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For solutions to the capillarity problem possibly with the boundary contact angle θ being
0 and/or π in a relatively open portion of the boundary which is C2, we will show that if
the solution is locally bounded up to this portion of boundary, the trace of the solution
on this portion is piecewise Lipschitz continuous and the solution is Hölder continuous
up to the boundary, provided the prescribed mean curvature is bounded from above and
from below. In the case where θ is not required to be bounded away from π/2, 0, and π,
and the mean curvature H(x, t0) belongs to Lp(Ω) for some t0 ∈R and p > n, under the
assumption that in a neighborhood of a relatively open portion of the boundary the so-
lution is of rotational symmetry, the trace of the solution on this portion of the boundary
is shown to be Hölder continuous with exponent 1/n if n ≥ 3 and with exponent 1/3 if
n= 2.

1. Introduction

Given a domain Ω ⊂ Rn, we are interested in regularity near the boundary ∂Ω for solu-
tions u∈ C2(Ω) of the mean curvature equation

divTu=H(x,u) on Ω, (1.1)

subject to the “contact angle” boundary condition

Tu · ν= cosθ on ∂Ω, (1.2)

for a piecewise continuous function θ which takes its values in [0,π], where

Tu= Du√
1 + |Du|2 (1.3)

and ν is the outward-pointing unit normal of ∂Ω. Thus, geometrically, we are looking for
a function u on Ω whose graph has the prescribed mean curvature H and which meets
the cylinder over the boundary in the prescribed angle θ. The function H is assumed to
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be locally Lipschitz continuous on Ω×R satisfying the structural conditions

∂H

∂t
(x, t)≥ 0, for x ∈Ω, t ∈R. (1.4)

One of our main interests is in the case when θ takes the value 0 and/or π in a relatively
open portion of ∂Ω, at which the solution graph is required to meet the boundary cylin-
der vertically upward or downward; thus, when approaching this portion, the Euclidean
norm of the gradient becomes unbounded, which makes this case mathematically more
subtle than the case when θ is bounded away from 0 and π. We will show in this paper
that if this portion of ∂Ω is C2 and if the prescribed mean curvature is bounded from
above and from below, then if the solution is bounded locally up to this portion of the
boundary, the trace of the solution on this portion is piecewise Lipschitz continuous and
the solution is Hölder continuous up to the boundary.

For the regularity result, no a priori regularity is imposed at the boundary and write
the equation together with the contact angle boundary condition in the weak form as
follows: let ν be any C0(Ω) function which coincides on ∂Ω with the outward-pointing
unit normal of ∂Ω and let θ : ∂Ω→ [0,π] be a given function which is measurable with
respect to (n− 1)-dimensional Hausdorff measure �n−1 on ∂Ω∩Bρ. Suppose that

u∈ C2(Ω)∩W1,1(Ω). (1.5)

We say u satisfies the contact angle problem

divTu=H(x,u) in Ω,

Tu · ν= cosθ on ∂Ω
(1.6)

in the weak sense provided that∫
Ω

(
Tu ·Dη+H(x,u)η

)
dx =

∫
∂Ω

cosθ ·ηd�n−1, for each η ∈W1,1(Ω). (1.7)

We will establish the following theorem.

Main Theorem 1.1. Suppose θ ≡ 0 or θ ≡ π in a relatively open subset ∂̃Ω of ∂Ω and Ω⊂
Rn. If ∂̃Ω is C2 and if the prescribed mean curvature H(x, t) is locally Lipschitz continuous
on Ω×R, satisfies (1.4), and is bounded in absolute value by a constant H∗,

∣∣H(x,u)
∣∣≤H∗, for x ∈Ω. (1.8)

Let u∈ C2(Ω)∩W1,1(Ω) be a solution of (1.1) and (1.2) in the weak sense. Then the trace

of u on ∂̃Ω is Lipschitz continuous with Lipschitz norm

(
2n+6(n+ 1) + 2

)(3ωn

n

)(
1 + 2H∗

(
sup

Ω∩Aδ0 (x0)
u− inf

Ω∩Aδ0 (x0)
u

)
·H∗

)
, (1.9)
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which is completely determined by H∗, n, and (supΩu− infΩu). Furthermore, u is Hölder

continuous up to ∂̃Ω with exponent determined by the same set of quantities.

We notice that the last statement follows from [14].
Suppose that θ, ∂Ω are of the rotational symmetry with respect to the same symmetry

axis. Furthermore, suppose that the same rotational symmetry of the function H(x,z) is
imposed on the first variable for every value of t.

We will establish in Section 4 the following, which is valid in particular in the case
where θ is not required to be bounded away from π/2, 0, and π.

Main Theorem 1.2. Suppose that ∂̃Ω is a relatively open subset of ∂Ω which is C2. Let

β = cosθ. Suppose that, at x0 ∈ ∂̃Ω, we have (βx0) = 0, and is Lipschitz continuous in ∂̃Ω

with Lipschitz constant L. Suppose that in a neighborhood Ũ of ∂̃Ω in Ω, the function u|Ũ
is of rotational symmetry, and suppose that the prescribed mean curvature H(x, t) is locally
Lipschitz continuous on Ω×R, satisfies (1.4), and

H
(
x, t0

)∈ Lp(Ω), for some p, p > n, t0 ≤ u
(
x0
)
. (1.10)

Let u∈ C2(Ω)∩W1,1(Ω) be a solution of (1.1) and (1.2) in the weak sense. Then the trace

of u on ∂̃Ω is Hölder continuous with exponent 1/n. The Hölder norm is determined by n
and (supΩu− infΩu), L, and H(x0).

2. Preliminaries

2.1. The following result is obtained by Korevaar and Simon in [8].

Proposition 2.1. Suppose that H(x, t) is locally Lipschitz in Ω×R, satisfies (1.4), and

∣∣∣∣∂H∂t
∣∣∣∣+

n∑
i=1

∣∣∣∣∂H∂xi
∣∣∣∣≤Λ, for x ∈Ω, z ∈R. (2.1)

Suppose that u∈ C2(Ω∩Bρ)∩W1,1(Ω∩Bρ) satisfies

∫
Ω∩Bρ

(
Tu ·Dη+H(x,u)η

)
dx =

∫
∂Ω∩Bρ

cosθ ·ηd�n−1, for each η ∈W1,1(Ω∩Bρ
)
,

(2.2)

with θ ≡ 0 on ∂Ω∩Bρ. Suppose that ∂Ω∩Bρ is of class C2 and u is bounded locally up to
the boundary in Ω∩Bρ. Then,

T∗u≡ (Du,−1)√
1 + |Du|2 ∈ C0(Ω∩Bρ/2

)
(2.3)
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and u satisfies the boundary condition in a classical way (i.e., (1.2) holds with θ ≡ 0 on
∂Ω∩Bρ/2). Furthermore, considered as a function on the graph of u|Ω∩Bρ/2 , T∗u is Lipschitz
continuous. Furthermore,

(closure graph u)∩ (Ω∩Bρ/2
)×R (2.4)

is contained in a properly embedded C1,1 submanifold of Rn+1.

We notice that this result does not yield the regularity of the trace of the solution
obtained in this present work.

2.2. Simon and Spruck treat in [15] the case where Ω is C4, θ in (1.2) is C1,α for some
0 < α < 1, and H(x, t) is strictly monotone in t:

inf
x∈Ω̄; t∈R

∂H

∂t
(x, t) > 0. (2.5)

In case 0 < θ < π, the existence of a solution u∈ C2(Ω) of (1.1) and (1.2) is established in
[15]. In case θ is allowed to take the values 0 and/or π, setting

S+
1 = {x : x ∈ ∂Ω, θ ≡ 0 in some neighborhood of x},

S−1 = {x : x ∈ ∂Ω, θ ≡ π in some neighborhood of x},
S2 = {x : x ∈ ∂Ω, 0 < θ < π},

(2.6)

a function u∈ C2(Ω∪ S2) is shown to exist in [15] which satisfies (1.1) in Ω and satisfies
(1.2) on S2; furthermore, u is Hölder continuous at each point of S+

1 ∪ S−1 , has a restriction
to ∂Ω which is Lipschitz continuous at each point of S+

1 ∪ S−1 , and (1.2) is satisfied on S±1
in the sense that

lim
ε+→0

∫
U∩Ωε

∣∣Tu · ν± 1
∣∣dx = 0, for each U ⊂Ω with U ∩ ∂Ω⊂ S∓1 , (2.7)

assuming thatTu is extended to some boundary stripΩε with width ε so that it is constant
along the normals to ∂Ω. This regularity result is obtained by first establishing estimates
of the tangential derivatives under the condition that |cosθ| ≤ γ < 1 for some positive
constant γ; in case θ is constant in a neighborhood of the point under consideration, this
estimate of tangential derivatives is independent of γ. This proves the Lipschitz continuity
of the trace of u on ∂Ω, which yields Hölder continuity of u together with [14, Theorem
2]. Estimates for the tangential derivatives are obtained by performing a transformation
of coordinates near the boundary analogously to that in [14], together with a subsequent
differentiation of (1.1), (1.2), and inserting (2.5) into the resultant identities. The disad-
vantage of these proofs is that H is supposed to satisfy the strict inequality (2.5) rather
than the less restrictive condition (1.4).
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2.3. In contrast, the following estimates for the boundary oscillation of u is established
in [10, Main Theorem III].

Proposition 2.2. Let u∈ C2(Ω)∩W1,1(Ω) be a bounded solution to (1.1) and (1.2) in the
weak sense of (1.4). Suppose that for positive constants β̃, ˜̃β ≤ 1 and a ball BR(x0) intersecting
the interior of Ω, the function cosθ is continuous on ∂Ω∩BR(x0) and such that either of the
inequalities

˜̃β ≤ cosθ ≤ β̃, − ˜̃β ≥ cosθ ≥−β̃ (2.8)

holds for all x ∈ ∂Ω∩BR(x0), and such that

Ĥ±(x)=H
(
x,± inf

∂Ω
u
)
∈ Lp(Ω), ̂̂H±

(x)=H
(
x,±sup

∂Ω
u
)
∈ Lp(Ω),

H(x,0)∈ L1(Ω).
(2.9)

Suppose ∂Ω is piecewise Lipschitz continuous with possible outward and/or inward cusps.
Then the trace of u on ∂Ω is Lipschitz continuous in ∂Ω∩BR(x0) if ∂Ω∩BR(x0) is either
C2 or is the graph of a Lipschitz continuous function with Lipschitz constant L such that

β̃
√

1 +L2 < 1. The Lipschitz constant of the trace of u on ∂Ω∩BR(x0) depends only on H ,

n, together with the constants β̃, ˜̃β, and ˜�∂Ω∩BR(x0), where ˜�∂Ω∩BR(x0) is an upper bound for
the absolute value of the principal curvatures of ∂Ω∩BR(x0) in case ∂Ω∩BR(x0) is C2 and

˜�∂Ω∩BR(x0) =
√

1 +L2 in case ∂Ω∩BR(x0) is Lipschitz continuous with Lipschitz constant L.

We notice that (2.9) hold in particular if |H(x, t)| is bounded in Ω×R.
This result is established by modifying the approach taken in [3, 4, 5], which is based

on the minimizing property satisfied by u and the following result due to Stampacchia
[16, Lemma 4.1].

Lemma 2.3 (Stampacchia). Suppose that φ(t) is a nonnegative nondecreasing function de-
fined on R such that for some constant C, k0, and γ, there holds

(h− k) ·φ(t)≤ C · [φ(k)
]γ

, for each h > k ≥ k0. (2.10)

Then,

h1/(1−γ) ·φ(h)≤ 21/(1−γ)2 ·
{
C1/(1−γ) +

(
2k0
)1/(1−γ) ·φ(k)

}
, if γ < 1, (2.11)

φ
(
k0 + τ

)= 0, if γ > 1, (2.12)

where

τ = 2γ/(γ−1) ·C · [φ(k0
)]γ−1

. (2.13)

Let φ(t) be the area of the level set of a function ηu, where η is a suitably chosen cut-
off function in a suitably chosen domain. The identity (2.12) is applied to prove [10,
Proposition 2], once the inequality (2.11) is shown to hold for some γ > 1. To make this
feasible, the condition (2.8) is crucial. At neighborhoods of points where θ = 0,π, or π/2,
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the condition (2.8), however, is not satisfied. Main Theorem 1.1 treats the cases that θ ≡ 0
or π in a relatively open subset of ∂Ω. Main Theorem 1.2 treats the case that θ = π/2 at a
point of ∂Ω near which β is Lipschitz continuous.

The proof of Main Theorem 1.2 will be based on another modification of the tech-
nique used in [3, 4, 5]. The inequalities (2.10) will be shown to hold for some γi < 1,
i= 0,1, . . ., iteratively with φ being the level set of some function ηiu, where ηi are suitably
chosen cut-off functions in some suitably chosen domains depending on i. Using (2.11),
the exponent γi will strictly increase as the number of times i of iteration increases. After a
finite number of times of iteration, the exponent becomes greater than 1 and the identity
(2.12) can be applied.

We will obtain the inequality (4.32) below. In order to estimate the third and last terms
on the right-hand side of (4.32), we have to control the size of the level set of the function
ηiu. For this purpose, we impose the restrictions that Ω, β, and hence u are of the same
rotational symmetry. The rotational symmetry of Ω enables us to choose ηi to be of the
same rotational symmetry, and hence control the size of the level set of the function ηiu.
In order to estimate the fifth and sixth terms on the right-hand side of (4.32), we impose
the restriction that β(x0) = 0 and β is Lipschitz continuous in a neighborhood of x0 or
∂Ω.

2.4. As for the regularity near the boundary, the following result is established in [11] in
which the region Ar(x̂), for small positive number r, is chosen as follows. Namely, setting

∂∗Ωt =
{
x : x ∈Ω, dist(x,∂Ω)= t

}
for t > 0, (2.14)

we let the boundary ∂(Ω∩Ar(x̂)) be made up of three parts:

(
∂Ω∩Ar(x̂)

)∪ (∂∗Ar(x̂)
)∪ (∂∗∗Ar(x̂)

)
, (2.15)

such that

∂∗Ar(x̂)⊂ ∂∗Ωr , ∂∗∗Ar(x̂)= (∂Ar(x̂)∩Ω
) \ ∂∗Ωr ,

Dd · νΩ∩Ar (x̂)|∂∗∗Ar (x̂) = 0,
(2.16)

where we let νΩ∩Ar (x̂) be the unit outward normal to ∂(Ω∩Ar(x̂)); furthermore,

diam
(
∂Ω∩Ar(x̂)

)≤ r, diam
(
∂∗Ar(x̂)

)≤ r, (2.17)

and ∂Ω∩Ar(x̂) and ∂∗Ar(x̂) include balls of radius (r/2)n−1 centered, respectively, at x̂
and a point at distance r from x̂. We established in [11] the following proposition.
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Proposition 2.4. Let u ∈ C2(Ω)∩W1,1(Ω) be a solution to (1.1) and (1.2) in the weak
sense. Let |H(x, t)| be bounded by the constant H∗ in Ω×R. Suppose that for a point x0 ∈
∂Ω, there exist positive constants β̃, ˜̃β < 1, and a sufficiently small positive number δ0 such
that one of the inequalities in (2.8) holds for x ∈ ∂Ω∩Aδ0 (x0). Suppose that δ0 is so small
that ∂Ω∩Aδ0 (x0) is of class C2. Then u is Lipschitz continuous in Ω∩Aδ0 (x0) up to the
boundary; for each positive number τ, the Lipschitz norm of u in Ω∩Aδ0 (x0) is determined

by τ, H∗, n, β̃, ˜̃β, �∂Ω∩Aδ0 (x0), and |Ω|; here �∂Ω∩Aδ0 (x0) is an upper bound for the absolute
value of the principal curvatures of ∂Ω∩Aδ0 (x0).

2.5. The main part of [11] is devoted to estimating the L1-norm of u which begins with
writing (1.1) and (1.2) in weak form (1.7) in which the assumed boundedness of |u|
allows us to take the test function to be (u(x)− infΩu) or (supΩu− u(x)). The resul-
tant inequalities suggest to us to restrict u to a small region Ω∩A of the type indicated
in the beginning of [11, Section 3], which is analogous to that of Ar(x0) above. In [11,
Section 4], a modified version of Sobolev inequality is applied to obtain estimates of∫
Ω∩Aδ0 (x0)(supΩ∩Aδ0 (x0)u− u(x))dx and

∫
Ω∩Aδ0 (x0)(u(x)− infΩ∩Aδ0 (x0)u)dx. In order to ap-

ply this modified version of Sobolev inequality, we have to apply the condition (2.8) to
treat the boundary integrals

∫
∂∗∗Aδ0 (x0)(supΩ∩Aδ0 (x0)u−u(x))d�n−1 and

∫
∂∗∗Aδ0 (x0)(u(x)−

infΩ∩Aδ0 (x0)u)d�n−1. At neighborhoods of points where θ = 0,π, or π/2, the condition
(2.8), however, is not satisfied.

The proof of Proposition 2.4 is based on a modification of the reasoning by Giusti
[7, pages 312-313], which leads to estimates for the oscillation of u in terms of the L1-
norm of u, under the conditions that either the subgraph of u or the complement of
the subgraph of u includes a large portion of a sufficiently small cylinder-type region
around u(x0), x0 ∈ ∂Ω. Such conditions are proved in [7, Theorem 3.2] to be fulfilled by
capillary surfaces with boundary contact angle bounded away from 0 or π. In order to
prove Main Theorem 1.1, we will rephrase this result in [7] as Theorem 3.1 below.

3. Proof of Main Theorem 1.1

3.1. Estimates of the oscillation of u in terms of the L1-norm of u.

3.1.1. Equation (1.1) is the Euler equation of the functional

�∗(v)=
∫
Ω

√
1 + |Dv|2dx+n

∫
Ω

∫ v

0
H(x, t)dtdx, (3.1)

and corresponding to the capillarity problem with boundary contact angle θ is the prob-
lem of minimizing the functional

�=�∗(v) +
∫
∂Ω

(cosθ)vd�n−1 (3.2)

among all v ∈ BV(Ω).
Miranda [13] introduced the notion of generalized solutions for the minimal surface

equation. Giusti [6, 7] used the analogous notion of generalized solutions for the mean
curvature equation. The idea of generalized solutions originates from the observation that
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a function u : Ω→R is a solution of (1.1) if and only if its subgraph

U = {(x, t)∈Ω×R, t < u(x)
}

(3.3)

minimizes the functional

F∗(U)=
∫
Ω×R

∣∣DφU∣∣+
∫
Ω×R

HφUdxdt (3.4)

locally in Ω×R, in the sense that for every V coinciding with U outside some compact
set K ⊂Ω×R, we have∫

K

∣∣DφU∣∣+
∫
K
HφUdxdt ≤

∫
K

∣∣DφV∣∣+
∫
K
HφVdxdt; (3.5)

here and in the following, φV is the characteristic function of the set V :

φV (x, t)=
1 if (x, t)∈V ,

0 if (x, t) /∈V.
(3.6)

Moreover, a function u∈ BV(Ω) minimizes � in Ω if and only if its subgraph minimizes
the functional

F(U)=
∫
Ω×R

∣∣DφU∣∣+
∫
Ω×R

HφUdxdt+
∫
∂Ω×R

(cosθ)φUd�n. (3.7)

Minimization is here to be understood in the following sense: for T > 0, set

Q =Ω× [−T ,T],

δQ= ∂Ω× [−T ,T],
(3.8)

and for U ⊂Q,

FT(U)=
∫
QT

∣∣DφU∣∣+
∫
QT

HφUdxdt+
∫
δQT

(cosθ)φUd�n. (3.9)

We say that U minimizes FT in QT if

FT(U)≤ FT(S) (3.10)

for every Caccioppoli set S ⊂ QT . We say that U minimizes F in Ω×R if U minimizes
FT in QT for every T > 0. A function u : Ω→ [−∞,∞] is called a generalized solution of
(1.1) in Ω if its subgraph U minimizes the functional F∗ locally in Ω×R. A function
u : Ω→ [−∞,∞] is called a generalized solution of the functional � if its subgraph U
minimizes the functional F in Ω×R.
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A generalized solution can take the values ±∞ on sets of positive measure. However, a
locally bounded generalized solution u(x) is a classical solution of (1.1) in Ω. A bounded
generalized solution of the functional � is a solution of (1.1) and (1.2) in the weak sense.
Thus, by the uniqueness (up to an additive constant) of the weak solution of (1.1) and
(1.2) in the sense (1.7) (cf. [2, Theorems 7.6 and 7.9]), each weak solution of (1.1) and
(1.2) in the sense (1.7) is a generalized solution of the functional �∗.

Let u be a weak solution to (1.1) and (1.2) in the sense (1.4). For points ẑ = (x̂, t̂) ∈
Ω×R, we now consider the sets

C̃+
ε (ẑ)= {(x, t) :

∣∣u(x)−u(x̂)
∣∣ < ε, 0 < t−u(x̂) < ε

}
,

C̃−ε (ẑ)= {(x, t) :
∣∣u(x)−u(x̂)

∣∣ < ε, 0 < u(x̂)− t < ε
}

,
(3.11)

and let

Ũ+
ε (ẑ)=U ∩ C̃+

ε (ẑ), Ũ−
ε (ẑ)=U ∩ C̃−ε (ẑ). (3.12)

Based on the minimizing property of the subgraph of the function u, the following result
can be established, whose proof is essentially identical with that of corresponding results
in [7].

Theorem 3.1. Let u be a weak solution to (1.1) and (1.2) in the sense (1.7). Let U be the
subgraph of u. Suppose that there exists a constant γ̂, 0≤ γ̂ < 1, such that there holds either

β(x)≥−γ̂, ∀x ∈ ∂Ω∩ C̃±ε (ẑ), (3.13)

or

β(x)≤ γ̂, ∀x ∈ ∂Ω∩ C̃±ε (ẑ). (3.14)

Suppose further that for some constant µ with µγ̂ < 1 and CΩ depending only on Ω, an
inequality ∫

∂Ω
vdx ≤ µ

∫
Ω
|Dv|dx+CΩ

∫
Ω
|v|dx (3.15)

holds for all v ∈ BV(Ω). If ∣∣Ũ±
ε (ẑ)

∣∣ > 0, ∀ε > 0, (3.16)

then there exist positive constants T∗ and α∗ determined by n, infΩ×RH , γ̂, �
∂Ω∩C̃±ε (ẑ)

, R0,

and the geometry of Ω such that

d

dε

∣∣Ũ±
ε (ẑ)

∣∣≥ α∗ · (n+ 1) ·∣∣Ũ±
ε (ẑ)

∣∣n/(n+1)
, (3.17)

and hence ∣∣Ũ±
ε (ẑ)

∣∣ > α∗εn+1, for every ε ≤ T∗. (3.18)
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The value of α∗ can be specified as

α∗ = 1− γ̂

16(n+ 1)k(n+1)
, (3.19)

with k(n+1) being the constant for the isoperimetric inequality in Rn+1.

We notice that Giusti in [7, Lemma 1.1] establishes (3.15) for µ = 1 in the case that
∂Ω∈ C2.

We also notice that an inequality of the form (3.15) appears first by Emmer in [1]
with µ = √1 +L2 for any Lipschitz domain with Lipschitz constant L. By Finn [2, pages
141–143], this result is extended to include domains in which one or more corners with
inward opening angle appear.

3.1.2. The result in Theorem 3.1 is connected with the following estimates of u(x)−
u(x0) in terms of the measure of an associated level set.

For x0 ∈Ω, T ∈R, T > 0, let us set

Ã+
T

(
x0
)= {x : x ∈Ω, u(x)−u

(
x0
)≤ T

}
, (3.20)

and set ẑ0 = (x0,u(x0)). Under the assumption that there exists a constant γ̂, 0 ≤ γ̂ < 1,
such that (3.13) holds, by Theorem 3.1 there exist positive constants T∗ and α∗ such that

∣∣Ũ+
ε

(
ẑ0
)∣∣ > α∗εn+1 for every ε≤ T∗, whenever

∣∣Ũ+
ε

(
ẑ0
)∣∣ > 0 for every ε > 0. (3.21)

Since u∈ C0(Ω), we have |Ũ+
T (ẑ0)| ≤ T · |Ã+

T(x0)|, from which and using (3.21), we ob-
tain

T ≤
(

1
α∗

∣∣Ã+
T

(
x0
)∣∣)1/n

, for T ≤ T∗. (3.22)

Analogously, for x0 ∈Ω and T ∈R, T > 0, let us set

Ã−T
(
x0
)= {x : x ∈Ω, u

(
x0
)−u(x)≤ T

}
. (3.23)

Under the assumption that there exists a constant γ̂, 0≤ γ̂ < 1, such that (3.14) holds, by
Theorem 3.1 there exist positive constants T∗ and α∗ such that

∣∣Ũ−
ε

(
ẑ0
)∣∣ > α∗εn+1, for every ε ≤ T∗, whenever

∣∣Ũ−
ε

(
ẑ0
)∣∣ > 0 for every ε > 0,

(3.24)

holds. We have analogously

T ≤
(

1
α∗

∣∣Ã−T(x0
)∣∣)1/n

, for T ≤ T∗. (3.25)
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3.2. The Lipschitz continuity of the trace on the boundary: Proof of MainTheorem 1.1.
Assume that there exists a nonnegative constant H∗ such that

∣∣H(x, t)
∣∣≤H∗, for x ∈Ω, t ∈R. (3.26)

Analogously to [11, Section 4], we restrict our consideration to a small region Ω∩Aδ0 (x0)
of the type indicated in the beginning of Section 2.4, for some positive number δ0.

Let

∂−
(
Ω∩Aδ0

(
x0
))= (∂(Ω∩Aδ0

(
x0
)) \ ∂∗∗Aδ0

(
x0
))∩ {x : βΩ∩Aδ0 (x0) < 0

}
,

∂+
(
Ω∩Aδ0

(
x0
))= (∂(Ω∩Aδ0

(
x0
)) \ ∂∗∗Aδ0

(
x0
))∩ {x : βΩ∩Aδ0 (x0) > 0

}
,

(3.27)

and let

t+−
A = inf

∂+(Ω∩Aδ0 (x0))
u−u

(
x0
)
, t−+

A = sup
∂−(Ω∩Aδ0 (x0))

u−u
(
x0
)
. (3.28)

Let us set

(
Ω∩Aδ0

(
x0
))+ = {x : x ∈Ω∩Aδ0

(
x0
)
, u(x)−u

(
x0
)≥ t+−

A

}
,(

Ω∩Aδ0

(
x0
))− = {x : x ∈Ω∩Aδ0

(
x0
)
, u(x)−u

(
x0
)≤ t−+

A

}
.

(3.29)

3.2.1. We notice that the following result holds when θ ≡ 0 or θ ≡ π on a portion of ∂Ω.

Lemma 3.2. Suppose that β(x)≡ 1 or β(x)≡−1 on ∂Ω∩Aδ0 (x0). For δ0 sufficiently small,
(Ω∩Aδ0 (x0))+ and (Ω∩Aδ0 (x0))− are disjoint; in particular, ∂((Ω∩Aδ0 (x0))±) does not
intersects ∂∓(Ω∩Aδ0 (x0)).

Proof. Since u is assumed to be bounded up to the boundary, [10, Theorem 1] assures
us that u ∈ H1,1(Ω). From this and the fact that the restriction u|Ω\Ωε is a minimizing
function of the functional

J(u)=
∫
Ω\Ωε

√
1 + |Du|2dx+

∫
∂Ωε∩Ω

Hudx+
∫
∂Ωε∩Ω

(
Tu · νΩε

)
ud�n−1, (3.30)

with νΩε being the unit outward normal to Ωε, we are allowed to set η = 1 in the identities

∫
Ω

Du√
1 + |Du|2 ·Dηdx+

∫
Ω
H ·ηdx =

∫
∂Ω

β ·ηd�n−1, (3.31)

∫
Ω\Ωε

Du√
1 + |Du|2 ·Dηdx+

∫
Ω\Ωε

H ·ηdx =
∫
∂Ωε\∂Ω

(
Tu · νΩε

) ·ηd�n−1; (3.32)
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here Ωε = {x : x ∈ Ω, dist(x,∂Ω) ≤ ε} for sufficiently small ε. Subtracting (3.32) (with
η = 1) from (3.31) (with η = 1), we obtain

∫
Ωε

H dx =
∫
∂Ω

βd�n−1−
∫
∂Ω

(
Tu · νΩε

)
d�n−1. (3.33)

Since the left-hand side of the last identity approaches zero as ε → 0, a subsequence
can be extracted from the sequence {Tu · νΩε(x + Dd)} with d(x) = dist(x,∂Ω), which
approaches β(x) for almost every x ∈ ∂Ω as ε → 0. Under the assumption |β(x)| = 1
on ∂Ω∩A(x0), this, together with the interior regularity of u, yields that for each δ1,
0 < δ1 < 1, if δ0 is sufficiently small, then

∣∣Tu · νΩε

∣∣≥ 1− δ1

2
, (3.34)

for x ∈ ∂Ωε ∩Ω, ε ≤ δ0. Thus, if β ≡ 1 on ∂Ω∩Aδ0 (x0) and δ0 is sufficiently small, the
level set {x : x ∈Ω∩Aδ0 (x0), u(x) = t+−

A } intersects ∂Ω at the angle 0 and stays almost
parallel to ∂Ω and the level set {x : x ∈Ω∩Aδ0 (x0), u(x)= t−+

A } intersects ∂Aδ0 (x0)∩Ω at
the angle 0 and stays almost parallel to ∂Aδ0 (x0∩Ω). Thus, if β ≡−1 on ∂Ω∩Aδ0 (x0) and
δ0 is sufficiently small, the level set {x : x ∈Ω∩Aδ0 (x0), u(x)= t−+

A } intersects ∂Ω at the
angle 0 and stays almost parallel to ∂Ω and the level set {x : x ∈Ω∩Aδ0 (x0), u(x)= t+−

A }
intersects ∂Aδ0 (x0)∩Ω at the angle 0 and stays almost parallel to ∂Aδ0 (x0∩Ω). From this,
follows Lemma 3.2. �

3.2.2. Proof of Main Theorem 1.1. Consider a point x0 ∈ ∂Ω with θ(x0) = 0 and choose
δ0 sufficiently small such that θ ≡ 0 on ∂Ω∩Bδ0 (x0). Choose the boundary strip Aδ0 (x0)
adjacent to ∂Ω∩Bδ0 (x0) to be of width δ0 and to be of the type indicated above. By the
choice of Aδ0 (x0), we have

∣∣(Ω∩Aδ0

(
x0
))+∣∣≤ ∣∣Ω∩Aδ0

(
x0
)∣∣≤ (2δ0

)n
. (3.35)

The fact that θ ≡ 0 on ∂Ω∩A(x0) and Lemma 3.2 allow us to set γ̂ = −1/2 in (3.19)
and (3.22) with T = t+−

A and Ã+
T(x0) = (Ω∩Aδ0 (x0))+. Inserting (3.35) into (3.22), we

establish Main Theorem 1.1 in case θ ≡ π near x0.
In case θ ≡ π in a portion of ∂Ω, consider a point x0 ∈ ∂Ω with θ(x0)= π and choose

δ0 sufficiently small such that θ ≡ π on ∂Ω∩Bδ0 (x0). Choose the boundary strip Aδ0 (x0)
adjacent to ∂Ω∩Bδ0 (x0) to be of width δ0 and to be of the type indicated above. We have

∣∣(Ω∩Aδ0

(
x0
))−∣∣≤ ∣∣Ω∩Aδ0

(
x0
)∣∣≤ (2δ0

)n
. (3.36)

The fact that θ ≡ π on ∂Ω∩A(x0) and Lemma 3.2 allow us to set γ̂ = 1/2 in (3.19) and
(3.25) with T = t−+

A and Ã−T (x0)= (Ω∩Aδ0 (x0))−. Inserting (3.36) into (3.25), we estab-
lish Main Theorem 1.1 in case θ ≡ 0 near x0.
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4. Proof of Main Theorem 1.2

Let u be a bounded solution to (1.1) subject to the “contact angle” boundary condition
(1.2). Choose a point x0 ∈ ∂Ω. Let Cx0 be the level set of u through x0. Since |β| is bounded
away from 1, the level set Cx0 divides Ω into two components Ω1 and Ω2 in which the
respective inequalities u(x)≥ u(x0) and u(x)≤ u(x0) are valid at points near to Cx0 .

We choose, for sufficiently small t0, the set �δ
t0 (x0) for 0 ≤ δ < 1 as follows. Namely,

setting d(x)= dist(x,Cx0 ) for x ∈Ω and letting

∂tΩ1 =
{
x : x ∈Ω1, dist

(
x,Cx0

)= t
}

for t > 0, (4.1)

we let the boundary ∂�δ
t0 (x0) be made up of five parts, namely,

∂�δ
t0

(
x0
)= (∂∗1 �δ

t0

(
x0
))∪ (∂∗2 �δ

t0

(
x0
))∪ (∂∗∗1 �δ

t0

(
x0
))

∪ (∂∗∗2 �δ
t0

(
x0
))∪ (∂∗∗3 �δ

t0

(
x0
))

,
(4.2)

such that

∂∗1 �δ
t0

(
x0
)⊂ Cx0 ,

∂∗2 �δ
t0

(
x0
)⊂ ∂(t0)1−δ

Ω1,

∂∗∗1 �δ
t0

(
x0
)⊂ ∂Ω,

∂∗∗2 �δ
t0

(
x0
)⊂ {x : x ∈Ω, dist

(
x,∂∗∗1 �δ

t0

(
x0
))= t0

}
,

diam
(
∂∗∗1 �δ

t0

(
x0
))≤ (t0)1−δ

, diam
(
∂∗1 �δ

t0

(
x0
))≤ t0,

(4.3)

and ∂∗∗1 �δ
t0 (x0), ∂∗1 �δ

t0 (x0) include (n − 1)-dimensional balls of the respective radii
(t0)1−δ/2, t0/2, and

1
2

(
t0
)(n−1)(1−δ) ≤ ∣∣∂∗∗1 �δ

t0

(
x0
)∣∣≤ (t0)(n−1)(1−δ)

,

1
2

(
t0
)(n−1) ≤ ∣∣∂∗1 �δ

t0

(
x0
)∣∣≤ (t0)(n−1)

.

(4.4)

Furthermore, ∂∗∗3 �δ
t0 (x0) consists of cn components of (n − 1)-dimensional surfaces

which together with ∂∗1 �δ
t0 (x0), ∂∗2 �δ

t0 (x0), ∂∗∗1 �δ
t0 (x0), ∂∗∗2 �δ

t0 (x0) enclose the connected
n-dimensional region �δ

t0 (x0) such that

∣∣∂∗∗3 �δ
t0

(
x0
)∣∣≤ 2cn

(
t0
)(n−1)−(n−2)δ

; (4.5)

here cn is a constant depending only on n.
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Let η0 be a smooth function on Ω such that

0≤ η0 ≤ 1,

η0(x)= 1 for x ∈�δ
ε/2

(
x0
)
,

η0(x)= 0 for x ∈ ∂∗2 �δ
3ε/4

(
x0
)
,

4
(

1
ε

)1−δ
≤ ∣∣Dη0

∣∣≤ 4
√

2
(

1
ε

)1−δ
, for x ∈�δ

3ε/4

(
x0
) \�δ

ε/2

(
x0
)
.

(4.6)

Let k be a number greater than max(u(x0), t0,0). We set

uk =
(
1−η0

)
u+ min

(
η0u,k

)
. (4.7)

Then, uk belongs to BV(Ω) and from the minimizing property of u, we know that setting

�0
(
k,η0

)= {x : x ∈�δ
3ε/4

(
x0
)∩Ω, η0u > k

}
, (4.8)

the restriction u|�0(k,η0) is a capillary surface such that

Jk(u)≤ Jk
(
uk
)
, (4.9)

where for v ∈ C1(Ω), we set

Jk(v)=
∫

�0(k,η0)

√
1 + |Dv|2dx+

∫
�0(k,η0)

∫ v

0
H(x, t)dtdx

+
∫
∂�0(k,η0)\∂∗∗1 �δ

3ε/4(x0)

(
Tv · ν�0(k,η0)

)
vd�n−1 +

∫
∂�0(k,η0)∩∂∗∗1 �δ

3ε/4(x0)
βvd�n−1,

(4.10)

where ν�0(k,η0) is the unit outward normal to �0(k,η0) and we set ( f )− =min( f ,0) for all
real-valued functions f . Assume for a moment that u is smooth, we obtain analogously
to [9, equation (1.8)] that

∫
�0(k,η0)

√
1 + |Du|2dx+

∫
�0(k,η0)

∫ u

uk
H(x, t)dtdx

≤
∫

�0(k,η0)

√
1 +

∣∣D[(1−η0
)
u
]∣∣2

dx+
∫

�0(k,η0)∩∂∗1 �δ
3ε/4(x0)

β
(
η0u− k

)
d�n−1

+
∫

�0(k,η0)∩∂∗∗0 �δ
3ε/4(x0)

β1
(
ηu− k

)
d�n−1−

∫
∂�0(k,η0)

u

(
Dη0 · ν0

)−√
1 +u2

∣∣Dη0
∣∣2

d�n−1
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≤
∫

�0(k,η0)

√
1 +

(
1−η0

)2|Du|2dx+
∫

�0(k,η0)

√
1 +u2

∣∣Dη0
∣∣2

dx

−
∫
∂�0(k,η0)

u

(
Dη0 · ν0

)−√
1 +u2

∣∣Dη0
∣∣2

d�n−1

+
∫

�0(k,η0)∩∂∗∗0 �δ
3ε/4(x0)

β1
(
η0− 1

)(
η0u− k

)
d�n−1

+
∫

�0(k,η0)∩∂∗1 �δ
3ε/4(x0)

β
(
η0− 1

)(
η0u− k

)
d�n−1,

(4.11)

where we set ∂∗∗0 �δ
3ε/4(x0) = ∂∗∗3 �δ

3ε/4(x0)∪ ∂∗∗2 �δ
3ε/4(x0) and β1 = Tu · ν�δ

3ε/4(x0), with

ν�δ
3ε/4(x0) being the unit outward normal to �δ

3ε/4(x0) and ν0 is the unit outward normal to
�0(k,η0).

Setting w =max(η0u− k,0), this and the monotonicity condition on H in (1.4) yield,
analogously to [9, equation (1.10)],

∫
�0(k,η0)

|Dw|dx+
∫

�0(k,η0)
Ht0wdx

≤ 2
∣∣�0

(
k,η0

)∣∣+2

 sup
�δ

3ε/4(x0)

∣∣Dη0
∣∣∫

�0(k,η0)
udx−

∫
∂�0(k,η0)

u

(
Dη0 · ν0

)−√
1 +u2

∣∣Dη0
∣∣2

d�n−1

+
∫

�0(k,η0)∩∂∗∗0 �δ
3ε/4(x0)

∣∣β1
∣∣wd�n−1 +

∫
�0(k,η0)∩∂∗1 �δ

3ε/4(x0)
|β|wd�n−1,

(4.12)

where Ht0 =H(x, t0). From the modified version of Sobolev inequality in [12, Theorem
6.5.7], the monotonicity condition on H in (1.4), the condition (1.10) and Hölder’s in-
equality, we obtain

[(
ωn

n

)
−∥∥Ht0

∥∥
Lp(Ω) ·

∣∣�0
(
k,η0

)∣∣(p−n)/np
]
· ‖w‖Ln∗(�0(k,η0))

≤ 2
∣∣�0

(
k,η0

)∣∣+ 2

 sup
�δ

3ε/4(x0)

∣∣Dη0
∣∣ ·∫

�0(k,η0)
udx

− 2
∫
∂�0(k,η0)

u

 Dη0 · ν0√
1 +u2

∣∣Dη0
∣∣2

−d�n−1

+ 2
∫

�0(k,η0)∩∂∗∗0 �δ
3ε/4(x0)

∣∣β1
∣∣(η0u− k

)
d�n−1

+
∫

�0(k,η0)∩∂∗∗1 �δ
3ε/4(x0)

|β|(η0u− k
)
d�n−1

(4.13)
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for n∗ = n/(n− 1) and then, analogously to [9, equation (1.11)], we have

(h− k) ·∣∣�0
(
h,η0

)∣∣
≤ 2C0

∣∣�0
(
k,η0

)∣∣1+1/n
+ 2C0

 sup
�δ

3ε/4(x0)

∣∣Dη0
∣∣ ·∣∣�0

(
k,η0

)∣∣1/n ·
∫

�0(k,η0)
udx

− 2C0 ·
∣∣�0

(
k,η0

)∣∣1/n ·
∫
∂�0(k,η0)

u

 Dη0 · ν0√
1 +u2

∣∣Dη0
∣∣2

−d�n−1

+ 2C0 ·
∣∣�0

(
k,η0

)∣∣1/n ·
[∫

�0(k,η0)∩∂∗∗0 �δ
3ε/4(x0)

∣∣β1
∣∣(η0u− k

)
d�n−1

+
∫

�0(k,η0)∩∂∗∗1 �δ
3ε/4(x0)

|β|(η0u− k
)
d�n−1

]
(4.14)

for each h > k > max(u(x0), t0,0), where

C0 = 2
(
n

ωn

)
≤
[(

ωn

n

)
−∥∥Ht0

∥∥
Lp(Ω) ·

∣∣�δ
3ε/4

(
x0
)∣∣(p−n)/np

]−1

, (4.15)

with ε being so small that

∥∥Ht0

∥∥
Lp(Ω) ·

∣∣�δ
3ε/4

(
x0
)∣∣(p−n)/np ≤ 1

2

(
ωn

n

)
. (4.16)

Setting, for i∈N∪{0}, εi =
∑i+2

1 (ε/2i), and

0≤ ηi ≤ 1,

ηi(x)= 1 for x ∈�δ
εi−1

(
x0
)
,

ηi(x)= 0 for x ∈ ∂∗2 �δ
εi

(
x0
)
,

2i+2
(

1
ε

)1−δ
≤ ∣∣Dη0

∣∣≤ 2i+2
√

2
(

1
ε

)1−δ
, for x ∈�δ

εi

(
x0
) \�δ

εi−1

(
x0
)
.

(4.17)

and letting

�i
(
k,ηi

)= {x : x ∈ Aεi

(
x0
)
, ηiu > k

}
(4.18)
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we can, analogously to [9, equation (1.13)], derive the following inequality in case ε is so
small that (4.16) and (4.5) hold, namely,

(h− k) ·∣∣�i(h,η)
∣∣

≤ 2C0
∣∣�i

(
k,ηi

)∣∣1+1/n
+ 2C0

 sup
�δ

εi
(x0)

∣∣Dηi∣∣
 ·∣∣�i

(
k,ηi

)∣∣1/n ·
∫

�i(k,ηi)
udx

− 2C0 ·
∣∣�i

(
k,ηi

)∣∣1/n ·
∫
∂�i(k,ηi)

u

(
Dηi · νi

)−√
1 +

∣∣Dηi∣∣2
d�n−1

+ 2C0 ·
∣∣�i

(
k,ηi

)∣∣1/n ·
[∫

�i(k,ηi)∩∂∗∗0 Aεi (x0)

∣∣βi−1
∣∣(ηiu− k

)
d�n−1

+
∫

�i(k,ηi)∩∂∗∗1 Aεi (x0)
|β|(ηiu− k

)
d�n−1

]
,

(4.19)

where ∂∗∗0 Aεi(x0) = ∂∗∗2 Aεi(x0)∪ ∂∗∗3 Aεi(x0) and βi−1 = Tu · νAεi (x0), with νAεi
being the

unit outward normal to Aεi(x0) and νi is the unit outward normal to �δ
εi−1

(x0).

4.1. We will apply Lemma 2.3 stated in Section 2.3. We will adapt the iteration proce-
dure on [4, pages 178-179] or [9] to increase the exponent in (4.19) so that (2.12) can
be applied. Namely, we firstly let (uη)+ =max(uη,0) and conclude by (4.14) and (2.11)
that

(
uη1

)+ ∈ Lq0
(
�δ

7ε/8

(
x0
))

, (4.20)

for any q0, 1 < q0 < n/(n− 1) and that

∥∥(uη1
)+∥∥

q0
≤ 2q0+1 ·

C0 ·
 sup

�δ
7ε/8(x0)

∣∣Dη1
∣∣ ·∫

�1(k,η1)
udx

+C0 ·
∫

�1(k,η1)∩∂∗∗0 �δ
7ε/8(x0)

∣∣β2
∣∣(η1u− k

)
d�n−1

+C0

∫
�1(k,η1)∩∂∗∗1 �∂

7ε/8(x0)

−C0

∫
∂�1(k,η1)

u

(
Dη1 · ν1

)−√
1 +u2

∣∣Dη1
∣∣2

d�n−1

+C0 ·
∣∣�1

(
k,η1

)∣∣+ max
(
u
(
x0
)
, t0,0

) ·∣∣�1
(
k,η1

)∣∣1/q0

 ,

(4.21)
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where ∂∗∗0 �δ
7ε/8(x0) = ∂∗∗2 �δ

7ε/8(x0) ∪ ∂∗∗3 �δ
7ε/8(x0). Since η1 = 1 in �0(k,η0) ⊂

�δ
3ε/4(x0), we obtain from Hölder’s inequality that

∫
�0(k,η0)

udx ≤ ∥∥(uη1
)+∥∥

q0
·∣∣�0

(
k,η0

)∣∣1−1/q0 . (4.22)

Inserting the previous two inequalities into (4.14), we obtain, analogously to [9, equation
(1.15)],

(h− k) ·∣∣�0
(
h,η0

)∣∣
≤ 2C0 ·

∣∣�0
(
k,η0

)∣∣1+1/n
+ 2C0 ·

 sup
�δ

3ε/4(x0)

∣∣Dη0
∣∣

·
C0 ·

 sup
�δ

7ε/8(x0)

∣∣Dη1
∣∣ ·∫

�1(k,η1)
udx

+C0

∫
�1(k,η1)∩∂∗∗0 �δ

7ε/8(x0)

∣∣β2
∣∣(η1u− k

)
d�n−1

+C0

∫
�1(k,η1)∩∂∗∗1 �∂

7ε/8(x0)

−C0

∫
∂�1(k,η1)

u

(
Dη1 · ν1)−√

1 +u2
∣∣Dη1

∣∣2
d�n−1 +C0 ·

∣∣�1
(
k,η1

)∣∣

+max
(
u
(
x0
)
, t0,0

) ·∣∣�1
(
k,η1

)∣∣1/q0

 ·∣∣�0
(
k,η0

)∣∣1−(1/q0)+(1/n)

+ 2C0
∣∣�0

(
k,η0

)∣∣1/n

∫
�0(k,η0)∩∂∗∗0 �δ

3ε/4(x0)

∣∣β1
∣∣(η0u− k

)
d�n−1

+
∫

�0(k,η0)∩∂∗∗1 �δ
3ε/4(x0)

|β|(η0u− k
)
d�n−1

−C0

∫
∂�0(k,η0)

u

( (
Dη0 · ν0

)−√
1 +u2

∣∣Dη0
∣∣2

)
d�n−1

 .
(4.23)

Setting (uη2)+ =max(uη2,0), we derive, analogously to [9, equation (1.16.1)],

(
uη2

)+ ∈ Lq1
(
�δ

15ε/16

(
x0
))

, for any q1, 1 < q1 <
n

n− 2
, (4.24)
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and also

(h− k) ·∣∣�0
(
h,η0

)∣∣≤ 2C0 ·
∣∣�0

(
k,η0

)∣∣1+1/n
+ 2q0+q1+2C0 ·

 sup
�δ

3ε/4(x0)

∣∣Dη0
∣∣

×

 sup

�δ
15ε/16(x0)

∣∣Dη2
∣∣ ·

C0 ·
 sup

�δ
31ε/32(x0)

∣∣Dη3
∣∣ ·∫

�2(k,η2)
udx

+C0 ·
∫

�3(k,η3)∩∂∗∗0 �δ
31ε/32(x0)

∣∣β4
∣∣(η3u− k

)
d�n−1

+C0

∫
�3(k,η3)∩∂∗∗1 �δ

31ε/32(x0)

∣∣β∣∣(η3u− k
)
d�n−1

−C0

∫
∂�3(k,η3)

u

(
Dη3 · ν3

)−√
1 +u2

∣∣Dη3
∣∣2

d�n−1

+C0·
∣∣�3

(
k,η3

)∣∣+max
(
u
(
x0
)
, t0,0

) ·∣∣�3
(
k,η3

)∣∣1/q0



+C0
∣∣�2

(
k,η2

)∣∣1/q0−1 ·
∫

�2(k,η2)∩∂∗∗0 �∂
15ε/16(x0)

∣∣β3
∣∣(η2u− k

)
d�n−1

+
∫

�2(k,η2)∩∂∗∗1 �δ
15ε/16(x0)

∣∣β∣∣(η2u− k
)
d�n−1

−C0

∫
∂�2(k,η2)

u

(
Dη2 · ν2

)−√
1 +u2

∣∣Dη2
∣∣2

d�n−1


+C0 ·

∣∣�2
(
k,η2

)∣∣1/q0

+max
(
u
(
x0
)
, t0,0

) ·∣∣�2
(
k,η2

)∣∣1/q1

 ·∣∣�0
(
k,η0

)∣∣1−(1/q1)+(1/n)

+C0
∣∣�0

(
k,η0

)∣∣1/n

∫
�0(k,η0)∩∂∗∗0 �δ

3ε/4(x0)

∣∣β1
∣∣(η0u− k

)
d�n−1

+
∫

�0(k,η0)∩∂∗∗1 �δ
3ε/4(x0)

|β|(η0u− k
)
d�n−1

−C0

∫
∂�0(k,η0)

u

(
Dη0 · ν0

)−√
1 +u2

∣∣Dη0
∣∣2

d�n−1

 ,

(4.25)

for each h > k > max(u(x0), t0,0) and 1 < q1 < n/(n− 2).
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4.2. We continue the process of iteration so that the exponent of |�0(k,η0)| is increased
by a number 1/(qm− 1)− 1/qm at each step,

1 < qm <
[

1− 1
n
−
(

1− 1
qm−1

)]−1

<
n

n− (m+ 1)
, (4.26)

and qm can be arbitrarily close to n/(n− (m+ 1)). After n0 + 1 steps, 1 ≤ n0 ≤ n− 1, the
exponent of |�0(k,η0)| increased to become greater than 1. That is, setting, for 1≤m≤
n0,

Pm =
 sup

�δ
3ε/4(x0)

∣∣Dη0
∣∣ ·

 sup
�εn0+1 (x0)

∣∣Dηn0+1
∣∣ ·

 sup
�εn0+2 (x0)

∣∣Dηn0+2
∣∣

···
 sup

�εn0+m (x0)

∣∣Dηn0+m
∣∣ ·

 sup
�εn0+m+1 (x0)

∣∣Dηn0+m+1
∣∣ ,

P0 =
 sup

�δ
3ε/4(x0)

∣∣Dη0
∣∣ , P−1 = 1,

(4.27)

and letting

C̃ =
n0−1∑
m=−1

(
C0
)m

Pm
(
C0
∣∣�n0+m+1

(
k,ηn0+m+1

)∣∣1/qn0−m−2

+ max
(
u
(
x0
)
, t0,0

)∣∣�n0+m+1
(
k,ηn0+m+1

)∣∣1/qn0−m−1
)

,

(4.28)

with q−1 = 1, we finally arrive at, analogously to [9, equation (1.19)],

(h− k) ·∣∣�0
(
h,η0

)∣∣≤ 2
∣∣�0

(
k,η0

)∣∣1+1/n
+ 2Ĉn0

∣∣�0
(
k,η0

)∣∣(1−(1/qn0 ))+(1/n)

·
(C0

)n0Pn0

∫
�2n0−1(k,η2n0−1)

udx+
n0−1∑
m=−1

(
C0
)m

Pm ·
∣∣�n0+m

(
k,ηn0+m

)∣∣1/qn0−m−2−1

·
∫

�n0+m(k,ηn0+m)∩∂∗∗0 �εm (x0)

∣∣βm+1
∣∣(ηn0+mu− k

)
d�n−1

+
∫

�n0+m(k,ηn0+m)∩∂∗∗1 �εn0+m (x0)
|β|(ηn0+mu− k

)
d�n−1

−C0

∫
∂�n0+m(k,ηn0+m)

u

(
Dηn0+m · νn0+m

(
x0
))−√

1 +u2
∣∣Dηn0+m

∣∣2
d�n−1

+ C̃
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+ 2C0 ·
∣∣�0

(
k,η0

)∣∣1/n ·
[∫

�0(k,η0)∩∂∗∗0 �δ
3ε/4(x0)

∣∣β1
∣∣(η0u− k

)
d�n−1

+
∫

�0(k,η0)∩∂∗∗1 �δ
3ε/4(x0)

|β|(η0u− k
)
d�n−1

−C0

∫
∂�0(k,η0)

u

(
Dη0 · ν0

)−√
1 +u2

∣∣Dη0
∣∣2

d�n−1

 ,

(4.29)

for each h > k > max(u(x0), t0,0), where(
1−

(
1
qn0

))
+

1
n
≥ 1 for 1≤m≤ n0, (4.30)

and εn0 =
∑n0

i=1(ε/2i) and Ĉn0 = 2q0+q1+···+qn0−1+qn0 . We may assume without loss of gener-
ality that

u
(
x0
)= 0, t0 ≤ 0. (4.31)

Thus, setting C̃0 = 2 + ((1/n) + (1/qn0 ))−1 + Ĉ0, we obtain from this, (4.6), and (2.12) that

sup
�δ

ε/2(x0)

u−u
(
x0
)≤ 2C̃0C0 ·

∣∣�0
(
k,η0

)∣∣1/n
+ 2C̃0 C̃ ·∣∣�0

(
k,η0

)∣∣(1/n)−(1/qn0 )

+ 2C̃0C0

∫
∂�0(k,η0)

u

(
Dη0 · ν0

)−√
1 +u2

∣∣Dη0
∣∣2

d�n−1

∣∣�0
(
k,η0

)∣∣1/n−1

+ 2C̃0 · (C0
)n0 ·Pn0 ·

 sup
�δ

ε (x0)
u− inf

�δ
ε (x0)

u

 ·∣∣�0
(
k,η0

)∣∣1−(1/qn0 )+(1/n)

+ 2C̃0 ·
n0−1∑
m=−1

(
C0
)m

Pm ·
 sup

�δ
ε (x0)

u− inf
�δ

ε (x0)
u

 · [∣∣∂∗∗0 �δ
εm

(
x0
)∣∣+

∣∣∂∗∗1 �δ
εm

(
x0
)∣∣]

·∣∣�m
(
k,ηm

)∣∣(1/qn0−m−2)−1+(1/n)−(1/qn0 )

+ 2C̃0C0

(∫
�0(k,η0)∩∂∗∗0 �δ

3ε/4(x0)

∣∣β1
∣∣(η0u− k

)
d�n−1

+
∫

�0(k,η0)∩∂∗∗1 �δ
3ε/4(x0)

|β|(η0u− k
)
d�n−1

)∣∣�0
(
k,η0

)∣∣1/n−1

+ 2C̃0 ·
n0−1∑
m=−1

(
C0
)m

Pm ·
∣∣∣∣∣
∫
∂�m(k,ηm)

u

(
Dηm · νm

)−√
1 +

∣∣Dηm∣∣2
d�n−1

∣∣∣∣∣


·∣∣�m
(
k,ηm

)∣∣(1/qn0−m−2)−1+(1/n)−(1/qn0 )
,

(4.32)

analogously to [9, equation (1.22)].
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4.3. In view of the choice of �δ
εm(x0) and ηm, we have∣∣�m

(
k,ηm

)∣∣≤ εn−(n−1)δ , m= 1,2, . . . ,n0,∣∣∂∗∗i �δ
εm

(
x0
)∣∣≤ ε(n−1)(1−δ), m= 1,2, . . . ,n0, i= 1,2,∣∣∂∗∗3 �δ

εm

(
x0
)∣∣≤ 2cnε(n−1)−(n−2)δ , m= 1,2, . . . ,n0,

Pm ≤ 2(2/3)(m+1)m · ε−(m+1)(1−δ).

(4.33)

Moreover, it is easy to see that n0 can be chosen to be n− 1 and qm, 0≤m≤ n0− 1, can
be chosen to be arbitrarily close to the number n/(n− (m+ 1)) and qn0 can be chosen
arbitrarily large; that is, for each positive number ε̃, we can choose qm, 0 ≤m ≤ n0 − 1,
such that

1
qm
= n− (m+ 1)

n
− ε̃,

1
qn0

= ε̃. (4.34)

With such a choice of n0 and qm, 0≤m≤ n0, we have

Pn0 ·
∣∣�δ

ε

(
x0
)∣∣1−(1/qn0 )+(1/n) ≤ 2C̃n · ε(n+1)δ/n−ε̃,

n0−1∑
m=−1

(
C0
)m

Pm ·
(∣∣∂∗∗0 �δ

εm

(
x0
)∣∣+

∣∣∂∗∗1 �δ
εm

(
x0
)∣∣) ·∣∣�δ

ε

(
x0
)∣∣(1/qn0−m−2)−1+(1/n)−(1/qn0 )

≤ 2C̃n ·n · (C0
)n0 · (εδ/n−ε̃ + ε(n+1)δ/n−ε̃),

C̃ ·∣∣�δ
ε

(
x0
)∣∣(1/n)−(1/qn0 ) ≤ 2C̃n · (n+ 1) · ε1+(δ/n)−ε̃,

(4.35)

where C̃n = (3/2)n(n− 1) + 2.
Inserting these into (4.32), we obtain sup

�δ
ε/2(x0)

u− inf
�δ

ε/2(x0)
u

≤ 2C̃n0 ·C0 · ε1−((n−1)δ/n)−ε̃ + 2Cn · (n− 1) · (C0
)n−1 · ε1+(δ/n)−ε̃

+ 2Cn · (C0
)n−1 ·

 sup
�δ

ε (x0)
u− inf

�δ
ε (x0)

u

 · (nεδ/n−ε̃ + ε1/n−ε̃ + ε(n+1)δ/n−ε̃)

+ 2Cn · (C0
)n−1 ·

 sup
�δ

ε (x0)
u− inf

�δ
ε (x0)

u


· [(ε)(1−n)+(n−1)2δ/n

∣∣∂�0
(
k,η0

)∣∣+ ε(n−1)δ/n−ε̃∣∣∂�m
(
k,ηm

)∣∣]
+ 2C̃n0 ·C0 ·

∣∣�0
(
k,η0

)∣∣1/n−1 ·
∫

�0(k,η0)∩∂∗∗1 �δ
3ε/4(x0)

|β|(η0u− k
)
d�n−1

+ 2C̃n0 ·C0 ·
∣∣�0

(
k,η0

)∣∣1/n−1 ·
∫

�0(k,η0)∩∂∗∗0 �δ
3ε/4(x0)

∣∣β1
∣∣(η0u− k

)
d�n−1,

(4.36)

where Cn = 5 + (3n2/2) +
∑n−2

m=0(n/(n− (m+ 1))).
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In view of the rotational symmetry of Ω and u, we choose ηm to be of the same rota-
tional symmetry so that the level sets of ηmu are of the same rotational symmetry. Hence,
∂�m(k,ηm) consists of ∂∗�δ

εm−1
, and another region which is parallel to ∂∗�δ

εm−1
, together

with some other portion of ∂�εi(x0)⊂ ∂∗�δ
εm−1

. Hence,

∣∣∂�m
(
k,ηm

)∣∣≤ 2εn−1 + 2ε(n−1)(1−δ) + 2cnε(n−1)−(n−2)δ. (4.37)

4.4. To estimate the last terms in (4.36), we observe that

∫
�0(k,η0)∩∂∗∗0 �δ

3ε/4(x0)

∣∣β1
∣∣(η0u− k

)
d�n−1

=
∫

�0(k,η0)∩∂∗∗3 �δ
3ε/4(x0)

∣∣β1
∣∣(η0u− k

)
d�n−1+

∫
�0(k,η0)∩∂∗∗2 �δ

3ε/4(x0)

∣∣β1
∣∣(η0u− k

)
d�n−1,

∫
�0(k,η0)∩∂∗∗2 �δ

3ε/4(x0)

∣∣β1
∣∣(η0u− k

)
d�n−1

≤
 sup

�δ
ε (x0)

u− inf
�δ

ε (x0)
u

∣∣∂∗∗3 �δ
3ε/4

(
x0
)∣∣≤ 2

 sup
�δ

ε (x0)
u− inf

�δ
ε (x0)

u

cnε
(n−1)−(n−2)δ.

(4.38)

Hence,

∣∣�0
(
k,η0

)∣∣1/n−1 ·
∫

�0(k,η0)∩∂∗∗2 �δ
3ε/4(x0)

∣∣β1
∣∣(η0u− k

)
d�n−1 ≤ 2

 sup
�δ

ε (x0)
u− inf

�δ
ε (x0)

u

cnε
δ/n,

(4.39)

and setting η = 1 in (1.7) with Ω replaced by �δ
3ε/4(x0), we obtain

∫
�0(k,η0)∩∂∗∗3 �δ

3ε/4(x0)

∣∣β1
∣∣(η0u− k

)
d�n−1

≤
 sup

�δ
ε (x0)

u− inf
�δ

ε (x0)
u

∫
�0(k,η0)∩∂∗∗3 �δ

3ε/4(x0)

∣∣β1
∣∣d�n−1,

(4.40)
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in which

∫
�0(k,η0)∩∂∗∗3 �δ

3ε/4(x0)

∣∣β1
∣∣d�n−1

≤
∫

�δ
3ε/4(x0)

Hdx+
∫

�0(k,η0)∩∂∗∗2 �δ
3ε/4(x0)

∣∣β1
∣∣d�n−1 +

∫
�0(k,η0)∩∂∗∗1 �δ

3ε/4(x0)
|β|d�n−1

≤ sup
�δ

3ε/4(x0)

|H|∣∣�δ
3ε/4

(
x0
)∣∣+

∫
�0(k,η0)∩∂∗∗2 �δ

3ε/4(x0)

∣∣β1
∣∣d�n−1

+
∫

�0(k,η0)∩∂∗∗1 �δ
3ε/4(x0)

|β|d�n−1

≤ sup
�δ

3ε/4(x0)

|H|εn−(n−1)δ + 2cnε(n−1)−(n−2)δ +
∫

�0(k,η0)∩∂∗∗1 �δ
3ε/4(x0)

|β|d�n−1,

∫
�0(k,η0)∩∂∗∗1 �δ

3ε/4(x0)
|β|(η0u− k

)
d�n−1

≤
 sup

�δ
ε (x0)

u− inf
�δ

ε (x0)
u

∫
�0(k,η0)∩∂∗∗1 �δ

3ε/4(x0)
|β|d�n−1,

(4.41)

in which

∫
�0(k,η0)∩∂∗∗1 �δ

3ε/4(x0)
|β|d�n−1 ≤ sup

∂∗∗1 �δ
3ε/4(x0)

|β|∣∣∂∗∗1 �δ
3ε/4

(
x0
)∣∣≤ sup

∂∗∗1 �δ
3ε/4(x0)

|β|ε(n−1)(1−δ).

(4.42)

Hence,

∣∣�0
(
k,η0

)∣∣1/n−1
∫

�0(k,η0)∩∂∗∗1 �δ
3ε/4(x0)

|β|(η0u− k
)
d�n−1

≤
 sup

�δ
ε (x0)

u− inf
�δ

ε (x0)
u

 sup
∂∗∗1 �δ

3ε/4(x0)

|β|ε−((n−1)/n)δ.
(4.43)

We have, for sufficiently small ε,

sup
∂∗∗1 �δ

3ε/4(x0)

|β| ≤ L
(

diam�δ
3ε/4

(
x0
))≤ Lε1−δ , (4.44)

in case β(x0)= 0 and β is Lipschitz continuous with Lipschitz constant L in a neighbor-
hood of x0 on ∂Ω, and then, by (4.43),

∣∣�0
(
k,η0

)∣∣1/n−1
∫

�0(k,η0)∩∂∗∗1 �δ
3ε/4(x0)

|β|(η0u− k
)
d�n−1 ≤ Lε1−δ−((n−1)/n)δ. (4.45)
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Inserting (4.45) into (4.41) and afterwards inserting the resultant inequalities into (4.40),
we obtain

∣∣�0
(
k,η0

)∣∣1/n−1
∫

�0(k,η0)∩∂∗∗2 �δ
3ε/4(x0)

∣∣β1
∣∣(η0u− k

)
d�n−1

≤
 sup

�δ
ε (x0)

u− inf
�δ

ε (x0)
u

 sup
�δ

3ε/4(x0)

|H|ε1−((n−1)/n)δ + 2cnεδ/n +Lε1−δ−((n−1)/n)δ

 .
(4.46)

Inserting (4.38) and (4.46) into (4.37) and afterwards inserting the resultant inequality
and (4.37) into (4.36), we obtain

 sup
�δ

ε/2(x0)

u− inf
�δ

ε/2(x0)
u

≤ 2C̃n0 ·C0 · ε1−((n−1)δ/n)−ε̃

+ 2Cn · (n− 1) · (C0
)n−1 · ε1+(δ/n)−ε̃

+ 2Cn · (C0
)n−1 ·

 sup
�δ

ε (x0)
u− inf

�δ
ε (x0)

u

 · (nεδ/n−ε̃ + ε(n+1)δ/n−ε̃)

+ 2C̃n0 +2 ·C0 · cn ·
 sup

�δ
ε (x0)

u− inf
�δ

ε (x0)
u

 · εδ/n
+ 2C̃n0 +2 ·C0 · sup

�δ
3ε/4(x0)

|H| ·
(

sup
Ω

u− inf
Ω
u

)
· ε1−((n−1)/n)δ

+ 2C̃n0 +1 ·C0 ·L · ε1−δ−((n−1)/n)δ.
(4.47)

Choose δ = 1/2. We obtain

 sup
�δ

ε/2(x0)

u− inf
�δ

ε/2(x0)
u

≤ C̃nε
1/2n, (4.48)

where

C̃n = 2Cn+2n · (C0
)n−1 ·

(
sup
Ω

u− inf
Ω
u

)1 + cn +L+ sup
�δ

3ε/4(x0)

|H|
 . (4.49)

This completes the proof of Main Theorem 1.2.
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