ωλ

zI(f)
)
(z)

z
=
Φ(γ + 1, γ + 2; z)∗(eiαΩλ

zf(z)/z
)
z

Φ(γ + 1, γ + 2; z)∗z . (3.28)

Using a result of Bernardi [19], it can be verified that Φ(γ + 1, γ + 2; z) ∈ S∗(1/2). Thus by
applying Lemma 2.5, the proof of Theorem 3.6 is complete.
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Theorem 3.7. Let f ∈ Rλ(α, ρ), (0 ≤ λ < 1, − π/2 < α < π/2, 0 ≤ ρ ≤ 1). Then,

f(z)
z

≺ G(z) (z ∈ U), (3.29)

where

G(z) = e−iα

z

{
Φ(2 − λ, 2; z)∗[zh(z)]},

h(z) =
(
1 + (1 − 2ρ)z

1 − z
cosα + i sinα

)
,

(3.30)

and Φ is defined by (1.7). Moreover, G is a univalent convex function in U.

Proof. Since Ωλ
zf(z)/z ≺ e−iαh(z), by an application of Lemma 2.6, we get

f(z)
z

≺ e−iα

z

{L(2 − λ, 2)∗[zh(z)]} = G(z). (3.31)

The assertion (3.29) is proved.
It is well known (cf. [18]) that Φ(2 − λ, 2; z)/z is a univalent convex function. Therefore,

by Lemma 2.4, G(z) is univalent convex function.

Remark 3.8. For α = 0, Theorem 3.7(i) gives a result of Ling and Ding [8, Theorem 2].
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