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We consider and study formal power series, that we call supported series, with real coeffi-
cients which are either zero or bounded below by some positive constant. The sequences
of such coefficients have a lot of similarity with sequences of natural numbers consid-
ered in additive number theory. It is this analogy that we pursue, thus establishing many
properties and giving equivalent statements to the well-known Erdös-Turán conjectures
in terms of supported series and extending to them a version of Erdös-Fuchs theorem.

1. Introduction

In a seminal paper of 1941, Erdös and Turán [4] made two conjectures in additive num-
ber theory, which have had an important impact on the field. They concern the number
r(A,n) of representations of a natural number n as a sum of two elements of a subset A
of the set N of natural numbers. One of them, the so-called Erdös-Turán conjecture, still
a notorious open question, can be formulated as follows.

(ET) If A is a basis of N, if every natural number is the sum of two elements of A, then
the number r(A,n) of such representations is unbounded for n∈N.

The other one predicted that r(A,n) cannot be asymptotically too well approximated
by its average value; more precisely, it is impossible to have

∑n
m=0 r(A,m)= cn+O(1) for

any positive real number c. Fifteen years later, in another very influential paper, Erdös and
Fuchs [3] proved even more than that, namely that

∑n
m=0 r(A,m)= cn+ o(n1/4 log−1/2n)

is impossible. This surprising result stirred a lot of interest since it was almost as good
as a classical estimate of its kind for the number of lattice points in a circle, specific to
the set A of the squares in N and obtained via difficult analytic techniques, while this
one was valid for any subset A of N and with a simpler proof. Consequently, several
authors presented various versions of the Erdös-Fuchs theorem [1, 7, 9, 10, 11]. Moreover,
the Erdös-Fuchs paper contained the statement of a more general conjecture than (ET),
namely the following.

(GET) If A= {a1 < a2 < ··· < an < ···} is an infinite subset of N such that an ≤ dn2,
for some constant d > 0 and all n in N∗ =N \ {0}, then the number r(A,n) of
representations of n as a sum of two elements of A is unbounded for n∈N.
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Indeed, (GET) implies (ET) because of the well-known fact [7] that if A is a basis of
N, then its elements an, taken in strictly increasing order, verify the condition an ≤ dn2

for some constant d > 0 and all n ∈ N∗ (it also follows from [5, Lemma 3.15] that if A
is a basis of N, then we may take d = 9/16). In addition, Erdös and Fuchs remarked in
their paper that their “[3, Theorem 1] remains true for sequences of nonnegative num-
bers {ak}, not necessarily integers.” Similarly, Halberstam and Roth [7, page 98] noted
about their statement of the Erdös-Fuchs theorem: “Here we do not assume that the in-
tegers in A are distinct. In fact even the assumption that the elements of A are integers is
superfluous (cf. Erdös-Fuchs, loc. cit., page 68).” In the light of such facts and remarks, it
is natural to explore the extent to which some concepts and questions in additive number
theory are independent of the specific nature of the subsets of N under consideration.
The quest for a broader context, in which the above conjectures and results still make
sense or remain valid, leads to the consideration and study of what we call “supported se-
ries.” These are formal power series whose coefficients form sequences of nonnegative real
numbers resembling the subsets of N in that their nonzero terms are bounded below by
some positive constant. We thus establish various equivalent statements to the conjectures
(ET) and (GET) in the realm of the supported series, and we extend to them a version
of the Erdös-Fuchs theorem, due to Newman [12]. More precisely, we prove that for any
supported series f =∑∞

n=0 anX
n, with f 2 =∑∞

n=0 rnX
n, if we have

∑n
k=0(rk − c) = O(nt)

for some real numbers c > 0 and t ≥ 0, then t ≥ 1/4. Our point is that most of the con-
cepts, questions, and techniques pertaining to the additive representation of integers by
subsets of N are not just about integers, but have a more general scope and can be natu-
rally extended to the context of the supported series. The definitions, notions, and results
presented in the sequel are all aimed at determining the essential features of the underly-
ing ideas and problems, in a general setting, thus shedding more light and allowing for a
more direct approach.

It is to be noted that special cases of supported series have already been considered
in [1, 9, 10]. Thus in [1], we find: “In this paper, we consider sequences c0,c1,c2, . . .,
of real numbers satisfying the following two conditions: c2

n ≥ cn ≥ 0 (n = 0,1,2, . . .) and∑∞
n=0 cnr

n <∞ for every r in (0,1).” And in [9], we read: “Let {r1(n)}∞n=0 be a sequence of
nonnegative real numbers such that if r1(n) �= 0, then r1(n) ≥ 1. (The lower bound 1 is
chosen for convenience; any positive lower bound would suffice.)”

2. Definitions and simple properties

The sets of natural numbers, rational integers, rational numbers, real numbers, and com-
plex numbers are, respectively, denoted by N, Z,Q, R, and C. If E is anyone of these sets,
then E∗ = E \ {0}. For E=Q or R, we write E+ = {x ∈ E : x ≥ 0} and E+∗ = {x ∈ E : x >
0}. Moreover, N=N∪{∞} and R=R∪{±∞}, while R

+ =R+∪{∞}.
Definition 2.1. Let f =∑∞

n=0 anX
n ∈R[[X]] be a power series with real coefficients. The

mass function of f is the function F of a real variable x defined by F(x) =∑n≤x an. In
particular, F(x)= 0 if x < 0. The support of f is the set Supp( f )= {n∈N : an �= 0}. The
norm of f is the element ‖ f ‖ = sup{|an| : n∈N} of R

+
. The size of f is s( f )= ‖ f 2‖. We

write f 2 =∑∞
n=0 r( f ,n)Xn, where r( f ,n)=∑i+ j=n aiaj for all n∈N.
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Lemma 2.2. Let f =∑∞
n=0 anX

n and g =∑∞
n=0 bnX

n in R[[X]], with mass functions F and
G, respectively.

(1) f (X)= (1−X)(
∑∞

n=0F(n)Xn).
(2) The mass function of f + g is F +G. Moreover, ‖ f + g‖ ≤ ‖ f ‖+‖g‖ and s( f + g)≤

s( f ) + s(g) + 2‖ f g‖.
(3) The mass function of f g is given by H(x) =∑ j≤x ajG(x − j) =∑k≤x bkF(x − k),

where the summations can also be extended to all j,k ∈N.
(4) For any a ∈ R, the mass function of a f is aF. Also, ‖a f ‖ = |a| · ‖ f ‖ and s(a f ) =

a2s( f ). Moreover, if a �= 0, then Supp(a f )= Supp( f ).
(5) For any m∈N, the mass function of Xm f is Fm(x)= F(x−m), where x ∈R. More-

over, ‖Xm f ‖ = ‖ f ‖ and s(Xm f )= s( f ).

Proof. The proofs are mostly straightforward. Note that (1) amounts to a0 = F(0) and
an = F(n)−F(n− 1) for n≥ 1. As to (3), the mass function of f g is by definition H(x)=∑

n≤x
∑

j+k=n ajbk =
∑

j+k≤x ajbk =
∑

j≤x aj
∑

k≤x− j bk =
∑

j≤x ajG(x − j), with a similar
relation exchanging F and G; moreover, the summations can be extended to all j,k ∈N,
since F(x)=G(x)= 0 for x < 0. �

Definition 2.3. The set of all subsets of N will be written as �(N). Let P ∈ �(N). The
characteristic function of P is the function χP defined on N by χP(n)= 1 or 0 according as
n∈ P or n �∈ P. The companion series of P is fP =

∑
p∈P X p =∑∞

n=0 χP(n)Xn. The counting
function of P is defined for x ∈R+ by P(x)=| P∩ [0,x]|, where |E| denotes the cardinality
of the set E.

For P,Q ∈�(N) and n∈N, we set r(P,Q;n)= |{(p,q)∈ P×Q : p+ q = n}|; we fur-
ther set s(P,Q)= sup{r(P,Q;n) : n∈N} in N. The sumset of P and Q is P +Q = {p+ q :
p ∈ P, q ∈Q}. In particular, if P =Q, we write r(P,n)= r(P,P;n) and s(P)= s(P,P). We
say that P is a basis of N if P +P =N.

For two subsets P = {p1 < p2 < ··· < pn < ···} and Q = {q1 < q2 < ··· < qn < ···}
of N, we set P
Q if |Q| ≤ |P| and pn ≤ qn for all positive integers n not exceeding |Q|
(here, |P| and |Q|may be finite or infinite).

Lemma 2.4. Let P, Q be subsets of N.
(1) The mass function of the companion series fP coincides with the counting function

P(x)=∑n≤x χP(n) for x ∈R+. Moreover, Supp( fP)= P.
(2) fP fQ =

∑∞
n=0 r(P,Q;n) Xn, and r(P,Q;n) ≤ min(|P|,|Q|), for all n ∈ N, so that

‖ fP fQ‖ = s(P,Q)≤min(|P|,|Q|) is finite if P orQ is finite. Moreover, Supp( fP fQ)= P +Q.
In particular, f 2

P =
∑∞

n=0 r(P,n)Xn and s( fP)= s(P). Moreover, P is a basis of N if and only
if Supp( f 2

P )=N.

Remark 2.5. To every subset P of N corresponds its companion series fP . In a certain
sense, this embeds �(N) into R[[X]]. There are already two partial orders defined in
�(N), namely the set inclusion ⊂ and the relation 
. Both relations can be extended to
R[[X]].

Definition 2.6. For f =∑∞
n=0 anX

n and g =∑∞
n=0 bnX

n in R[[X]], with mass functions F
and G, respectively, we say that f is contained by g and write f � g if an ≤ bn for all n∈N.
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We also say that f is subordinated to g and write f 
 g if F(x)≥G(x) for all x ∈R. This
defines two partial orders in R[[X]].

Lemma 2.7. Let f ,g,h∈R[[X]].
(1) f 
 g if and only if g(X)/(1−X) � f (X)/(1−X).
(2) If f � g, then g 
 f . The converse is false, as shown by the example where f =∑∞

n=0X
2n+1 and g =∑∞

n=0X
2n.

(3) For P,Q ∈�(N), the relation fP � fQ is equivalent to P ⊂Q, while fP 
 fQ is equiv-
alent to P
Q.

(4) If 0 � f , that is, if all the coefficients of f are ≥ 0, then g � f + g and f + g
 g.
(5) If 0 � f � g, then ‖ f ‖ ≤ ‖g‖ and 0 � f 2 � f g � g2, so that s( f )≤ ‖ f g‖ ≤ s(g).
(6) If ‖ f ‖ <∞ and P = Supp( f ), then f � ‖ f ‖ fP and therefore ‖ f ‖ fP 
 f , that is,

F(x)≤ ‖ f ‖P(x) for all x ∈R+.
(7) If f � g (resp., f 
 g), then f +h� g +h (resp., f +h
 g +h).
(8) If f � g (resp., f 
 g) and 0 � h, then f h� gh (resp., f h
 gh) and, in particular,

a f � ag (resp., a f 
 ag) for all a∈R+∗.

Proof. Property (1) follows from the relation f (X)/(1 − X) = ∑∞
n=0F(n)Xn given in

Lemma 2.2. For (3), note that fP � fQ if and only if χP(n) ≤ χQ(n), that is, n ∈ P im-
plies n∈Q for all n∈N, that is, P ⊂Q; while fP 
 fQ if and only if P(x)≥Q(x) for all
x ∈R+, which is equivalent to P(qn)≥Q(qn)= n, that is, pn ≤ qn for all possible n, that
is, P
 Q. For (8), note that if f =∑∞

n=0 anX
n, g =∑∞

n=0 bnX
n, and h =∑∞

n=0 cnX
n with

respective mass functions F, G, and H , then, by Lemma 2.2, the mass functions of f h and
gh are U(x) =∑n cnF(x− n) and V(x) =∑n cnG(x− n), respectively. Everything else is
straightforward. �

Example 2.8. The set of squares in N∗ will be written as S = {n2 : n ∈ N∗}. We have
S(x) = [

√
x ] for all x ∈ R+, where [y] is the integer part of the real number y. For an

infinite subset P ofN, we have P
 S, that is, pn ≤ n2 for all n∈N∗, if and only if P(x2)≥
S(x2)= [x] for all x ∈R+, that is, P(x2) > x− 1 for all x ∈R+.

Definition 2.9. For f =∑∞
n=0 anX

n in R[[X]] and c ∈R+∗, we say that f is c-supported if,
for any n∈N, the condition an �= 0 implies that an ≥ c. We denote by �c the set of all c-
supported power series inR[[X]]. We say that the series f is supported if it is c-supported
for some c ∈R+∗. We denote by � the set of all supported series in R[[X]].

Lemma 2.10. Let f ,g ∈R[[X]], with f =∑∞
n=0 anX

n, P = Supp( f ), and c,d ∈R+∗.
(1) The series f is c-supported if and only if an ≥ cχP(n) for all n∈N, that is, c fP � f .

So, if f is c-supported, then f 
 c fP .
(2) The set � is closed under addition and multiplication.
(3) The series f lies in � if and only if inf{an : n ∈ P} > 0 or f = 0. In particular, a

constant a lies in � if and only if a≥ 0.
(4) If A is a nonempty subset of N, then fA ∈�1.

Remark 2.11. The following construction affords a better grasp of some features of the
order relation 
. Let P = {p1 < p2 < ··· < pn < ···} be an infinite subset of N and let
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f (X)=∑∞
n=1 cnX

pn , with cn ∈R+ (for n∈N), and g(X)= fP(X)=∑∞
n=1X

pn in R[[X]],
with mass functions F and G, respectively. For a real number pn ≤ x < pn+1, we clearly
have F(x) = F(pn) =∑n

j=1 cj and G(x) = n, while for x < p1, we have F(x) = G(x) = 0.
Note also that Supp( f ) ⊂ P. Then the condition fP 
 f is equivalent to the following
one:

(∗)
∑n

j=1 cj ≤ n for all n∈N∗.
Different choices for the sequence (cn) provide various examples and counterexam-

ples. Here, we just give two illustrations.
(1) For any infinite subset P of N, there exists f ∈� such that Supp( f ) = P and its

mass function F satisfies F(x)≥ x2 for all large enough real numbers x. Indeed, just take
f (X)=∑∞

n=1 p
2
n+1X

pn , that is, cn = p2
n+1 for n∈N∗. This implies, for pn ≤ x < pn+1, that

F(x)≥ cn = p2
n+1 > x2.

(2) For any infinite subset P of N, there exists f ∈� such that ‖ f ‖ =∞ and fP 
 f .
Indeed, just take f (X) =∑∞

n=1 cnX
pn with cn = k if n = k2 for some k ∈ N∗, and cn = 0

otherwise. Clearly, f ∈� and ‖ f ‖ =∞. Moreover, for any n∈N∗, there is a unique m∈
N∗ such that m2 ≤ n < (m+ 1)2, and we have

∑n
j=1 cj =

∑m
k=1 k =m(m+ 1)/2 ≤m2 ≤ n.

Thus the condition (∗) is satisfied, that is, fP 
 f .

3. The extended class of Erdös-Turán sets

Definition 3.1. We say that an element f of � belongs to the extended class �(EET) of
Erdös-Turán sets if any supported power series which is subordinated to f has infinite
size; that is, for any g ∈� such that g
 f , we have s(g)=∞.

We say that an infinite subset P of N belongs to the class �(ET) of Erdös-Turán sets if
for any infinite subset Q of N such that Q
 P, we have s(Q)=∞.

Remark 3.2. Note first that if f ∈�(EET) and P = Supp( f ), then, since f 
 f , we have
s( f )=∞ and thus |P| =∞.

The class �(ET) was defined in [6]. Now let P be an infinite subset of N. If fP ∈
�(EET), then the relation Q
 P, which by Lemma 2.7 means that fQ
 fP , implies that
s(Q) = s( fQ) =∞ (by Lemma 2.4). Thus, if fP ∈ �(EET), then P ∈ �(ET). However, as
indicated below, it is not known if the converse holds.

Proposition 3.3. Let f ,g ∈R[[X]] be such that 0 � f and 0 � g, with mass functions F
and G, respectively. Let P = Supp( f ) and Q= Supp(g). Then the following hold.

(1) max(‖ f ‖,‖g‖)≤ ‖ f + g‖ ≤ ‖ f ‖+‖g‖.
(2) ‖ f ‖ · ‖g‖ ≤ ‖ f g‖ ≤ ‖ f ‖ · ‖g‖ · s(P,Q).
(3) max(s( f ),s(g))≤ s( f + g)≤ s( f ) + s(g) + 2‖ f g‖.
(4) Supp( f + g)= P∪Q and Supp( f g)= P +Q.
(5) s( f ) · s(g)≤ s( f g)≤ s( f ) · s(g) · s(P +P, Q+Q).
(6) The mass function H of f g satisfies H(x)≤ F(x)G(x)≤H(2x) for all x ∈R.
(7) ‖ f ‖2 ≤ s( f )≤ ‖ f ‖2s(P) and Supp( f 2)= P +P = Supp( f 2

P ).
(8) F(x)≤ ‖ f ‖P(x)≤ ‖ f ‖(x+ 1) for all x ∈R+.
(9) If f ∈ �c for some c ∈ R+∗, then c2s(P) ≤ s( f ) ≤ ‖ f ‖2s(P) and cP(x) ≤ F(x) ≤

‖ f ‖P(x) for all x ∈R+.
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(10) If ‖g‖ <∞, then ‖ f + g‖ =∞ if and only if ‖ f ‖ =∞.
(11) Assume that g is a nonzero polynomial with coefficients inR+. Then ‖ f g‖ =∞ if and

only if ‖ f ‖ =∞. Moreover, the following conditions are equivalent:
(i) s( f + g)=∞; (ii) s( f )=∞; (iii) s( f g)=∞.

Proof. (1) and (3) follow from Lemmas 2.2 and 2.7. Also, (4) is straightforward, since the
coefficients of f and g are ≥ 0. As to (5) and (7), they follow directly from (2) and (4).
Also, (10) follows from (1).

Let f =∑∞
n=0 anX

n, g =∑∞
n=0 bnX

n, f g =∑∞
n=0 cnX

n, and fP fQ =
∑∞

n=0dnX
n, where

cn =
∑n

k=0 akbn−k and dn =
∑n

k=0 χP(k)χQ(n− k) for all n∈N.
(2) We have an ≤ ‖ f ‖χP(n) and bn ≤ ‖g‖χQ(n) for all n∈N. Hence cn ≤ ‖ f ‖ · ‖g‖dn

for all n∈N. Therefore ‖ f g‖ ≤ ‖ f ‖ · ‖g‖ · ‖ fP fQ‖ = ‖ f ‖ · ‖g‖ · s(P,Q) by Lemma 2.4.
Moreover, ambn ≤ cm+n ≤ ‖ f g‖ for all m,n ∈ N. Hence ‖ f ‖ · ‖g‖ = sup{ambn : m,n ∈
N} ≤ ‖ f g‖.

(6) By Lemma 2.2, we have H(x) =∑ j+k≤x ajbk ≤ (
∑

j≤x aj)(
∑

k≤x bk) = F(x)G(x) ≤∑
j+k≤2x ajbk =H(2x) for all x ∈R.
(8) Since an ≤ ‖ f ‖χP(n) for all n ∈ N, then F(x) = ∑n≤x an ≤ ‖ f ‖

∑
n≤x χP(n) =

‖ f ‖P(x), and P(x)≤ |N∩ [0,x]| ≤ x+ 1 for all x ∈R+. Hence the inequalities.
(9) By Lemma 2.10, if f ∈�c, then 0 � c fP � f , so that 0 � c2 f 2

P � f 2 by Lemma 2.7.
Hence c2s(P)=‖c2 f 2

P ‖≤‖ f 2‖ = s( f ). Moreover, cχP(n)≤ an for all n∈N. Hence cP(x)≤
F(x) for all x ∈R+. The other inequalities are contained in (7) and (8).

(11) Note that g being a nonzero polynomial, |Q|, ‖g‖, and s(g) are finite and positive.
Also, by Lemma 2.4, s(P,Q)≤ |Q| <∞ and s(P +P,Q+Q)≤ |Q+Q| <∞. Now, the first
equivalence results from (2). The equivalence of (i) and (ii) results from (3) and (7), since
if s( f + g)=∞, then s( f ) =∞ or ‖ f g‖ =∞; but if ‖ f g‖ =∞, then ‖ f ‖ =∞ (previous
case) and thus s( f )=∞ by (7). The equivalence of (ii) and (iii) results from (5). �

Corollary 3.4. Let f ∈� and P = Supp( f ).
(1) If s(P)=∞, then s( f )=∞.
(2) If ‖ f ‖ <∞, then s( f )=∞ if and only if s(P)=∞.
(3) If ‖ f ‖ =∞, then s( f )=∞.

These follow from Proposition 3.3(9) and (7).

Remark 3.5. Let f ∈�. Assume that ‖ f ‖ <∞. If f ∈ �(EET), then Supp( f ) ∈ �(ET).
Indeed, let P = Supp( f ). By Remark 3.2, we have |P| =∞. Now, if Q is an infinite subset
of N such that Q
 P, then, by Lemma 2.7, we have fQ 
 fP , and f � ‖ f ‖ fP , so that
‖ f ‖ fQ 
‖ f ‖ fP 
 f . Since f ∈�(EET), it follows that s(‖ f ‖ fQ)=∞. But s(‖ f ‖ fQ)=
‖ f ‖2s(Q) by Lemmas 2.2 and 2.4, and since ‖ f ‖ <∞, then s(Q)=∞. Thus P ∈�(ET).

However, if ‖ f ‖ =∞, we may have f ∈�(EET) with Supp( f ) �∈�(ET). Indeed, given
any infinite subset P ofN, belonging to �(ET) or not, one can easily construct a supported
series f belonging to �(EET) such that Supp( f ) = P. Indeed, by Remark 2.11(1), there
exists f ∈� whose support is P and whose mass function F satisfies F(x)≥ x2 for large
enough real x. Then, for any g ∈� with mass functionG such that g
 f , we haveG(x)≥
F(x) ≥ x2. Consequently, ‖ f ‖ = ‖g‖ =∞ by Proposition 3.3(8), and therefore s(g)=∞
by Corollary 3.4(3). Thus f ∈�(EET).
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Proposition 3.6. For f ∈�(EET), the following properties hold.
(1) For any g ∈� such that g
 f , g ∈�(EET).
(2) For any t ∈R+∗, t f ∈�(EET).
(3) For any g ∈�, f + g ∈�(EET).
(4) For any m∈N, Xm f ∈�(EET).
(5) For any g ∈�, provided g �= 0, f g ∈�(EET).
(6) For g ∈�, if the mass functions F and G of f and g, respectively, satisfy G(x)≥ F(x)

for large enough x ∈R, then s(g)=∞.
Furthermore, for f ∈�, the following hold.
(7) If g is a polynomial with coefficients in R+, then f ∈�(EET) if and only if f + g ∈

�(EET).
(8) If g is a nonzero polynomial with coefficients in R+, then f ∈�(EET) if and only if

f g ∈�(EET).

Proof. (1) follows directly from the definitions.
(2) If g ∈� is such that g
 t f , then t−1g
 f by Lemma 2.7. Since f ∈�(EET), then

s(t−1g)=∞. But s(t−1g)= t−2s(g) by Lemma 2.2. Hence s(g)=∞. Thus t f ∈�(EET).
(3) This follows from (1), since f + g ∈� and f + g
 f .
(4) By Lemma 2.2, the mass function of Xm f is Fm(x)= F(x−m) for all x ∈R. Let g =∑
bnXn in � be such that g
 Xm f , that is, the mass functionG of g satisfies F(x)≤G(x+

m) for all x ∈R+. Let h=∑∞
n=0 cnX

n, with c0 =
∑m

n=0 bn and cn = bn+m for n∈N∗. Then h
lies in �, and its mass function H is given, for x ∈R+, by H(x)=∑n≤x cn =

∑
n≤x+mbn =

G(x +m). Therefore F(x)≤H(x) for all x ∈ R+, that is, h
 f . Since f ∈�(EET), then
s(h) = ∞. Now, g + c0Xm = Xmh + u, where u is a polynomial with coefficients in R+.
Moreover, by Lemma 2.2, s(Xmh)= s(h)=∞. Hence s(g + c0Xm)= s(Xmh+ u)=∞ and
therefore s(g)=∞ by Proposition 3.3(11). Thus Xm f ∈�(EET).

(5) Let f =∑∞
n=0 anX

n and g =∑∞
n=0 bnX

n in �, and h = f g (also in � by Lemma
2.10), with mass functions F, G, and H respectively. Since g �= 0, there exists m∈N such
that bm > 0. By Lemma 2.2, H(x) =∑n≤x bnF(x− n) ≥ bmF(x−m), for x ≥m—an in-
equality which also holds trivially for x < m. Thus, if u ∈� is such that u
 h, then its
mass function U satisfies U(x)≥H(x)≥ bmF(x−m) for all x ∈R+. But, by Lemma 2.2,
x 
→ bmF(x−m) is the mass function of bmXm f , so that u
 bmXm f . Now, since f ∈
�(EET), then by (4) and (2), bmXm f ∈�(EET). Hence s(u)=∞. Thus h∈�(EET).

(6) Let f =∑∞
n=0 anX

n and g =∑∞
n=0 bnX

n in � be such that G(x) ≥ F(x) for x ≥ x0,
where x0 ∈R+. Define h=∑∞

n=0 cnX
n by cn =max(an,bn) if n < x0, and cn = bn if n≥ x0

(n ∈ N). Then its mass function H satisfies H(x) ≥ F(x) for x < x0 and H(x) ≥ G(x) ≥
F(x) for x ≥ x0 (x ∈ R), so that h
 f , and since f ∈ �(EET), we get s(h) =∞. More-
over, h= g +u, where u=∑n<x0

(cn− bn)Xn is a polynomial with coefficients in R+, and
therefore s(g)=∞ by Proposition 3.3(11).

(7) Assume that f + g ∈ �(EET). Then, for any h ∈� such that h
 f , we have h+
g 
 f + g, by Lemma 2.7, so that s(h + g) = ∞, and therefore, by Proposition 3.3(11),
since 0 � g and g is a polynomial, s(h) = ∞. Thus f ∈ �(EET). The converse follows
from (3) above.

(8) Assume that f g ∈ �(EET). Then, for any h ∈� such that h
 f , we have hg

f g, by Lemma 2.7, so that s(hg)=∞, and therefore, by Proposition 3.3(11), since 0 � g,
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g �= 0 and g is a polynomial, s(h)=∞. Thus f ∈�(EET). The converse follows from (5)
above. �
Definition 3.7. For f ∈ R[[X]] and m ∈ N, the truncated series of f at m is f � m =∑∞

n=manXn.
For f and g in R[[X]], with mass functions F and G, respectively, we say that g is

asymptotically subordinated to f if G(x)≥ F(x) for all large enough real numbers x.

Corollary 3.8. For f ∈�, the following properties hold.
(1) For any m∈N, the series f lies in �(EET) if and only if f �m lies in �(EET).
(2) The series f lies in �(EET) if and only if, for any g asymptotically subordinated to f

in �, we have s(g)=∞.

Proof. The first property follows from Proposition 3.6(7) since f � m differs from f by
the polynomial consisting of the first m terms of f . The second property follows from
Proposition 3.6(6). �
Definition 3.9. Let P = {p1 < p2 < ··· < pn < ···} be a subset of N, identified to the
sequence (pn) of its elements indexed in strictly increasing order. For every k ∈N∗, the
kth ray of P is the set Pk = {pk < p2k < ··· < pnk < ···} consisting of the elements of P
whose index is a multiple of k.

Remark 3.10. Simple properties for an infinite subset P = {p1 < p2 < ···} of N are the
following.

(1) For x ∈R+ and k,n∈N∗, we have Pk(x)= n if and only if pkn ≤ x < pk(n+1). Thus
if Pk(x)= n, then kn≤ P(x) < k(n+ 1).

(2) For x ∈R+, we have kPk(x)≤ P(x) < kPk(x) + k.
(3) For x ∈R+ and k,n∈N∗, we have Pk(x)≥ n if and only if pkn ≤ x.

Lemma 3.11. Let P = {p1 < p2 < ··· < pn < ···} and Q = {q1 < q2 < ··· < qn < ···} be
two infinite subsets of N, and k ∈N∗.

(1) If P(x)≤ kQ(x) (resp., P(x) < kQ(x), resp., P(x)= kQ(x)) for all x ∈R+, then qn ≤
pkn (resp., qn < pkn, resp., qn = pkn) for all n∈N∗.

(2) If qn ≤ pkn for all n∈N∗, then P(x) < kQ(x) + k for all x ∈R+.
(3) If kQ(x)≤ P(x) < kQ(x) + k for all x ∈R+, then pkn ≤ qn < pkn+k for all n∈N∗.
(4) Let d ∈ R+∗. The inequality pn ≤ dn2 holds for large enough n in N∗ if and only if

P(dx2) > x− 1 for large enough x in R+.
(5) There exists d ∈R+∗ such that pn ≤ dn2 for large enough n in N∗ if and only if there

exists e ∈R+∗ such that P(x)≥ e
√
x for large enough x in R+.

Proof. (1) If P(x)≤ kQ(x) for x ∈ R+, then kn = P(pkn) ≤ kQ(pkn), that is, Q(pkn) ≥ n,
that is, qn ≤ pkn, for n ∈N∗. Moreover, if we have qn = pkn for some n, then taking x =
pkn = qn, we get P(x) = kn = kQ(x). Thus, if the inequality in the assumption is strict,
then so it is in the conclusion. Similarly, if we have qn < pkn for some n, then taking
qn ≤ x < pkn, we get P(x) < kn≤ kQ(x). Thus if there is equality in the assumption, then
so it is in the conclusion. Hence the results.

(2) If x ≥ pk, there is a unique n∈N∗ such that pkn ≤ x < pk(n+1), and we have P(x) <
k(n+ 1)≤ k(Q(x) + 1), since qn ≤ pkn ≤ x, by the assumption. If 0≤ x < pk, then P(x) <
k ≤ kQ(x) + k. Hence the result in all cases.
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(3) By the assumption, kn= kQ(qn)≤ P(qn) < kQ(qn) + k = kn+ k, that is, pkn ≤ qn <
pkn+k, for n∈N∗.

(4) The first condition means that P(dn2) ≥ n for large enough n ∈ N∗, while the
second one means that P(dx2) ≥ [x] for large enough x ∈ R+. The first one implies the
second upon taking n= [x]; and the converse implication is trivial.

(5) The first condition means that the sequence (pn/n2) is bounded, while the sec-
ond one means that the function x/P(x)2 is bounded for x ≥ p1. Now, for pn ≤ x < pn+1,
one has P(x) = n, so that pn/n2 ≤ x/P(x)2 < pn+1/n2. Hence the equivalence of the two
conditions. �
Theorem 3.12. Let f ∈� with Supp( f ) = P. Also, let A be a nonempty subset of N. For
every k ∈N∗, let Pk (resp., Ak) denote the kth ray of P (resp., A).

(1) If Pk ∈�(ET) for all k ∈N∗, then f ∈�(EET).
(2) When ‖ f ‖ <∞, f ∈�(EET) if and only if Pk ∈�(ET) for all k ∈N∗.
(3) fA ∈�(EET) if and only if Ak ∈�(ET) for all k ∈N∗.
(4) When ‖ f ‖ <∞, f ∈�(EET) if and only if fP ∈�(EET).

Proof. (1) Let g ∈� be such that g 
 f , with Q = Supp(g) = {q1 < q2 < ···}, and let
F and G be the mass functions of f and g, respectively, so that F(x) ≤ G(x) for x ∈ R+.
There exists c ∈R+∗ such that f ∈�c, and therefore cP(x)≤ F(x)≤G(x)≤ ‖g‖Q(x) for
x ∈R+ by Proposition 3.3. Now, if ‖g‖ =∞, then s(g)=∞ by Corollary 3.4. Otherwise,
let k be a positive integer ≥ ‖g‖/c. Then P(x)≤ kQ(x) for x ∈R+, and therefore qn ≤ pkn
for n ∈N∗, that is, Q
 Pk by Lemma 3.11. Since Pk ∈�(ET), it follows that s(Q) =∞
and therefore s(g)=∞ by Corollary 3.4. Thus f ∈�(EET).

(2) Assume that ‖ f ‖ <∞ and f ∈�(EET). Let k ∈N∗ and let Q = {q1 < q2 < ···} be
an infinite subset of N such that Q
 Pk. Then P(x) < kQ(x) + k for x ∈ R+ by Lemma
3.11. Thus, by Proposition 3.3, the mass function F of f satisfies F(x) ≤ ‖ f ‖P(x) ≤
k‖ f ‖Q(x) + k‖ f ‖ for x ∈ R+. Let t = k‖ f ‖ (in R+∗) and h = t fQ + t. Then h ∈� and
the mass function of h is given by H(x) = tQ(x) + t (by Lemmas 2.2 and 2.4), so it sat-
isfies F(x) ≤H(x) for x ∈ R+. Hence h
 f and since f ∈ �(EET), therefore s(h) =∞.
But s(h)= t2s( fQ + 1)≤ t2(s( fQ) + s(1) + 2‖ fQ‖)= t2(s(Q) + 3) by Lemmas 2.2 and 2.4. It
follows that s(Q)=∞. Thus Pk ∈�(ET). This shows that if f ∈�(EET) then Pk ∈�(ET)
for all k. The converse follows from (1).

Finally, (3) follows from (2), and (4) follows from (2) and (3). �
Remark 3.13. The results in Theorem 3.12 raise the question of determining the infinite
subsets P of N all of whose rays Pk lie in �(ET). In particular, one may ask whether if
P ∈�(ET), then Pk ∈�(ET) for all k ∈N∗. A partial answer is provided in what follows.

Definition 3.14. Let P = {p1 < p2 < ··· < pn < ···} be an infinite subset ofN. The caliber
of P is cal(P) = liminfn→∞(pn/n2) in R

+
. We say that P belongs to the restricted class

�(RET) of Erdös-Turán sets if cal(P)= 0.

Remark 3.15. In [6], we showed that �(RET) is a subset of �(ET) and that the conjecture
(GET) is equivalent to the assertion that �(RET)��(ET).

Lemma 3.16. Let P = {p1 < p2 < ··· < pn < ···} be an infinite subset of N. For any k ∈
N∗, the caliber of the kth ray Pk of P is given by cal(Pk)= k2 cal(P).
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Proof. Given k ∈ N∗, for every integer 0 ≤ i ≤ k, let ci = liminfn→∞(pkn+i/(kn+ i)2).
Since, for all m ∈ N∗, inf{pn/n2 : n ≥ km} is the minimum of inf{pkn+i/(kn+ i)2 : n ≥
m}, as 0≤ i≤ k− 1, then cal(P)=min{ci : 0≤ i < k}. Also cal(Pk)= liminfn→∞(pkn/n2)
= k2c0. Moreover, for any 0≤ i≤ k and n∈N∗, we have pkn ≤ pkn+i ≤ pk(n+1). Dividing
these inequalities by (kn+ i)2 and passing to the limit, we get liminfn→∞(pkn/(kn+ i)2)≤
ci ≤ liminfn→∞(pk(n+1)/(kn+ i)2). But, since (kn+ i)2 ∼ (kn)2, asymptotically as n→∞,
we have liminfn→∞(pkn/(kn+ i)2)= liminfn→∞(pkn/(kn)2)= c0, and similarly liminfn→∞
(pk(n+1)/(kn+ i)2) = c0. Therefore c0 ≤ ci ≤ c0 for all i. Hence cal(P) = min{ci : 0 ≤ i <
k} = c0 and cal(Pk)= k2c0 = k2 cal(P). �

Corollary 3.17. If P ∈�(RET), then Pk ∈�(RET) for all k ∈N∗.

Remark 3.18. If there exist some P ∈ �(ET) and some k ∈ N∗ such that Pk �∈ �(ET)
(answering a question in Remark 3.13), then P �∈ �(RET), by Corollary 3.17, so that
�(RET)� �(ET), and therefore, as noted in Remark 3.15, the conjecture (GET) would
be true.

4. The conjectures

Remark 4.1. We can restate (ET) and (GET) as follows.
(ET) If P is a basis of N, then s(P)=∞.

(GET) For any infinite subset P = {p1 < p2 < ··· < pn < ···} of N, if pn ≤ dn2 for
some d ∈R+∗ and all n∈N∗, then s(P)=∞.

Moreover, since in the condition pn ≤ dn2 we can assume that d ∈N∗ (upon replacing
d by any integer ≥ d), then, in view of Definition 3.1, (GET) can be restated as follows.

(GET) For any d ∈N∗, the set dS lies in �(ET).

Definition 4.2. Let f =∑∞
n=0 anX

n. We call f a supported basis of N if f is a supported
series such that f 2 =∑∞

n=0 r( f ,n)Xn has all its coefficients r( f ,n) > 0; that is, if f ∈�
and Supp( f ) is a basis of N by Proposition 3.3.

We consider the following analytic versions of the conjectures (ET) and (GET).
(AET) If f is a supported basis of N, then s( f )=∞.

(GAET) The series fS =
∑∞

n=1X
n2

belongs to the class �(EET).

Theorem 4.3. (1) The conjectures (AET) and (ET) are equivalent.
(2) The conjectures (GAET) and (GET) are also equivalent.

Proof. (1) Assume first that (AET) holds. Let P be a basis of N. Then fP =
∑∞

n=0 χP(n)Xn

lies in �1 and Supp( fP)= P, so that fP is a supported basis. Therefore, by the assumption,
s( fP)=∞, that is, s(P)=∞ by Lemma 2.4. Thus (ET) holds.

Conversely, assume that (ET) holds. Let f be a supported basis ofN. Then P = Supp( f )
is a basis ofN, so that, by the assumption, s(P)=∞. Moreover, f ∈�c, for some c ∈R+∗.
Therefore s( f )≥ c2s(P) by Proposition 3.3. Hence s( f )=∞. Thus (AET) holds.

(2) By Theorem 3.12, (GAET) holds if and only if Sk, which is equal to k2S, lies in
∈ �(ET) for all k ∈ N∗. On the other hand, by Remark 4.1, (GET) holds if and only if
dS lies in �(ET) for all d ∈N∗. Thus (GET) trivially implies (GAET). But the latter also
implies the former in view of the fact that if P ∈�(ET) and if Q is an infinite subset of N
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such that Q
 P, then Q ∈ �(ET), as can be easily seen from Definition 3.1. Therefore
for any d ∈ N∗, taking k ∈ N∗ such that k2 ≥ d, if k2S ∈ �(ET), in virtue of (GAET),
then dS∈�(ET) since dS
 k2S. Thus (GAET) is equivalent to (GET). �
Remark 4.4. There is an asymptotic version (ETa) of (ET), which is equivalent to (ET)
(cf. [7]). First, we note that a subset P of N is called an asymptotic basis of N if r(P,n) > 0
for all large enough n in N. Then, we state the following.

(ETa) If P is an asymptotic basis of N, then s(P)=∞.
We can similarly state an asymptotic form of (AET), namely, (AETa).

(AETa) If f is an asymptotic supported basis, that is, if f ∈ � and r( f ,n) > 0 for all
large enough n, then s( f )=∞.

By the same argument as in the proof of Theorem 4.3(1), we see that (AETa) is equivalent
to (ETa), and since (ETa) is equivalent to (ET), then all four statements (ET), (ETa),
(AET), and (AETa) are equivalent.

5. A version of the Erdös-Fuchs theorem

In this section, we present a version of the Erdös-Fuchs theorem for supported series,
along the lines in Newman [12], trying to be as explicit and complete as possible in the
proofs. Namely, we establish the following result.

Theorem 5.1. Let f =∑∞
n=0 anX

n be any supported series in R[[X]]; and let

f 2 =
∞∑
n=0

r( f ,n)Xn, (5.1)

where r( f ,n) =∑i+ j=n aiaj (n ∈ N). For any c ∈ R+∗, if
∑n

k=0(r( f ,k)− c) = O(nt) for
some t ∈R+, then t ≥ 1/4.

Remark 5.2. The version of the Erdös-Fuchs theorem given by Newman [12] reads: if A
is a subset of N, and if c ∈ R+∗ is such that

∑n
k=0(r(A,k)− c) = O(nt) for some t ∈ R+,

then t ≥ 1/4. Theorem 5.1 generalizes this result by extending it to all sets (or sequences),
A= {an : n∈N}, of nonnegative real numbers whose nonzero elements are bounded be-
low by a positive constant. This is done by introducing and studying the corresponding
formal power series f =∑∞

n=0 anX
n, having such sequences as coefficients, that we here

call the supported series. The point of this generalization is that such properties, as the
Erdös-Fuchs theorem, are not exclusively characteristic of sequences of natural numbers,
but belong to a much broader class of sequences of real numbers. It is to be further noted
that the version of Newman that we here extend is slightly weaker than the original one by
Erdös and Fuchs [3], which asserts that the relation

∑n
k=0(r(A,k)− c) = o(n1/4 log−1/2n)

is impossible. However, the truly far-reaching generalization of the latter result is the one
presented by Montgomery and Vaughan [11], credited by them to an unpublished manu-
script of Jurkat and described as first appearing in the Ph.D. thesis of Hayashi [8], namely:
for any subset A of N and any c ∈ R+∗, the relation

∑n
k=0(r(A,k)− c) = o(n1/4) is im-

possible. Its extension to our context states that for any supported series f =∑∞
n=0 anX

n

in R[[X]], with f 2 =∑∞
n=0 r( f ,n)Xn, and any c ∈ R+∗, the relation

∑n
k=0(r( f ,k)− c) =

o(n1/4) is impossible. This is a natural and more difficult generalization, for another oc-
casion.
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Clearly, if Theorem 5.1 holds for some f ∈� and all c ∈ R+∗, then it also holds for
all df , with d ∈R+∗. Thus, it is enough to establish it for f ∈�1, that is, we may assume
that f =∑∞

n=0 anX
n satisfies the condition an = 0 or an ≥ 1 for all n∈N. Throughout this

section, we fix such a series f as well as a constant c ∈R+∗. We set An =
∑n

k=0(r( f ,k)− c)
for all n∈N, h=∑∞

n=0AnXn, and w =∑∞
n=0A

2
nX

n. We also introduce the series us(X)=∑∞
n=0n

sXn for s ∈ R+∗, whose radius of convergence in C is obviously 1, and we use
the polynomials pm(X) =∑m−1

k=0 Xk for m ∈N∗. Several technical results will be needed
for the proof of Theorem 5.1. Some are unconditional general properties, while others
require the hypothesis made in the theorem, namely, for a given t ∈R+,

(Ht) An =O(nt).
We start with a lemma listing two identities and an inequality, which are the analogues

of formulas (1), (2), and (3) in [12], with similar proofs, but in a more general setting.

Lemma 5.3. The following properties hold:
(1) f (X)2 = (1−X)h(X) + c/(1−X), in R[[X]];
(2) f (X)2pm(X)2 = cpm(X)2/(1−X) + (1−Xm)h(X)pm(X), in R[[X]];
(3) Under the hypothesis (Ht), the radii of convergence of f , f 2, h, and w are ≥ 1, and

| f (z)pm(z)|2 ≤ cm2/|1− z|+ 2|h(z)pm(z)| for all z ∈ C such that |z| < 1.

Lemma 5.4. For any s∈R+∗, us(r)=O((1− r)−s−1) for real 0 < r < 1.

Proof. For 0 < r < 1, we have the binomial series expansion (1− r)−s−1 =∑∞
n=0 bnr

n, with
bn = (s+ 1)(s+ 2)···(s+n)/n! for all n∈N. By a classical formula for the Γ-function [2],
limn→∞(n! ·ns/s(s+ 1)···(s+n))= Γ(s). Therefore the sequence (ns/bn) is convergent to
sΓ(s) and is thus bounded; that is, there exists a constant C > 0 such that ns ≤ Cbn for all
n∈N. Hence, us(r)=∑∞

n=0n
srn ≤ C

∑∞
n=0 bnr

n = C(1− r)−s−1, for 0 < r < 1. �

As in [12], we integrate in the complex plane, over a circle Cr = {z ∈ C : |z| = r} with
0 < r < 1, relative to the measure µ = |dz|/2πr. Thus, for a complex function v(z), inte-
grable in the open unit disk, we set

∫
Cr
v(z)dµ= (1/2π)

∫ 2π
0 |v(reit)|dt. The next lemma is

a sharpening of formula (6) in [12]. Similarly, the remaining formulas in [12] have been
adapted or modified to be used in Lemmas 5.7 and 5.8, and in the proof of Theorem 5.1.

Lemma 5.5. For any real 0 < r < 1,
∫
Cr

(1/(1− z))dµ≤−(1/r2) log(1− r2).

Proof. We have 1/(1− z)= q(z)2, where q(z)= (1− z)−1/2 has the binomial series expan-

sion q(z) =∑∞
n=0

(−1/2
n

)
(−z)n =∑∞

n=0 bnz
n for |z| < 1, with bn =

∏n
k=1(2k− 1)/2k for all

n ∈ N. Hence
∫
Cr

(1/(1− z))dµ = (1/2π)
∫ 2π

0 |q(reit)|2dt =∑∞
n=0 b

2
nr

2n by Parseval’s iden-
tity [2]. Moreover, by a simple induction, we get b2

n ≤ 1/(n + 1) for all n ∈ N. Hence∫
Cr

(1/(1− z))dµ≤∑∞
n=0(r2n/(n+ 1))= (1/r2)

∑∞
n=1(r2n/n)=−(1/r2) log(1− r2). �

Lemma 5.6. Let m be an integer ≥ 2. Under the hypothesis (Ht), | f (z)pm(z)|2 ≤ cm2/
|1− z|+ 2|h(z)pm(z)| for all z ∈ C such that |z| < 1.

Proof. (Ht) secures the convergence of f and h for |z| < 1, and then, by Lemma 5.3(2),
we have | f (z)pm(z)|2 = |cpm(z)2/(1− z) + (1− zm)h(z)pm(z)| ≤ c|pm(z)|2/|1− z|+ |1−
zm| · |h(z)pm(z)|. Moreover, |pm(z)| ≤ ∑m−1

k=0 |z|k < m and |1− zm| ≤ 1 + |z|m < 2 for
|z| < 1. Hence the inequality. �
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Lemma 5.7. Under the hypothesis (Ht), for any integer m ≥ 2 and any real 0 < r < 1,

f (r2)pm(r2)≤−(cm2/r2) log(1− r2) + 2
√
w(r2)pm(r2).

Proof. In view of Lemma 5.6,
∫
Cr

(
f (z)pm(z)

)2
dµ≤ cm2

∫
Cr

1
1− z

dµ+ 2
∫
Cr

h(z)pm(z)dµ. (5.2)

Clearly, f pm =
∑∞

n=0 cnX
n, where the coefficients cn, being sums of coefficients ak of f ,

satisfy likewise the condition cn = 0 or cn ≥ 1, so that c2
n ≥ cn for all n∈N. Now, by Parse-

val’s identity,
∫
Cr

( f (z)pm(z))2dµ= (1/2π)
∫ 2π

0 |( f pm)(reit)|2dt =∑∞
n=0 c

2
nr

2n ≥∑∞
n=0 cnr

2n

= f (r2)pm(r2). Also, by the Cauchy-Schwarz inequality [2] applied to the real integrals
over [0,2π], we get (

∫
Cr
h(z)pm(z)dµ)2 ≤ ∫Cr

h(z)2dµ · ∫Cr
pm(z)2dµ. Moreover, by Parse-

val’s identity,
∫
Cr
h(z)2dµ =∑∞

n=0A
2
nr

2n = w(r2) and
∫
Cr
pm(z)2dµ =∑m−1

n=0 r
2n = pm(r2).

Therefore
∫
Cr
h(z)pm(z)dµ ≤

√
w(r2)pm(r2). Finally, by Lemma 5.5,

∫
Cr

(1/(1− z))dµ ≤
−(1/r2) log(1− r2). Putting together all these inequalities yields the desired result. �

Lemma 5.8. Under the hypothesis (Ht), the following properties hold.
(1) There exists b ∈R+∗ such that w(r2)≤ b/(1− r2)2t+1 for all reals 0 < r < 1.
(2) If t < 1, then there exist real numbers d > 0 and 0 < r0 < 1 such that f (r2) ≥

d/
√

1− r2 for all reals r0 < r < 1.
(3) If t < 1, then there exist real numbers b,d > 0 and 0 < r0 < 1 such that dmr2m/

√
1− r2

≤−(cm2 log(1− r2)/r2) + 2
√
bm/(1− r2)t+1/2 for all integers m≥ 2 and all reals r0 <

r < 1.

Proof. By (Ht), there exists a real constant C > 0 such that |An| ≤ Cnt for all n∈N∗.
(1) For 0 < r < 1, we have w(r) =∑∞

n=0A
2
nr

n ≤ A2
0 +C2

∑∞
n=0n

2trn = A2
0 +C2u2t(r), so

that w(r) = O(u2t(r)). But, by Lemma 5.4, u2t(r) = O((1− r)−2t−1). So w(r2) = O((1−
r2)−2t−1) for 0 < r < 1, which gives the desired result.

(2) By Lemma 5.3, (1− r) f (r)2 = c+ (1− r)2h(r). Now, for 0 < r < 1, we have |h(r)| ≤∑∞
n=0 |An|rn ≤ |A0| + C

∑∞
n=0n

trn = A0 + Cut(r), so that h(r) = O(ut(r)). Thus, by
Lemma 5.4, h(r) = O((1− r)−t−1), and then (1− r)2h(r) = O((1− r)1−t). Since t < 1,
it follows that limr→1−(1− r)2h(r) = 0. Consequently, limr→1−

√
1− r2 f (r2) = √c > 0, so

that
√

1− r2 f (r2) is bounded below in some left neighborhood of 1. Hence the result.
(3) By Lemma 5.7 and (1), (2) above, we have dpm(r2)/

√
1− r2 ≤ f (r2)pm(r2) ≤

−(cm2/r2) log(1− r2)+2
√
w(r2)pm(r2)≤−(cm2/r2) log(1− r2) + 2

√
bpm(r2)/(1− r2)t+1/2

for r0 < r < 1. Moreover, mr2m < pm(r2) =∑m−1
k=0 r2k < m for 0 < r < 1. The desired in-

equality follows immediately. �

Proof of Theorem 5.1. We proceed by contradiction. Assume that the hypothesis (Ht)
holds with 0≤ t < 1/4. Then there exists a real number 2 < p < 1/2t. For every integer m≥
2, let rm = (1− 1/mp)1/2, so that 0 < rm < 1 and rm→ 1− as m→∞. Thus, given 1 < r0 < 1
satisfying Lemma 5.8(3), there exists an integer m0 ≥ 2 such that for all m≥m0, we have

r0 < rm < 1, and therefore dmr2m
m /
√

1− r2
m ≤−(cm2 log(1− r2

m)/r2
m) + 2

√
bm/(1− r2

m)t+1/2.

But
√

1− r2
m =m−p/2 and log(1− r2

m) = −p logm, so that dm1+p/2r2m
m ≤ cpm2 logm/r2

m +

2
√
bmpt+p/2+1/2, that is, dr2m

m ≤ cpm1−p/2 logm/r2
m + 2

√
bmpt−1/2. Moreover, by a simple
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induction, we get (1− x)m ≥ 1−mx for 0 < x < 1 and all m ∈ N∗, so that r2m
m = (1−

m−p)m ≥ 1−m1−p > 1−m−1 ≥ 1/2 since p > 2 and m ≥ 2. Thus d/2 ≤ cpm1−p/2 logm/
r2
m + 2

√
bmpt−1/2, for all m ≥ m0. But since 2 < p < 1/2t implies that 1− p/2 < 0 and

pt− 1/2 < 0, and since r2
m → 1 as m→∞, then both cpm1−p/2 logm/r2

m and 2
√
bmpt−1/2

approach 0 as m→∞, which contradicts the latter inequality for large enough m. Thus
the assumption that t < 1/4 leads to a contradiction, and therefore we must have t ≥
1/4. �
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