k-COMPLEMENTING SUBSETS OF NONNEGATIVE INTEGERS

AUGUSTINE O. MUNAGI

Received 9 September 2004

A collection $\left\{S_{1}, S_{2}, \ldots\right\}$ of nonempty sets is called a complementing system of subsets for a set X of nonnegative integers if every element of X can be uniquely expressed as a sum of elements of the sets S_{1}, S_{2}, \ldots. We present a complete characterization of all complementing systems of subsets for the set of the first n nonnegative integers as well as an explicit enumeration formula.

1. Introduction

Let $S=\left\{S_{1}, S_{2}, \ldots\right\}$ represent a collection of nonempty sets of nonnegative integers in which each member contains the integer 0 . Then S is called a complementing system of subsets for $X \subseteq\{0,1, \ldots\}$ if every $x \in X$ can be uniquely represented as $x=s_{1}+s_{2}+\cdots$ with $s_{i} \in S_{i}$. We will also write $X=S_{1} \oplus S_{2} \oplus \cdots$ and, when necessary, refer to X as the direct sum of the S_{i}.

We will denote the set of all complementing systems for X by $\operatorname{CS}(X)$. Then $\{X\} \in$ $\operatorname{CS}(X) \neq \varnothing$.

If there is a positive integer k such that $X=S_{1} \oplus \cdots \oplus S_{k}$, then $\left\{S_{1}, \ldots, S_{k}\right\}$ will be called a k-complementing system of subsets, or a complementing k-tuple, for X.

Denote the set of all complementing k-tuples for X by $\operatorname{CS}(k, X)$.
We will address the problem of characterizing all $S \in \operatorname{CS}\left(k, \mathbb{N}_{n}\right)$, where $\mathbb{N}_{n}=\{0,1, \ldots$, $n-1\}$. The corresponding more general problem for $\operatorname{CS}(\mathbb{N})$ was solved by de Bruijn [2], where $\mathbb{N}=\{0,1, \ldots\}$. Long [4] has given a complete solution for $\operatorname{CS}\left(2, \mathbb{N}_{n}\right)$. Since the appearance of Long's paper, no progress seems to have been made to solve the problem for $k>2$. Tijdeman [6] gives a survey of the evolution of this problem and related work.

In Section 2, we give an alternative proof of Long's theorem (Theorem 2.5) followed in Section 3 by its natural extension (Theorem 3.2) and a general structure theorem for $\operatorname{CS}\left(k, \mathbb{N}_{n}\right)$ (Theorem 3.5).

A complementing system $S=\left\{S_{1}, S_{2}, \ldots\right\} \in \operatorname{CS}(\mathbb{N})$ will be called usual if for any sequence $g_{1}, g_{2}, \ldots\left(g_{i}>1\right)$ of integers, each $S_{i} \in S$ is given by

$$
\begin{equation*}
S_{i}=\left\{0, m_{i-1}, 2 m_{i-1}, \ldots,\left(g_{i}-1\right) m_{i-1}\right\} \tag{1.1}
\end{equation*}
$$

where $m_{0}=1, m_{i}=g_{1} g_{2} \cdots g_{i}(i>0)$. We will refer to the collection $\left\{S_{1}, S_{2}, \ldots, S_{i}, \ldots\right\}$ as the complementing system corresponding to (or generated by) the integers g_{1}, g_{2}, \ldots.

We will denote the set of all usual complementing systems of subsets for \mathbb{N} by $\operatorname{UCS}(\mathbb{N})$. For positive integers a and c, the set $U=\{0, a, 2 a, \ldots,(c-1) a\}$ will be called a simplex, written additively (after Tijdeman [6]). We will adopt the notation $U=[a, c]$. Thus, by (1.1) every member of a usual complementing system is a simplex.

We can derive usual complementing systems of subsets for \mathbb{N}_{n} from the following adaptation of a theorem of Long [4].
Theorem 1.1. Let $n=g_{1} g_{2} \cdots g_{k}\left(g_{i}>1\right)$ represent any factorization of n as a product of positive integers and let the sets S_{1}, \ldots, S_{k} be defined as in (1.1). Then $S=\left\{S_{1}, \ldots, S_{k}\right\} \in$ $\operatorname{UCS}\left(\mathbb{N}_{n}\right)$.
Proof. If $k=1$, then $n=g_{1}$ and $\left\{S_{1}, \ldots, S_{k}\right\}=\left\{S_{1}\right\}$ which is clearly a complementing system. For $k=2$ we have $n=g_{1} g_{2}$ and, by (1.1), $i=1$ gives $S_{1}=\left[1, g_{2}\right]$. If $i=2$, then for $\left\{S_{1}, S_{2}\right\}$ to form a complementing pair for \mathbb{N}_{n}, the least nonzero element of S_{2} must be g_{1} (since S_{1} already contains $0,1, \ldots, g_{1}-1$) and thenceforth elements of S_{2} must be consecutively spaced g_{1} apart. This shows that S_{2} has the form $S_{2}=\left[g_{1}, g_{2}\right]$. Assume that the proposition holds for some fixed integer v and consider the system $\left\{S_{1}, \ldots, S_{v}, S_{v+1}\right\}$. By the inductive hypothesis, $\left\{S_{1}, \ldots, S_{v}\right\} \in \operatorname{UCS}\left(\left[1, m_{v}\right]\right)$. So $\left\{S_{1}, \ldots, S_{v}, S_{v+1}\right\}$ is equivalent to $\left\{\left[1, m_{v}\right], S_{v+1}\right\}$; and the case for $k=2$ shows that S_{v+1} has the required form. Hence the theorem is proved by mathematical induction.
Remarks 1.2. (i) The proof of Theorem 1.1 also shows that if the sequence g_{1}, g_{2}, \ldots generates $\left\{S_{1}, S_{2}, \ldots\right\} \in \operatorname{UCS}(\mathbb{N})$, then every partial sequence $g_{1}, g_{2}, \ldots, g_{k}$ generates $\left\{S_{1}, \ldots, S_{k}\right\} \in$ $\operatorname{UCS}\left(\mathbb{N}_{n}\right)$ with $n=g_{1} g_{2} \cdots g_{k}$ such that $\left\{S_{1}, \ldots, S_{k}\right\} \cup\left\{S_{k+1}, \ldots\right\}=\left\{S_{1}, S_{2}, \ldots\right\}$, where S_{i} is given by (1.1), for $i=1, \ldots, k$, and for $i>k$ by $S_{k+j}=\left[m_{k+j-1}, g_{k+j}\right](j=1,2, \ldots)$. Moreover, $\left\{S_{1}, \ldots, S_{k}\right\} \subset\left\{S_{1}, \ldots, S_{k+1}\right\}$ for every k.
(ii) It is clear that $S=\left\{S_{1}, \ldots, S_{k}\right\} \in \operatorname{UCS}\left(\mathbb{N}_{n}\right)$ implies that $a S=\left\{a S_{1}, \ldots, a S_{k}\right\} \in$ $a \operatorname{UCS}\left(\mathbb{N}_{n}\right)(1 \leq a<\infty)$, where $a H=\{a h \mid h \in H\}$. It is natural to define $a \operatorname{UCS}\left(\mathbb{N}_{n}\right)=$ $\operatorname{UCS}\left(a \mathbb{N}_{n}\right)$. Usual complementing systems for finite sets will be taken to include all of the systems $a S=\left\{a S_{1}, \ldots, a S_{k}\right\} \in \operatorname{UCS}\left(a \mathbb{N}_{n}\right)(a \geq 1)$.
(iii) It follows from Theorem 1.1 that $\left|\operatorname{UCS}\left(\mathbb{N}_{n}\right)\right|=f(n)$, where $f(n)$ denotes the number of ordered factorizations of n. A simple bijection is as follows: given any ordered factorization $n=g_{1} g_{2} \cdots g_{k}$, then $g_{1} g_{2} \cdots g_{k} \leftrightarrow\left\{\left[m_{0}, g_{1}\right],\left[m_{1}, g_{2}\right], \ldots,\left[m_{k-1}, g_{k}\right]\right\}$.
$f(n)$ can be computed using the recurrence $[5,7]$

$$
\begin{equation*}
f(n)=\sum_{d \mid n} f(d) \tag{1.2}
\end{equation*}
$$

where $f(1)=1$ and the sum is over divisors d of $n, d<n$.
If n has the prime factorization $n=p_{1}^{x_{1}} p_{2}^{x_{2}} \cdots p_{r}^{x_{r}}, 1<p_{1}<\cdots<p_{r}, x_{i} \geq 1$, then $f(n)$ can also be found using MacMahon's formula [7]:

$$
\begin{equation*}
f(n)=\sum_{k=1}^{\Omega(n)} \sum_{i=0}^{k-1}(-1)^{i}\binom{k}{i} \prod_{j=1}^{r}\binom{x_{j}+k-i-1}{x_{j}} \tag{1.3}
\end{equation*}
$$

where $\Omega(n)=x_{1}+\cdots+x_{r}$.

We deduce at once that $\left|\operatorname{UCS}\left(k, \mathbb{N}_{n}\right)\right|=f(n, k)$, where $\operatorname{UCS}\left(k, \mathbb{N}_{n}\right)$ denotes the set of usual k-complementing systems of subsets for \mathbb{N}_{n} and $f(n, k)$ is the number of ordered k-factorizations of n.

It follows from (1.3) (see also [1, page 59]) that $f(n, k)$ can be computed from the formula

$$
\begin{equation*}
f(n, k)=\sum_{i=0}^{k-1}(-1)^{i}\binom{k}{i} \prod_{j=1}^{r}\binom{x_{j}+k-i-1}{x_{j}} . \tag{1.4}
\end{equation*}
$$

Definition 1.3. Let $S=\left\{S_{1}, S_{2}, \ldots\right\} \in \operatorname{CS}(\mathbb{N})$. Then every partition p of the set $\{1,2, \ldots\}$ of subscripts of members of S induces a $T=\left\{T_{1}, T_{2}, \ldots\right\} \in \operatorname{CS}(\mathbb{N})$ with the property that each $T_{j}=S_{j 1} \oplus S_{j 2} \oplus \cdots$ where j_{1}, j_{2}, \ldots belong to a certain class of p. de Bruijn [2] is followed and T is called a degeneration of S. When necessary, T is also said to be induced by the partition or shape p, without reference to S.

The following fundamental classification theorem [2] for complementing systems of subsets for \mathbb{N}, which also applies to \mathbb{N}_{n} via Theorem 1.1, is crucial to all what follows.

Theorem 1.4 (N. G. de Bruijn). Every complementing system of subsets for \mathbb{N} is the degeneration of a usual complementing system.

Other relevant properties of usual complementing systems are summarized in the next theorem.

Theorem 1.5. (i) A collection of sets S is a usual complementing system for a finite set if and only if $S \in \operatorname{CS}(X)$, where X is a simplex.
(ii) Let $X=\left[a_{1}, c_{1}\right] \oplus \cdots \oplus\left[a_{k}, c_{k}\right]$. Then X is a simplex if and only if the $\left[a_{i}, c_{i}\right]$ are consecutive simplices of some $S \in \operatorname{UCS}(\mathbb{N})$.
(iii) The simplex $[a, n](a \geq 1, n \geq 2)$ is the direct sum of more than one simplex if and only if n is composite.
(iv) For $S \in \operatorname{UCS}(\mathbb{N})$ to be the degeneration of $T \in \operatorname{UCS}(\mathbb{N})$, where $S \neq T$, it is necessary and sufficient that some member of S has composite cardinality.

Proof. (i) If S is a usual complementing system for a finite set, then S is generated by a finite sequence of positive integers. Thus by Theorem 1.1 and Remark 1.2(i), $S \in \operatorname{UCS}(X)$, where $X=[1, n]$ for some n. Conversely, if $S \in \operatorname{CS}([a, n])$, where a and n are positive integers, then by Remark 1.2(ii) we can form $\left\{H_{1}, \ldots, H_{v}\right\} \in \operatorname{UCS}([1, n])$. Thus $S=\left\{a H_{1}, \ldots\right.$, $\left.a H_{v}\right\}$.
(ii) This follows from Remark 1.2(i) and part (i).
(iii) By Theorem 1.1, $\left\{S_{1}, S_{2}\right\} \in \operatorname{UCS}\left(\mathbb{N}_{n}\right) \Leftrightarrow n=\left|S_{1} \oplus S_{2}\right|=\left|S_{1}\right|\left|S_{2}\right| ; \mathbb{N}_{n}=[1, n]$ and $[a, n]=a[1, n]$.
(iv) This follows from part (iii).

Remark and Definition 1.6. Theorem 1.5(iv) implies that a fixed $P \in \operatorname{CS}(\mathbb{N})$ is not the nontrivial degeneration of any $T \in \operatorname{UCS}(\mathbb{N})$ if and only if each $P_{i} \in P$ has prime cardinality, that is, P is a usual complementing system generated by a sequence of prime numbers. P will be called a prime complementing system of subsets for \mathbb{N}.

Hence we have the following.
Corollary 1.7. Every usual complementing system of subsets is a degeneration of a prime complementing system.

We can now state the following complementing subset-systems analogue of the fundamental theorem of arithmetic.

Theorem 1.8. Every complementing system of subsets is a degeneration of a prime complementing system.

Proof. The theorem follows by transitivity from Theorem 1.4 and Corollary 1.7.
Remarks 1.9. (i) Denote the set of prime complementing systems for \mathbb{N} by $\operatorname{PCS}(\mathbb{N})$. It is clear that there are strict inclusions: $\operatorname{PCS}(\mathbb{N}) \subset \operatorname{UCS}(\mathbb{N}) \subset C S(\mathbb{N})$.
(ii) Theorem 1.8 guarantees that to generate all complementing systems via degenerations it suffices to use the minimal generating set $\operatorname{PCS}(\mathbb{N})$ rather than the whole $\operatorname{UCS}(\mathbb{N})$. The same remark applies to the finite case for the corresponding sets $\operatorname{PCS}\left(\mathbb{N}_{n}\right), \operatorname{CS}\left(\mathbb{N}_{n}\right)$, and $\operatorname{UCS}\left(\mathbb{N}_{n}\right) \cdot \operatorname{UCS}\left(\mathbb{N}_{n}\right)=\operatorname{PCS}\left(\mathbb{N}_{n}\right)$ if and only if n is prime.
(iii) If n has the prime factorization $n=p_{1}^{x_{1}} p_{2}^{x_{2}} \cdots p_{r}^{x_{r}}, 1<p_{1}<\cdots<p_{r}, x_{i} \geq 1$, then it follows from Remark 1.2(iii) that $\left|\operatorname{PNS}\left(\mathbb{N}_{n}\right)\right|=\left(x_{1}+\cdots+x_{r}\right)!/ x_{1}!\cdots x_{r}!$.

2. Complementing pairs and the theorem of C. T. Long

Let $\operatorname{SP}(m)$ denote the set of all partitions of $\{1,2, \ldots, m\}$ so that $|\operatorname{SP}(m)|=B(m)$, the m th Bell number. Also let $\operatorname{SP}(m, k)$ denote the set of all k-partitions of $\{1,2, \ldots, m\}$ so that $|\operatorname{SP}(m, k)|=s 2(m, k)$, a Stirling number of the second kind.

An element p of $\operatorname{SP}(m, k)$ will be called nonconsecutive if no member of p contains a pair of consecutive integers. Let $\mathrm{NC}(m, k)$ denote the set of all nonconsecutive k partitions of $\{1,2, \ldots, m\}$, and let $\mathrm{nc}(m, k)=|\mathrm{NC}(m, k)|$.
Theorem 2.1. nc (m, k) satisfies the following recurrence:

$$
\begin{gather*}
\mathrm{nc}(m, k)=\mathrm{nc}(m-1, k-1)+(k-1) \mathrm{nc}(m-1, k), \quad 1 \leq k \leq m, \\
\mathrm{nc}(1,1)=1, \quad \operatorname{nc}(2,1)=0 . \tag{2.1}
\end{gather*}
$$

Proof. To find a $p \in \mathrm{NC}(m, k)(m>k>2)$, we can either insert the singleton $\{m\}$ into any $p \in \mathrm{NC}(m-1, k-1)$ or put the integer m into any $k-1$ members of a $p \in \mathrm{NC}(m-1, k)$ which do not contain $m-1$. There are clearly $(k-1) \mathrm{nc}(m-1, k)$ possibilities in the second case. Hence the main result follows. The boundary conditions are clear from the definition and imply that $\mathrm{nc}(m, 1)=0(m \neq 1), \mathrm{nc}(m, m)=1$.

Remark 2.2. A close observation of Table 2.1 shows that the $\mathrm{nc}(m, k)$ are just Stirling numbers of the second kind which have been shifted one step to the right and one step down, that is,

$$
\begin{equation*}
s 2(m, k)=\operatorname{nc}(m+1, k+1), \quad k \geq 0 . \tag{2.2}
\end{equation*}
$$

Table 2.1. Values of $\mathrm{nc}(m, k)$ for $m=1, \ldots, 10, k=1, \ldots, 10$.

$m \backslash k$	1	2	3	4	5	6	7	8	9	10
1	1	0	0	0	0	0	0	0	0	0
2	0	1	0	0	0	0	0	0	0	0
3	0	1	1	0	0	0	0	0	0	0
4	0	1	3	1	0	0	0	0	0	0
5	0	1	7	6	1	0	0	0	0	0
6	0	1	15	25	10	1	0	0	0	0
7	0	1	31	90	65	15	1	0	0	0
8	0	1	63	301	350	140	21	1	0	0
9	0	1	127	966	1701	1050	266	28	1	0
10	0	1	255	3025	7770	6951	2646	462	36	1

Thus

$$
\begin{equation*}
\mathrm{nc}(m, k)=s 2(m-1, k-1), \quad 1 \leq k \leq m . \tag{2.3}
\end{equation*}
$$

Indeed $\operatorname{nc}(1,1)=1=s 2(0,0), \operatorname{nc}(2,1)=0=s 2(1,0)$, and $\operatorname{nc}(2,2)=1=s 2(1,1)$.
Assume that (2.3) holds for all positive integers up to m. Then Theorem 2.1 gives

$$
\begin{align*}
\mathrm{nc}(m+1, k) & =\mathrm{nc}(m, k-1)+(k-1) \cdot \mathrm{nc}(m, k) \\
& =s 2(m-1, k-2)+(k-1) s 2(m-1, k-1)=s 2(m, k-1), \tag{2.4}
\end{align*}
$$

where the second equality follows from the inductive hypothesis and the last equality follows from the usual recurrence for $s 2(m, k)$. Thus (2.3) is also established by mathematical induction.

Hence the standard formula [3, page 251]

$$
\begin{equation*}
s 2(m, k)=\sum_{i=1}^{k} \frac{(-1)^{k-i} i^{m}}{k!}\binom{k}{i} \quad(m, k \geq 0) \tag{2.5}
\end{equation*}
$$

yields the following corresponding formula:

$$
\begin{equation*}
\mathrm{nc}(m, k)=\sum_{c=1}^{k-1} \frac{(-1)^{k-1-c} c^{m-1}}{(k-1)!}\binom{k-1}{c}, \quad \mathrm{nc}(1,1)=1,1 \leq k \leq m . \tag{2.6}
\end{equation*}
$$

If $b^{*}(m)$ denotes the total number of nonconsecutive partitions of $\{1,2, \ldots, m\}$, then it is easily deduced from (2.3) that

$$
\begin{equation*}
b^{*}(m)=B(m-1), \quad m \geq 1, \tag{2.7}
\end{equation*}
$$

where $B(m)$ denotes the m th Bell number.
Lemma 2.3. $\operatorname{nc}(m, 2)=1, m>1$.

Proof. This follows from (2.6) or, more completely, from the proof of Theorem 2.1.
Notation 2.4. Given any $S \in \operatorname{CS}\left(\mathbb{N}_{n}\right)$, let Degen (S) denote the set of all degenerations of S. Let Degen (S, k) denote the set of all k-degenerations of S and let degen (S, k) be an element of $\operatorname{Degen}(S, k)$. Theorem 1.4 says that $\operatorname{CS}\left(\mathbb{N}_{n}\right)=\cup\left(\operatorname{Degen}(S), S \in \operatorname{UCS}\left(\mathbb{N}_{n}\right)\right)$, and implies that $\operatorname{CS}\left(k, \mathbb{N}_{n}\right)=U\left(\operatorname{Degen}(S, k), S \in \operatorname{UCS}\left(\mathbb{N}_{n}\right)\right.$ and $\left.|S| \geq k\right)$.

It is now straightforward to deduce the following characterization theorem [4, Theorems 1 and 2] for complementing pairs for \mathbb{N}_{n}.

Theorem 2.5 (C. T. Long). (i) $\{A, B\} \in \operatorname{CS}\left(2, \mathbb{N}_{n}\right)(n \geq 2)$ if and only if there exists a sequence $g_{1}, g_{2}, \ldots, g_{v}$ of integers corresponding to the factorization $n=g_{1} \cdots g_{v}$ of n such that A and B are sets of all finite sums of the form

$$
\begin{equation*}
a=\sum_{i=0}^{\lfloor(v-1) / 2\rfloor} x_{2 i} m_{2 i}, \quad b=\sum_{i=0}^{\lfloor(v-2) / 2\rfloor} x_{2 i+1} m_{2 i+1}, \tag{2.8}
\end{equation*}
$$

respectively, with $m_{0}=1, m_{i}=g_{1} g_{2} \cdots g_{i}$, and $0 \leq x_{i}<m_{i+1}$.
(ii) $\left|\operatorname{CS}\left(2, \mathbb{N}_{n}\right)\right|=f(n)-1$, where $f(n)$ is the number of ordered factorizations of n.

Proof. (i) This follows from the fact that the unique shape $p=\{\{1,3, \ldots\},\{2,4, \ldots\}\}$ given by Lemma 2.3 induces degen $(S, 2)=\left\{S_{1} \oplus S_{3} \oplus \cdots \oplus S_{[(v-1) / 2]}, S_{2} \oplus S_{4} \oplus \cdots \oplus S_{[(v-2) / 2]}\right\}$ for every $S=\left\{S_{1}, \ldots, S_{v}\right\} \in \operatorname{UCS}\left(\mathbb{N}_{n}\right), v=2,3, \ldots, \Omega(n)$. For a fixed $S=\left\{S_{1}, \ldots, S_{v}\right\}$, any other partition q induces degen $(S, 2)$ if and only if $\{u, u+2, \ldots, x, x+1, \ldots\} \in q(u \in\{1,2\})$ if and only if $S_{x} \oplus S_{x+1}$ is a simplex by Theorem 1.5(ii) if and only if there exists some $T \in \operatorname{UCS}\left(\mathbb{N}_{n}\right)$ such that $v>|T| \geq 2$ and degen $(S, 2)=\operatorname{degen}(T, 2)$ such that degen $(T, 2)$ is induced by p. Thus the action of p on each $S \in \operatorname{UCS}\left(\mathbb{N}_{n}\right)$ with $|S|>1$ contributes a unique member to $\operatorname{CS}\left(2, \mathbb{N}_{n}\right)$.
(ii) In Remark 1.2(iii) we showed that $\left|\operatorname{UCS}\left(\mathbb{N}_{n}\right)\right|=f(n)$ and, by part (i), $|\operatorname{Degen}(S, 2)|$ $=1$ for every $S \in \operatorname{UCS}\left(\mathbb{N}_{n}\right)$ with $|S|>1$.

Remark 2.6. In his original theorem, Long [4] states the result of Theorem 2.5(ii) as $\left|\operatorname{CS}\left(2, \mathbb{N}_{n}\right)\right|=f(n)$ such that $\left\{\mathbb{N}_{n}\right\}=\left\{\{0\}, \mathbb{N}_{n}\right\} \in \operatorname{CS}\left(2, \mathbb{N}_{n}\right)$. However, the strict form given above is more suitable for generalization as shown below.

3. Essential complementing k-tuples and a structure theorem

Definition 3.1. Let $S \in \operatorname{UCS}\left(v, \mathbb{N}_{n}\right), v=1,2, \ldots, \Omega(n)$. Then any $T \in \operatorname{CS}\left(k, \mathbb{N}_{n}\right)(1<k \leq v)$ will be called essential if it is induced by the partition p of $\{1,2, \ldots, v\}$ into a complete set of residue classes, modulo $k . p$ is also referred to as essential.

Denote the set of essential k-complementing systems of subsets for \mathbb{N}_{n} by $\operatorname{ECS}\left(k, \mathbb{N}_{n}\right)$. Then $\operatorname{ECS}\left(k, \mathbb{N}_{n}\right) \neq \varnothing$ since $\left\{S_{1}, \ldots, S_{k}\right\} \in \operatorname{ECS}\left(k, \mathbb{N}_{n}\right)$. Thus $\operatorname{UCS}\left(\mathbb{N}_{n}\right) \subseteq \operatorname{ECS}\left(\mathbb{N}_{n}\right)$.

We have the following natural extension of Long's theorem.
Theorem 3.2. (i) $\left\{T_{1}, \ldots, T_{k}\right\} \in \operatorname{ECS}\left(k, \mathbb{N}_{n}\right)(n \geq 2)$ if and only if there exists a sequence $g_{1}, g_{2}, \ldots, g_{v}$ of integers corresponding to the factorization $n=g_{1} \cdots g_{v}(k \leq v)$ of n such that
each set T_{i} consists of all finite sums of the form

$$
\begin{equation*}
t_{i}=\sum_{j \geq 0} x_{k j+i} m_{k j+i}, \tag{3.1}
\end{equation*}
$$

where $m_{0}=1, m_{i}=g_{1} g_{2} \cdots g_{i}$, and $0 \leq x_{i}<m_{i+1}, 1 \leq i \leq k$.
(ii) $\left|\operatorname{ECS}\left(k, \mathbb{N}_{n}\right)\right|=\sum_{i=k}^{\Omega(n)} f(n, i)$, where $f(n, k)$ is the number of ordered k-factorizations of n.

Proof. (i) For each k and essential partition p of $\{1, \ldots, v \mid v \geq k\}$ there is an injective degeneration map

$$
\begin{equation*}
\operatorname{dgn}(p):\left\{S \in \operatorname{UCS}\left(\mathbb{N}_{n}\right)| | S \mid \geq k\right\} \longrightarrow \operatorname{CS}\left(k, \mathbb{N}_{n}\right) \tag{3.2}
\end{equation*}
$$

Indeed $\operatorname{dgn}(p)(S) \neq \operatorname{dgn}(p)(H) \Rightarrow\left\{T_{i}=\oplus S_{r} \mid r \equiv i(\bmod k)\right\} \neq\left\{T_{i}=\oplus H_{r} \mid r \equiv\right.$ $i(\bmod k)\} \Rightarrow S \neq H$. Hence $\operatorname{dgn}(p)$ is a well-defined mapping. The injectivity of $\operatorname{dgn}(p)$ is easily established by following the above implications backward (see also the statement immediately following (3.4) below).

The image of $\operatorname{dgn}(p)$ is clearly $\operatorname{ECS}\left(k, \mathbb{N}_{n}\right)$. We see that the restriction of $\operatorname{dgn}(p)$ to $\operatorname{UCS}\left(k, \mathbb{N}_{n}\right)$ is the identity map.
(ii) By part (i) and Remark 1.2(iii) we have

$$
\begin{align*}
\left|\operatorname{ECS}\left(k, \mathbb{N}_{n}\right)\right| & =\left|\operatorname{UCS}\left(k, \mathbb{N}_{n}\right)\right|+\left|\operatorname{ECS}\left(k, \mathbb{N}_{n}\right)-\operatorname{UCS}\left(k, \mathbb{N}_{n}\right)\right| \\
& =f(n, k)+\sum_{i>k} f(n, i) . \tag{3.3}
\end{align*}
$$

We next define the class vector of a set partition [8].
Definitions 3.3. The class vector of a k-partition of $\{1, \ldots, v\}$ is the v-vector $\left(e_{1}, \ldots, e_{v}\right)$ in which $e_{i} \in\{1, \ldots, k\}$ and e_{i} belongs to class i for each i.

For example the partition $\{\{1,7\},\{2,3,5\},\{4,6\}\} \in \operatorname{SP}(7,3)$ is represented by the class vector (1,2,2,3,2,3,1).

Thus if $\left(e_{1}, \ldots, e_{w}\right)$ represents $p \in \mathrm{NC}(w, k)$, then $e_{i} \neq e_{i+1}$ for all $i, 1 \leq i<w$; but if $w \leq$ v and $\left(e_{1}, \ldots, e_{v}\right)$ represents $q \in \operatorname{SP}(v, k)-\mathrm{NC}(w, k)$, then $e_{i}=e_{i+1}=\cdots=e_{i+c}(0<c<v)$ for some i.

Thus for $1 \leq k \leq w \leq v$, the contraction map

$$
\begin{equation*}
F: \mathrm{SP}(v, k) \longrightarrow \mathrm{NC}(w, k) \tag{3.4}
\end{equation*}
$$

can be defined by setting $F(q)=q$ if $q \in \mathrm{NC}(w, k)$ and $F(q)=p$ if p is represented by the class vector obtained from the class vector h_{q} of q by replacing every sequence of equal and consecutive components $e_{i}, e_{i+1}, \ldots, e_{i+c} \in h_{q}$ with the common value e_{i}.

It follows that the restriction of F to $\mathrm{NC}(w, k)$ is the identity map.

Since every essential partition p (represented by the class vector $\{1,2, \ldots, k, 1,2, \ldots, k, 1$, $2, \ldots\})$ also belongs to $\mathrm{NC}(w, k)$, the last sentence implies that the map (3.2) is indeed injective.

Remark 3.4. Theorem 2.5 also follows from Theorem 3.2 by setting $k=2$ and noting that the degeneration map (3.2) is then surjective. To see this let $T \in \operatorname{CS}\left(2, \mathbb{N}_{n}\right)$. Then by Theorem 1.4 there exists $S=\left\{S_{1}, \ldots, S_{v}\right\} \in \operatorname{UCS}\left(\mathbb{N}_{n}\right), v \geq 2$, and a map $\operatorname{dgn}(q)$ such that $\operatorname{dgn}(q)(S, k)=T$. But Lemma 2.3 shows that $|\mathrm{NC}(w, 2)|=1$ which, by (3.4), implies that $q=p$. Hence (3.2) is surjective.

We now turn to the problem of characterizing all complementing k-tuples for \mathbb{N}_{n}. First we observe that it is not possible to state a simple rule for all $T \in \operatorname{CS}\left(k, \mathbb{N}_{n}\right), k>2$, as appeared in (3.1) since the sets in a general $p \in \operatorname{SP}(v, k)(v>k)$ can be constituted quite arbitrarily.

Theorem 1.4 implies that every $T \in \operatorname{CS}\left(k, \mathbb{N}_{n}\right)$ is induced by some $p \in \operatorname{SP}(v, k), k \leq v$. But operationally we need only $\mathrm{NC}(v, k)$, and not $\operatorname{SP}(v, k)$, to determine all of $\operatorname{CS}\left(k, \mathbb{N}_{n}\right)$, using (3.2), in view of the surjective contraction map (3.4) and the fact that Theorem 1.5 (ii) enables the automatic coupling of consecutive simplices thus making all partitions in $\mathrm{SP}(v, k)-\mathrm{NC}(v, k)$ redundant. Hence the partitions in $\mathrm{NC}(v, k)$ effectively account for all $S \in \operatorname{CS}\left(k, \mathbb{N}_{n}\right)$, for each $v \geq k$.

Since $\mathrm{nc}(k, k)=1$ and the singleton $\mathrm{NC}(k, k)$ contains the essential partition, it follows from (3.2) that every map $\operatorname{dgn}(q)$ in which $q \in \operatorname{NC}(v, k)$ is not the essential partition is necessarily defined on the reduced domain $\left\{S \in \operatorname{UCS}\left(\mathbb{N}_{n}\right)||S|>k\}\right.$. Hence for each v ($1 \leq v \leq \Omega(n)$), there exist precisely $\operatorname{nc}(v, k)$ maps, $\operatorname{dgn}(p)$, with $p \in \mathrm{NC}(v, k)$; and so by Remark 1.2(iii), there is a total of $f(n, v) \operatorname{nc}(v, k)$ contributions to $\operatorname{CS}\left(k, \mathbb{N}_{n}\right)$. Thus $\left|\operatorname{CS}\left(k, \mathbb{N}_{n}\right)\right|$ may be found by summing $f(n, v) \operatorname{nc}(v, k)$ over v.

Hence we obtain the following structure theorem for $\operatorname{CS}\left(k, \mathbb{N}_{n}\right)$.
Theorem 3.5. (i) $\left\{T_{1}, T_{2}, \ldots, T_{k}\right\} \in \operatorname{CS}\left(k, \mathbb{N}_{n}\right)(n \geq 2)$ if and only if there exists a sequence $g_{1}, g_{2}, \ldots, g_{v}$ of integers corresponding to the factorization $n=g_{1} \cdots g_{v}$ of n such that each set T_{i} is given by all finite sums of the form

$$
\begin{equation*}
t_{i}=\sum_{j \geq 0} x_{j} m_{j}, \quad j \in p_{i} \in p \in \mathrm{NC}(v, k), \quad v \geq k, \tag{3.5}
\end{equation*}
$$

where $m_{0}=1, m_{i}=g_{1} g_{2} \cdots g_{i}, 0 \leq x_{i}<m_{i+1}, p_{i} \subset\{1,2, \ldots, v\}$, and $\mathrm{NC}(v, k)$ is the set of all k-partitions of $\{1,2, \ldots, v\}$ in which no member of each partition contains a pair of consecutive integers.
(ii)

$$
\begin{equation*}
\left|\operatorname{CS}\left(k, \mathbb{N}_{n}\right)\right|=\sum_{v=k}^{\Omega(n)} f(n, v) \mathrm{nc}(v, k)=\sum_{v=k}^{\Omega(n)} f(n, v) s 2(v-1, k-1) \tag{3.6}
\end{equation*}
$$

where the second equality follows from (2.3) and $f(n, k)$ denotes the number of ordered k factorizations of n.

Remark 3.6. (i) Theorem 3.2 follows from Theorem 3.5 by noting that the essential partition p is the unique member of $\operatorname{NC}(v, k)$ such that $\operatorname{dgn}(p)$ is defined on the maximal domain $\left\{S \in \operatorname{UCS}\left(\mathbb{N}_{n}\right)||S| \geq k\}\right.$ which forces nc $(v, k)=1$ for all $v \geq k$.
(ii) We observe that any fixed $S \in \operatorname{UCS}\left(k, \mathbb{N}_{n}\right)$ gives rise, via degenerations, to a total of $B(k)$ complementing systems $T \in \operatorname{CS}\left(\mathbb{N}_{n}\right)$. In particular, if n is a prime power, then a single Bell number counts the whole of $\operatorname{CS}\left(\mathbb{N}_{n}\right)$ in view of Theorem 1.8, that is,

$$
\begin{equation*}
\left|\operatorname{CS}\left(\mathbb{N}_{n}\right)\right|=B(r), \quad n=p^{r} . \tag{3.7}
\end{equation*}
$$

(iii) Furthermore, $n=p^{r}$ has a unique ordered prime factorization, which implies that $\operatorname{PCS}\left(\mathbb{N}_{n}\right)=\left\{S=\left\{[1, p],[p, p], \ldots,\left[p^{r-1}, p\right]\right\}\right\}$. By Theorem 1.5(ii) each $T \in \operatorname{UCS}(k$, $\left.\mathbb{N}_{n}\right)$ is a degeneration of S induced by a partition of the set $\{1, \ldots, r\}$ into subsets of consecutive integers. For each $k(1 \leq k \leq r)$ this corresponds to the process of putting $k-1$ slashes into any of the $r-1$ possible spaces between r identical symbols. Thus $\left|\operatorname{UCS}\left(k, \mathbb{N}_{n}\right)\right|$ is counted by the number of k-compositions of r [1, page 55]. Hence

$$
\begin{align*}
& \left|\operatorname{UCS}\left(k, \mathbb{N}_{n}\right)\right|=\binom{r-1}{k-1}, \quad n=p^{r}(r>0) \tag{3.8}\\
& \Rightarrow\left|\operatorname{UCS}\left(\mathbb{N}_{n}\right)\right|=2^{r-1}
\end{align*}
$$

(iv) Thus the function $B(m)-2^{m-1}, m=1,2, \ldots$ [5] also counts the complementing systems of subsets for $\left\{0,1, \ldots, p^{m}-1\right\}$ in which at least one member is not a simplex or, equivalently, the partitions of the set $\{1,2, \ldots, m\}$ in which at least one class of each partition contains a pair of nonconsecutive integers.
(v) Formula (3.7) can be generalized by summing $\left|\operatorname{CS}\left(k, \mathbb{N}_{n}\right)\right|$ over $k, 1 \leq k \leq \Omega(n)$, to give

$$
\begin{equation*}
\left|\operatorname{CS}\left(\mathbb{N}_{n}\right)\right|=\sum_{v=1}^{\Omega(n)} f(n, v) b^{*}(v)=\sum_{v=1}^{\Omega(n)} f(n, v) B(v-1) \tag{3.9}
\end{equation*}
$$

where $b^{*}(v)=\sum_{k=1}^{\Omega(n)} \mathrm{nc}(v, k)$ and the second equality follows from (2.7).
(vi) Taking (3.9) in conjunction with (3.7) we have $B(r)=\sum_{v=1}^{r} f(n, v) B(v-1)$, where $n=p^{r}$; and since $f(n, v)=\binom{r-1}{v-1}$ from (3.8), we obtain the familiar recurrence for the Bell numbers:

$$
\begin{equation*}
B(r)=\sum_{v=1}^{r}\binom{r-1}{v-1} B(v-1)=\sum_{v=0}^{r-1}\binom{r-1}{v} B(v) . \tag{3.10}
\end{equation*}
$$

The distributions of $\left|\operatorname{CS}\left(\mathbb{N}_{32}\right)\right|$ and $\left|\operatorname{CS}\left(\mathbb{N}_{60}\right)\right|$ are provided as examples in Tables 3.1 and 3.2.

Table 3.1. Distribution of $\left|\operatorname{CS}\left(\mathbb{N}_{32}\right)\right|$.

k	1	2	3	4	5	Sum
$\left\|\operatorname{UCS}\left(k, \mathbb{N}_{32}\right)\right\|$	1	4	6	4	1	16
$\left\|\operatorname{CS}\left(k, \mathbb{N}_{32}\right)-\operatorname{UCS}\left(k, \mathbb{N}_{32}\right)\right\|$	0	11	19	6	0	36
$\left\|\operatorname{CS}\left(k, \mathbb{N}_{32}\right)\right\|$	1	15	25	10	1	52

Table 3.2. Distribution of $\left|\operatorname{CS}\left(\mathbb{N}_{60}\right)\right|$.

k	1	2	3	4	Sum
$\left\|\operatorname{UCS}\left(k, \mathbb{N}_{60}\right)\right\|$	1	10	21	12	44
$\left\|\operatorname{CS}\left(k, \mathbb{N}_{60}\right)-\operatorname{UCS}\left(k, \mathbb{N}_{60}\right)\right\|$	0	33	36	0	69
$\left\|\operatorname{CS}\left(k, \mathbb{N}_{60}\right)\right\|$	1	43	57	12	113

References

[1] G. E. Andrews, The Theory of Partitions, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1998.
[2] N. G. de Bruijn, On number systems, Nieuw Arch. Wisk. (3) 4 (1956), 15-17.
[3] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics, Addison-Wesley Publishing Company, Massachusetts, 1989.
[4] C. T. Long, Addition theorems for sets of integers, Pacific J. Math. 23 (1967), 107-112.
[5] N. J. A. Sloane, The on-line encyclopedia of integer sequences, Sequences A074206, A058681, http://www.research.att.com/~njas/sequences.
[6] R. Tijdeman, Decomposition of the integers as a direct sum of two subsets, Number Theory (Paris, 1992-1993), London Math. Soc. Lecture Note Ser., vol. 215, Cambridge University Press, Cambridge, 1995, pp. 261-276.
[7] E. W. Weisstein, Ordered factorization, Math World-A Wolfram Web Resource, http:// mathworld.wolfram.com/OrderedFactorization.html.
[8] H. Wilf, East Side, West Side—an Introduction to Combinatorial Families with Maple Programming, online version, 2000, http://www.cis.upenn.edu/~wilf/.

Augustine O. Munagi: Department of Mathematics, University of Lagos, Akoka-Yaba, Lagos 101017, Nigeria

E-mail address: amunagi@yahoo.com

