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1. Introduction

To determine what spaces are the images of “nice” spaces under “nice” mappings is one of
the central questions of general topology in [1]. In the past, many noteworthy results on im-
ages of metric spaces have been obtained. For a survey in this field, see [2], for example. A
characterization for a quotient compact image of a locally separable metric space is obtained in
[3]. Also, such a quotient image is precisely a pseudo-sequence-covering quotient compact im-
age of a locally separable metric space [4]. Recently, π-images of metric spaces cause attention
once again in [5, 6]. It is known that a space is a compact-covering (resp., sequence-covering,
pseudo-sequence-covering, sequentially-quotient) π-image of a metric space if and only if it
has a point-star network consisting of cfp-covers (resp., cs-covers, wcs-covers, cs∗-covers) [5–
7]. In a personal communication, the first author of [6] informs that it seems to be difficult to
obtain “nice” characterizations of “nice” images of locally separable metric spaces (instead of
metric or locally compact metric domains). Thus, we are interested in the following question.

Question 1.1. How are compact-covering (resp., sequence-covering, pseudo-sequence-cover-
ing, sequentially-quotient) π-images of locally sparable metric spaces characterized?

In this paper, we characterize compact-covering (resp., sequence-covering, pseudo-
sequence-covering, sequentially-quotient) π-images of locally separable metric spaces by
means of cfp-covers (resp., cs-covers, wcs-covers, cs∗-covers) for compact subsets (resp.,
convergent sequences) in a space and covers having π-property to answer Question 1.1
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completely. As applications of these results, we get characterizations on quotient π-images
of locally separable metric spaces.

Throughout this paper, all spaces are assumed to be regular and T1, all mappings are
assumed continuous and onto, a convergent sequence includes its limit point, N denotes the
set of all natural numbers. Let f : X → Y be a mapping, x ∈ X, and P be a collection of subsets
of X, we denote st(x,P) =

⋃{P ∈ P : x ∈ P}, Px = {P ∈ P : x ∈ P}, ⋃P =
⋃{P : P ∈ P},

and f(P) = {f(P) : P ∈ P}. We say that a convergent sequence {xn : n ∈ N} ∪ {x} converging
to x is eventually (resp., frequently) in A if {xn : n ≥ n0} ∪ {x} ⊂ A for some n0 ∈ N (resp.,
{xnk

: k ∈ N} ∪ {x} ⊂ A for some subsequence {xnk
: k ∈ N} of {xn : n ∈ N}). For terms which

are not defined here, please refer to [2, 8].
Let P be a collection of subsets of a space X, and K be a subset of X.
P is a cover for K in X, if K ⊂ ⋃P. When K = X, a cover for K in X is a cover of X [8]. A

cover P for X is a compact cover if all members of P are compact.
For each x ∈ X, P is a network at x if x ∈ P for every P ∈ P, and if x ∈ U with U open in

X, there exists P ∈ P such that x ∈ P ⊂ U.
P is a k-cover forK inX, if for each compact subsetH ofK there exists a finite subfamily

F of P such thatH ⊂ ⋃F. When K = X, a k-cover for K in X is a k-cover for X.
P is a cfp-cover for K in X, if for each compact subset H of K there exists a finite sub-

family F of P such that H ⊂ ⋃{CF : F ∈ F}, where CF is closed and CF ⊂ F for every F ∈ F.
Note that such an F is a full cover in the sense of [9]. When K = X, a cfp-cover for K in X is a
cfp-cover for X [10].

P is a cs-cover for K in X (resp., cs∗-cover for K in X), if for each convergent sequence
S in K, S is eventually (resp., frequently) in some P ∈ P. When K = X, a cs-cover for K in
X (resp., cs∗-cover for K in X) is a cs-cover for X [11] (resp., cs∗-cover for X [12]), or a cover
satisfying condition (c3) (resp., (c2)) [5].

P is awcs-cover forK in X if for each convergent sequence S converging to x inK there
exists a finite subfamily F of Px such that S is eventually in

⋃F. WhenK = X, awcs-cover for
K in X is a wcs-cover [7].

It is clear that if P is a cover (resp., k-cover, cfp-cover, cs-cover, wcs-cover, cs∗-cover),
then P is a cover (resp., k-cover, cfp-cover, cs-cover, wcs-cover, cs∗-cover) for K in X.

Remark 1.2. (1) Closed k-cover for K in X ⇒ cfp-cover for K in X ⇒ k-cover for K in X;
(2) cfp-cover for K in X, or cs-cover for K in X ⇒ wcs-cover for K in X ⇒ cs∗-cover for

K in X.

For each n ∈ N, let Pn be a cover for X. {Pn : n ∈ N} is a refinement sequence for X if Pn+1

is a refinement of Pn for each n ∈ N. A refinement sequence for X is a refinement of X in the
sense of [4].

Let {Pn : n ∈ N} be a refinement sequence forX. {Pn : n ∈ N} is a point-star network forX,
if {st(x,Pn) : n ∈ N} is a network at x for each x ∈ X. Note that this notion is used without the
assumption of a refinement sequence in [13], and in [5]

⋃{Pn : n ∈ N} is a σ-strong network
for X.

A cover {Xλ : λ ∈ Λ} for X is called to have π-property if each Xλ has a refinement
sequence {Pλ,n : n ∈ N} of countable covers for Xλ, and for each x ∈ U withU open in X, there
is n ∈ N such that

⋃{
st
(
x,Pλ,n

)
: λ ∈ Λ with x ∈ Xλ

} ⊂ U. (1.1)
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Let {Pn : n ∈ N} be a point-star network for a space X. For every n ∈ N, put Pn = {Pα :
α ∈ An}, and An is endowed with discrete topology. Put

M =

{

a =
(
αn

) ∈
∏

n∈N

An :
{
Pαn

: n ∈ N
}
forms a network at some point xa in X

}

. (1.2)

Then M, which is a subspace of the product space
∏

n∈N
An, is a metric space with metric d

described as follows.
Let a = (αn), b = (βn) ∈ M. If a = b, then d(a, b) = 0. If a/= b, then d(a, b) = 1/(min{n ∈

N : αn /= βn}).
Define f : M → X by choosing f(a) = xa, then f is a mapping, and (f,M,X, {Pn}) is a

Ponomarev’s system [14], and if without the assumption of a refinement sequence in the notion
of point-star networks, then (f,M,X, {Pn}) is a Ponomarev’s system in the sense of [13].

Let f : X → Y be a mapping.
f is a compact-covering mapping [15], if every compact subset of Y is the image of some

compact subset of X.
f is a sequence-covering mapping [16], if every convergent sequence of Y is the image of

some convergent sequence of X.
f is a pseudo-sequence-covering mapping [5], if every convergent sequence of Y is the image

of some compact subset of X.
f is a subsequence-covering mapping [3], if for every convergent sequence S of Y , there is

a compact subset K of X such that f(K) is a subsequence of S.
f is a sequentially-quotient mapping [17], if for every convergent sequence S of Y , there is

a convergent sequence L of X such that f(L) is a subsequence of S.
f is a pseudo-open mapping [1], if y ∈ intf(U)whenever f−1(y) ⊂ U with U open in X.
f is a π-mapping [1], if for every y ∈ Y and for every neighborhood U of y in Y ,

d(f−1(y), X − f−1(U)) > 0, where X is a metric space with a metric d.
LetX be a space. We recall thatX is sequential [18], if a subsetA ofX is closed if and only

if any convergent sequence inA has a limit point inA. Also, X is Fréchet (or Fréchet Urysohn) if
for each x ∈ A, there exists a sequence in A converging to x.

Note that, for a mapping f : X → Y , f is compact-covering or sequence-covering ⇒ f is
pseudo-sequence-covering ⇒ f is subsequence-covering [4]. Also, f is quotient if and only if
f is subsequence-covering for Y being sequential [3].

2. Main results

Lemma 2.1. Let P be a countable cover for a convergent sequence S in a space X. Then the following
are equivalent:

(1) P is a cfp-cover for S in X;

(2) P is a wcs-cover for S in X;

(3) P is a cs∗-cover for S in X.

Proof. (1)⇒(2)⇒(3). By Remark 1.2.
(3)⇒(1). Let H be a compact subset of S. We can assume that H is a subsequence of S.

SinceP is countable, putPx = {Pn : n ∈ N}, where x is the limit point of S. ThenH is eventually
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in
⋃

n≤kPn for some k ∈ N. If not, then for any k ∈ N,H is not eventually in
⋃

n≤kPn. So, for every
k ∈ N, there exists xnk

∈ S −⋃
n≤kPn. We may assume n1 < n2 < · · · < nk−1 < nk < nk+1 < · · · . Put

H ′ = {xnk
: k ∈ N} ∪ {x}, then H ′ is a subsequence of S. Since P is a cs∗-cover for S in X, there

exists m ∈ N such that H ′ is frequently in Pm. This contradicts to the construction of H ′. So H
is eventually in

⋃
n≤kPn for some k ∈ N. It implies that P is a cfp-cover for S in X.

The following lemma is routinely shown, so we omit the proof.

Lemma 2.2. Let f : X → Y be a mapping.

(1) If P is a k-cover for a compact set K in X, then f(P) is a k-cover for f(K) in Y .

(2) If P is a cs-cover for a convergent sequence S in X, then f(P) is a cs-cover for f(S) in Y .

Same as [6, Lemma 2.2(2)(ii)], we get the following.

Lemma 2.3. Let (f,M,X, {Pn}) be a Ponomarev’s system. For a convergent sequence S ofX, ifPn is a
cs-cover for S in X for each n ∈ N, then there exists a convergent sequence L ofM such that f(L) = S.

Proof. Put S = {xi : i ∈ N} ∪ {x}, where x is the limit point. For each n ∈ N, since Pn is a
cs-cover for S, S is eventually in some Pαn

∈ Pn. For each i ∈ N, if xi ∈ Pαn
, let αn,i = αn; if

xi/∈Pαn
, pick αn,i ∈ An such that xi ∈ Pαn,i

. Thus there exists in ∈ N such that αn,i = αn for all
i > in. So {αn,i : i ∈ N} converges to αn. For each i ∈ N, put ai = (αn,i) ∈ ∏

n∈N
An, and put

a = (αn) ∈
∏

n∈N
An. Then ai ∈ f−1(xi), a ∈ f−1(x), and L = {ai : i ∈ N} ∪ {a} converges to a. It

implies that L is a convergent sequence ofM and f(L) = S.

Proposition 2.4. The following are equivalent for a space X.

(1) X is a π-image of a locally separable metric space,

(2) X has a cover {Xλ : λ ∈ Λ} having π-property.

Proof. (1)⇒(2). Let f : M → X be a π-mapping from a locally separable metric space M with
metric d onto X. SinceM is a locally separable metric space,M = ⊕λ∈ΛMλ, where eachMλ is a
separable metric space by [8, 4.4.F]. For each λ ∈ Λ, let Dλ be a countable dense subset of Mλ,
and put fλ = f |Mλ

and Xλ = fλ(Mλ). For each a ∈ Mλ and n ∈ N, put B(a, 1/n) = {b ∈ Mλ :
d(a, b) < 1/n}, Bλ,n = {B(a, 1/n) : a ∈ Dλ}, and Pλ,n = fλ(Bλ,n). It is clear that {Pλ,n : n ∈ N}
is a sequence of countable covers for Xλ, and Pλ,n+1 is a refinement of Pλ,n for every n ∈ N. We
will prove that π-property is satisfied.

For each x ∈ U with U open in X. Since f is a π-mapping, d(f−1(x),M − f−1(U)) > 2/n
for some n ∈ N. Then, for each λ ∈ Λwith x ∈ Xλ, we get d(f−1

λ
(x),Mλ−f−1

λ
(Uλ)) > 2/n, where

Uλ = U ∩Xλ. Let a ∈ Dλ and x ∈ fλ(B(a, 1/n)) ∈ Pλ,n. We will prove that B(a, 1/n) ⊂ f−1
λ
(Uλ).

In fact, if B(a, 1/n)/⊂f−1
λ
(Uλ), then pick b ∈ B(a, 1/n)−f−1

λ
(Uλ). Note that f−1

λ
(x)∩B(a, 1/n)/=∅,

pick c ∈ f−1
λ
(x) ∩ B(a, 1/n), then d(f−1

λ
(x),Mλ − f−1

λ
(Uλ)) ≤ d(c, b) ≤ d(c, a) + d(a, b) < 2/n.

It is a contradiction. So B(a, 1/n) ⊂ f−1
λ
(Uλ), thus fλ(B(a, 1/n)) ⊂ Uλ. Then st(x,Pλ,n) ⊂ Uλ. It

implies that
⋃{st(x,Pλ,n) : λ ∈ Λ with x ∈ Xλ} ⊂ U.

(2)⇒(1). For each λ ∈ Λ, let x ∈ Uλ with Uλ open in Xλ. We get that Uλ = U ∩ Xλ with
some U open in X. Since

⋃{st(x,Pλ,n) : λ ∈ Λ with x ∈ Xλ} ⊂ U for some n ∈ N, st(x,Pλ,n) ⊂
Uλ. It implies that {Pλ,n : n ∈ N} is a point-star network for Xλ. Then the Ponomarev’s system
(fλ,Mλ,Xλ, {Pλ,n}) exists. Since each Pλ,n is countable, Mλ is a separable metric space with
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metric dλ described as follows. For a = (αn), b = (βn) ∈ Mλ, if a = b, then dλ(a, b) = 0, and if
a/= b, then dλ(a, b) = 1/(min{n ∈ N : αn /= βn}).

Put M = ⊕λ∈ΛMλ and define f : M → X by choosing f(a) = fλ(a) for every a ∈ Mλ

with some λ ∈ Λ. Then f is a mapping and M is a locally separable metric space with metric
d defined as follows. For a, b ∈ M, if a, b ∈ Mλ for some λ ∈ Λ, then d(a, b) = dλ(a, b), and
otherwise, d(a, b) = 1.

We will prove that f is a π-mapping. Let x ∈ U with U open in X, then
⋃{st(x,Pλ,n) :

λ ∈ Λ with x ∈ Xλ} ⊂ U for some n ∈ N. So, for each λ ∈ Λwith x ∈ Xλ, we get st(x,Pλ,n) ⊂ Uλ,
where Uλ = U ∩Xλ. It is implies that dλ(f−1

λ
(x),Mλ − f−1

λ
(Uλ)) ≥ 1/n. In fact, if a = (αk) ∈ Mλ

such that dλ(f−1
λ
(x), a) < 1/n, then there is b = (βk) ∈ f−1

λ
(x) such that dλ(a, b) < 1/n. So

αk = βk if k ≤ n. Note that x ∈ Pβn ⊂ st(x,Pλ,n) ⊂ Uλ. Then fλ(a) ∈ Pαn
= Pβn ⊂ st(x,Pλ,n) ⊂ Uλ.

Hence a ∈ f−1
λ
(Uλ). It implies that dλ(f−1

λ
(x), a) ≥ 1/n if a ∈ Mλ − f−1

λ
(Uλ). So dλ(f−1

λ
(x),Mλ −

f−1
λ
(Uλ)) ≥ 1/n. Therefore

d
(
f−1(x),M − f−1(U)

)
= inf

{
d(a, b) : a ∈ f−1(x), b ∈ M − f−1(U)

}

= min
{
1, inf

{
dλ(a, b) : a ∈ f−1

λ (x), b ∈ Mλ − f−1
λ (Uλ), λ ∈ Λ

}}

≥ 1/n > 0.

(2.1)

It implies that f is a π-mapping.

Theorem 2.5. The following are equivalent for a space X.

(1) X is a compact-covering π-image of a locally separable metric space;

(2) X has a cover {Xλ : λ ∈ Λ} having π-property satisfying that for each compact subset K of
X, there is a finite subset ΛK of Λ such thatK has a finite compact cover {Kλ : λ ∈ ΛK}, and
for each λ ∈ ΛK and n ∈ N, Pλ,n is a k-cover for Kλ in Xλ;

(3) same as (2), but replace the prefix “k-” by “cfp-”.

Proof. (1)⇒(2). By using notations and arguments in the proof (1)⇒(2) of Proposition 2.4 again,
X has a cover {Xλ : λ ∈ Λ} having π-property. For each compact subset K of X, since f is
compact-covering,K = f(L) for some compact subset L ofM. By compactness of L, Lλ = L∩Mλ

is compact and ΛK = {λ ∈ Λ : Lλ /=∅} is finite. For each λ ∈ ΛK, put Kλ = f(Lλ), then
{Kλ : λ ∈ ΛK} is a finite compact cover for K. For each n ∈ N, since Bλ,n is a k-cover for Lλ in
Mλ, Pλ,n is a k-cover for Kλ in Xλ by Lemma 2.2.

(2)⇒(3). For each λ ∈ ΛK and n ∈ N, since Pλ,n is countable, every member of Pλ,n can
be chosen closed in Xλ. Thus, Pλ,n is a cfp-cover for Kλ in Xλ by Remark 1.2.

(3)⇒(1). By using notations and arguments in the proof (2)⇒(1) of Proposition 2.4 again,
X is a π-image of a locally separable metric space. It suffices to prove that the mapping f is
compact-covering.

For each compact subset K of X, there is a finite subset ΛK of Λ such that K has a finite
compact cover {Kλ : λ ∈ ΛK}, and for each λ ∈ ΛK and n ∈ N, Pλ,n is a cfp-cover for Kλ in
Xλ. It follows from [13, Lemma 13] that Kλ = fλ(Lλ) with some compact subset Lλ of Mλ.
Put L =

⋃{Lλ : λ ∈ ΛK}, then L is a compact subset of M and f(L) = K. It implies that f is
compact-covering.
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Theorem 2.6. The following are equivalent for a space X.

(1) X is a pseudo-sequence-covering π-image of a locally separable metric space;

(2) X has a cover {Xλ : λ ∈ Λ} having π-property satisfying that for each convergent sequence
S of X, there is a finite subset ΛS of Λ such that S has a finite compact cover {Sλ : λ ∈ ΛS},
and for each λ ∈ ΛS and n ∈ N, Pλ,n is a wcs-cover for Sλ in Xλ;

(3) same as (2), but replace the prefix “wcs-” by “cs∗-”.

Proof. Using Lemma 2.1, notations and arguments in the proof of Theorem 2.5, here “pseudo-
sequence-covering” and “convergent sequence” play the roles of “compact-covering” and “compact
subset”, respectively.

Theorem 2.7. The following are equivalent for a space X.

(1) X is a sequence-covering π-image of a locally separable metric space;

(2) X has a cover {Xλ : λ ∈ Λ} having π-property satisfying that for each convergent sequence S
of X, there is λ ∈ Λ such that S is eventually in Xλ, and for each n ∈ N, Pλ,n is a cs-cover for
S ∩Xλ in Xλ.

Proof. (1)⇒(2). By using notations and arguments in the proof (1)⇒(2) of Proposition 2.4 again,
X has a cover {Xλ : λ ∈ Λ} having π-property. For each convergent sequence S of X, since f is
sequence-covering, S = f(L) for some convergent sequence L ofM. Note that L is eventually in
someMλ. Thus, S is eventually in Xλ with some λ ∈ Λ. On the other hand, for each n ∈ N, Bλ,n

is a cs-cover for L ∩Mλ inMλ. It follows from Lemma 2.2 that Pλ,n is a cs-cover for f(L ∩Mλ)
in Xλ. Then Pλ,n is a cs-cover for S ∩Xλ in Xλ.

(2)⇒(1). By using notations and arguments in the proof (2)⇒(1) of Proposition 2.4 again,
X is a π-image of a locally separable metric space. It suffices to prove that the mapping f is
sequence-covering.

For each convergent sequence S of X, there is λ ∈ Λ such that S is eventually in Xλ, and
for each n ∈ N, Pλ,n is a cs-cover for S ∩Xλ in Xλ. Since S ∩Xλ is a convergent sequence in Xλ,
there is a convergent sequence Lλ in Mλ such that fλ(Lλ) = S ∩ Xλ by Lemma 2.3. Note that
S −Xλ = f(F) with some finite subset F of M. Put L = F ∪ Lλ, then L is a convergent sequence
inM and f(L) = S. It implies that f is sequence-covering.

Theorem 2.8. The following are equivalent for a space X.

(1) X is a subsequence-covering π-image of a locally separable metric space;

(2) X is a sequentially-quotient π-image of a locally separable metric space;

(3) X has a cover {Xλ : λ ∈ Λ} having π-property satisfying that for each convergent sequence S
of X, there is λ ∈ Λ such that Pλ,n is a cs-cover for some subsequence Sλ of S in Xλ for each
n ∈ N;

(4) same as (3), but replace the prefix “cs-” by “wcs-”, or “cs∗-”.

Proof. (1)⇒(2). By [4, Proposition 2.1].
(2)⇒(3). For each convergent sequence S of X, since f is sequentially-quotient, there is

a convergent sequence L ofM such that f(L) is a subsequence of S. By the proof of (1)⇒(2) in
Theorem 2.7, where f(L) plays the role of S in the argument, we get (3).
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(3)⇒(4). By Lemma 2.1, “wcs-” and “cs∗-” are equivalent. It is routine when “cs-” is
replaced by “cs∗-”.

(4)⇒(1). It suffices to assume that Pλ,n is a cs∗-cover for a subsequence T of S in Xλ.
By the proof of (3)⇒(1) in Theorem 2.5, where T plays the role of compact subset K in the
argument, we get (1).

Based on above results, it is easy to get characterizations for quotient π-images of locally
separable metric spaces as follows.

Corollary 2.9. The following are equivalent for a space X.

(1) X is a compact-covering quotient π-image of a locally separable metric space;

(2) X is a sequential space satisfying (2), or (3) in Theorem 2.5.

Corollary 2.10. The following are equivalent for a space X.

(1) X is a pseudo-sequence-covering quotient π-image of a locally separable metric space;

(2) X is a sequential space satisfying (2), or (3) in Theorem 2.6.

Corollary 2.11. The following are equivalent for a space X.

(1) X is a sequence-covering quotient π-image of a locally separable metric space;

(2) X is a sequential space satisfying (2) in Theorem 2.7.

Corollary 2.12. The following are equivalent for a space X.

(1) X is a quotient π-image of a locally separable metric space;

(2) X is a sequential space satisfying (3), or (4) in Theorem 2.8.

Remark 2.13. “Quotient” and “sequential” in above corollaries can be replaced by “pseudo-open”
and “Fréchet”, respectively.

In [6], the authors raised a question whether pseudo-sequence-covering quotient π-
images of metric spaces and quotient π-images of metric spaces are equivalent. Similar to this
question we have the following.

Question 2.14. Are pseudo-sequence-covering quotient π-images of locally separable metric
spaces and quotient π-images of locally separable metric spaces equivalent?
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