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This paper is concerned with two-dimensional unsteady motion of water waves gener-
ated by an initial disturbance created at an ice sheet covering the water. The ice cover is
modeled as a thin elastic plate. Using linear theory, the problem is formulated as an ini-
tial value problem for the velocity potential describing the motion in the liquid. In the
mathematical analysis, the Laplace and Fourier transform techniques have been utilized
to obtain the depression of the ice-covered surface in the form of an infinite integral. For
the special case of initial disturbance concentrated at the origin, taken on the ice cover,
this integral is evaluated asymptotically by the method of a stationary phase for a long
time and large distance from the origin. The form of the ice-covered surface is graphi-
cally depicted for two types of initial disturbances.

1. Introduction

The two-dimensional problems concerning generation of water waves due to a prescribed
initial displacement or impulse mostly concentrated at a point were discussed in treaties
of Lamb [4] and Stoker [6] within the framework of the linearized theory of water waves.
Kranzer and Keller [3] considered axially symmetrical initial surface disturbance in water
of finite depth and compared the theory with experimental results. Chaudhury [1] ex-
tended these results for any initial surface impulse and elevation across arbitrary regions.

All the problems considered by Lamb [4], Kranzer and Keller [3], and Chaudhury
[1] involve an ocean with free surface. However, in polar regions, the ocean is generally
covered by ice. Two types of models for the ice cover are usually assumed. In the first
model, the ice cover is assumed to consist of a thin but uniform distribution of nonin-
teracting materials with no elastic property, known as an inertial surface (e.g., broken
ice). Mandal [5] considered generation of water waves due to initial disturbances at such
an inertial surface. In the second model, the ice cover is assumed to consist of a thin ice
sheet of small thickness h, say, of which still a smaller part is immersed in water, the ice
sheet being composed of materials having elastic properties. In this paper, we consider
the problem of generation of water waves in an ocean of infinite depth covered by such
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an ice sheet due to initial disturbance on the ice cover, the disturbance being taken as an
initial depression of the ice cover or an initial impulse on it.

Assuming the linear theory, the problem is formulated as an initial value problem in
terms of nondimensional coordinates and nondimensional time. Using the technique of
Laplace transform, the problem is reduced to a boundary value problem which is solved
by using Fourier transform. The Laplace-Fourier transform of the ice cover depression
is then found. After invoking the inverse transforms, the nondimensional form of the ice
cover depression is obtained in terms of an integral. In the absence of the ice cover, this re-
duces to the classical result. This integral is evaluated for large distance and long time for
the case when the initial disturbance is concentrated at the origin. The asymptotic form
of the depression is displayed graphically for various values of the ice cover parameter, in
a number of figures, and compared with the case when there is no ice cover.

2. Mathematical formulation

We consider water as an inviscid, incompressible, homogeneous liquid of volume density
ρ̄. A rectangular cartesian coordinate system (x̄, ȳ) is chosen in which the ȳ-axis is chosen
vertically downwards into the water and the plane ȳ = 0 coincides with the rest position
of the ice cover. The ice cover is modeled as a thin elastic sheet having a uniform surface
density ε̄ρ̄, where ε̄ is a constant having the dimension of length. The motion of the water
is created by a sudden initial depression of the ice cover or an impulse on the ice cover.
Since the motion starts from rest, it is irrotational and can be described by a velocity
potential φ̄, which satisfies Laplace’s equation

∇2
(x̄, ȳ)φ̄= 0 in the fluid region, (2.1)

and the bottom condition

∇φ̄−→ 0 as ȳ −→∞. (2.2)

The assumption of no cavitation between the ice and water at any time produces the
kinematic condition

φ̄ȳ = η̄t̄ on ȳ = 0, (2.3)

where η̄ is the depression of the ice cover below its mean position, assumed small, and t̄
denotes the time.

The linearized dynamic condition at the ice cover is (cf. Chung and Fox [2])

(
φ̄− ε̄φ̄ȳ

)
t̄t̄ =

{
1 + D̄

∂4

∂x̄4

}
gη̄t̄ on ȳ = 0, (2.4)

where D̄ is the flexural rigidity of the ice cover and is given by D̄ = Eh3/12(1− ν2)ρ̄g, E
being Young’s modulus and ν being Poisson’s ratio.



P. Maiti and B. N. Mandal 739

The initial conditions at the ice cover are

φ̄− ε̄φ̄y = 0 on ȳ = 0, t̄ = 0,(
φ̄− ε̄φ̄ȳ

)
t̄ =

{
1 + D̄

∂4

∂x̄4

}
η̄0(x̄) at t̄ = 0, ȳ = 0,

(2.5)

where η̄0(x̄) is the initial depression of the ice cover.
It is convenient to write the system in a nondimensional form by introducing a char-

acteristic length l and the characteristic time
√
l/g, where g is the gravity. Defining the

dimensionless quantities (without the overbar) as

(x, y)= (x̄, ȳ)
l

, t = t̄

√
g

l
, η = η̄

l
,

φ= φ̄

l
√
gl

, D = D̄

l4
, ε = ε̄

l
,

(2.6)

we find that φ satisfies

∇2φ= 0 in the fluid region, (2.7)(
φ− εφy

)
tt =

{
1 +D

∂4

∂x4

}
φy on y = 0, (2.8)

∇φ −→ 0 as y −→∞, (2.9)

φy = ηt on y = 0, (2.10)

φ− εφy = 0 at t = 0, y = 0, (2.11)(
φ− εφy

)
t =

{
1 +D

∂4

∂x4

}
η0(x) at t = 0, y = 0, (2.12)

where η0(x) is the initial nondimensional depression of the ice cover.

3. Solution for φ

Defining joint Laplace-Fourier transform of φ(x, y, t) as

Φ̂(k, y,s)= 1
(2π)1/2

∫∞
−∞

e−ikx
∫∞

0
e−stφ(x, y, t)dtdx, (3.1)

it is easy to see that Φ̂ satisfies

Φ̂yy − k2Φ̂= 0 y ≥ 0, (3.2)

Φ̂y = sη̂− η̂0(k) on y = 0, (3.3)

s2Φ̂− (εs2 + 1 +Dk4)Φ̂y =
(
1 +Dk4)η̂0(k), (3.4)

Φ̂y −→ 0 as y −→∞. (3.5)

The general solution of (3.2) satisfying (3.5) is

Φ̂= A(k,s)e−k|y|, (3.6)
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where the unknown function A(k,s) is obtained by using (3.4). We are interested in the
depression η(x, t) of the ice cover. Its Laplace-Fourier transform η̂ is obtained by using
(3.3) and is given by

η̂ = sη̂0(k)
s2 + c2

, (3.7)

where

c2 = |k|
(
1 +Dk4

)(
1 + ε|k|) . (3.8)

If the initial depression of the ice cover is concentrated at the origin, then we can choose
η0(x)= δ(x), where δ(x) is the Dirac delta function and in this case, we find

η̂ = 1√
2π

s

s2 + c2
. (3.9)

After taking inversions, we find that the depression of the ice cover, in this case, is obtained
in the form

η(x, t)= 1
4π

[∫∞
0
eit(c−k(x/t))dk+

∫∞
0
eit(c+k(x/t))dk+

∫∞
0
e−it(c−k(x/t))dk+

∫∞
0
e−it(c+k(x/t))dk

]
.

(3.10)

In the next section, we evaluate η for large x and t asymptotically by using the method of
stationary phase.

4. Asymptotic form of η(x, t)

We are interested in the waves created by the initial disturbance after a long lapse of time
and a large distance from the origin. We use the method of stationary phase to evalu-
ate the integral in (3.10) for large x and t such that x/t remains finite. The second and
fourth integrals have no stationary point in the range of integration. Thus these do not
contribute to η(x, t) for large values of x and t.

From the first and third integrals, we note that the stationary points are given by

f ′(k)= 0, (4.1)

where

f (k)=
{
k
(
1 +Dk4

)
1 + εk

}1/2

− k
x

t
. (4.2)

It is easy to see that (4.1) has two positive roots when x/t ≥ 1, but no root for x/t < 1.
Thus the stationary points are given by k = α1 and k = α2, where α1 and α2 are the only
two positive real roots of

1
2

{
1 + εk

k
(
1 +Dk4

)}1/2 (
1 + 5Dk4 + 4Dεk5

)
(1 + kε)2

− x

t
= 0

(
x

t
≥ 1

)
. (4.3)
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Thus we find that for large x and t such that x/t ≥ 1,

η(x, t)≈
2∑

r=1

1
2π

(
2π

t
∣∣ f ′′(αr)∣∣

)1/2

cos
(
t f
(
αr
)±π

4

)
, (4.4)

where the sign ± is to be chosen to agree with the sign of f ′′(αr).
If the disturbance is in the form of an initial impulsive pressure I(x) per unit area

applied to the ice-covered surface, then only the initial conditions (2.11) and (2.12) are
to be changed and are given, respectively, by

φ− εφy =− I(x)
ρ

at t = 0, y = 0,(
φ− εφy

)
t = 0 at t = 0, y = 0,

(4.5)

where ρ = ρ/l3.
If the initial impulse is concentrated at the origin, then by a similar analysis, we obtain

for large x and t such that x ≥ t,

η(x, t)≈− 1
2πρ

2∑
r=1

({
αr(

1 + εαr
)(

1 +Dα4
r

)} 2π
t
∣∣ f ′′(αr)∣∣

)1/2

sin
(
t f
(
αr
)±π

4

)
, (4.6)

where the sign ± is to be chosen to agree with the sign of f ′′(αr) as before.

5. Numerical results

To study the effect of the presence of the ice cover on the wave motion generated due
to initial disturbances at the upper surface, the asymptotic form of η(x, t) is depicted
graphically in Figures 5.1 and 5.2 for the case of an initial depression concentrated at the
origin and in Figures 5.3 and 5.4 for the case of initial impulse also concentrated at the
origin.

An obvious observation is the considerable reduction of the maximum amplitude of
the generated waves due to the presence of the ice cover compared to the case of a free
surface, and the oscillatory nature of the wave motion is quite prominent in the presence
of ice cover. These figures show the variation of η(x, t) at a fixed point x when the time
changes and at a fixed time t when x changes. The oscillatory nature of the wave motion
in the presence of the ice cover compared to the case when there is no ice cover is more
prominent in Figure 5.5.

Figures 5.6 and 5.7 depict the wave motion due to an initial depression of the ice cover
against x and t (large) together, for two choices of values of D, namely, D = 0.5, D = 0.1,
while Figures 5.8 and 5.9 depict the same due to initial impulsive pressure against x and t
again for the same two choices of D.

Figures 5.10 and 5.11 depict the wave motion in the absence of the ice cover, against x
and t (large).
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Figure 5.1. Wave motion due to initial displacement for fixed time t = 100; ε = 0.01, D = 0.5.

1000900800700600500

t

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

η

D = 0.5, ε = 0.01
D = 0, ε = 0

Figure 5.2. Wave motion due to initial displacement for fixed distance x = 1000; ε = 0.01, D = 0.5.
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Figure 5.3. Wave motion due to impulse for fixed time t = 100; ε = 0.01, D = 0.5.
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Figure 5.4. Wave motion due to impulse for fixed distance x = 1000; ε = 0.01, D = 0.5.
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Figure 5.5. Wave motion due to initial displacement for fixed time t = 50; ε = 0.01, D = 0.5.
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Figure 5.6. Wave motion due to initial displacement when t = 100 to 150, x = 150 to 200; ε = 0.01,
D = 0.5.
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Figure 5.7. Wave motion due to initial displacement when t = 100 to 150, x = 150 to 200; ε = 0.01,
D = 0.1.
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Figure 5.8. Wave motion due to impulse when t = 100 to 150, x = 150 to 200; ε = 0.01, D = 0.5.
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Figure 5.9. Wave motion due to impulse when t = 100 to 150, x = 150 to 200; ε = 0.01, D = 0.1.
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Figure 5.10. Wave motion due to initial displacement when t = 100 to 150, x = 150 to 200; ε = 0,
D = 0.
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Figure 5.11. Wave motion due to impulse when t = 100 to 150, x = 150 to 200; ε = 0, D = 0.
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These figures clearly show the effect of the presence of the ice cover on the wave mo-
tion. The presence of the ice cover reduces the amplitude of the wave motion but consid-
erably increases the oscillatory nature. This may be attributed to the elastic behavior of
the ice cover.
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