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Isometric foldings are a special class of length-preserving maps of Riemannian manifolds
and were initially studied by S. Robertson. For an explanation of their topological and
combinatorial properties, see the related works of Ana Breda, Altino Santos, M. El-Ghoul,
and E. M. Elkholy. Here, we explore some properties of the singular set and describe the
image set of planar, spherical, and hyperbolic foldings.

1. Introduction

The notion of isometric foldings of Riemannian manifolds was introduced in 1977 by
Robertson [2].

An isometric folding f : M→N is a map which sends piecewise geodesic segments in
piecewise geodesic segments of the same length. An isometric folding is a continuous local
isometry, which need not be differentiable. The points where it fails to be differentiable
are called singular points.

We will denote by �(M,N) the set of isometric foldings from M to N .
In [2], the structure of the singular set of an isometric folding was given. For the par-

ticular case of isometric foldings of surfaces, f : S1 → S2, it was shown that there is a de-
composition of S1 into mutually disjoint, connected totally geodesic submanifolds, called
strata, such that

(i) S f = S0
f

⋃
S1
f where Sif denotes the union of all strata of dimension i, i= 0,1;

(ii) the restriction of f to each stratum is a locally isometric immersion into S2;
(iii) the frontier of each stratum is a stratum of lower dimension, and in case S1 is

compact of finitely many such strata;

(iv) the frontier of Sif , i= 1,2, in S1 is the union of all sets S
j
f , j = 0, i− 1;

(v) S f is either the empty set or it can be regarded as a graph of even valency satisfy-
ing the angle folding relation, that is, the sums of alternating angles are π.
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Figure 2.1. Singular set of a hyperbolic folding.

2. Finite foldings of constant curvature surfaces

In this section, we will focus our attention on isometric foldings f : S→ S of surfaces
of constant curvature whose set of singularities, S f , partitions S into a finite number of
regions (faces). Such maps will be called finite foldings.

Let S be a surface of constant curvature. We will denote by �(S) the set of all finite
isometric foldings of S.

Given a finite folding f : S→ S with a nonempty set of singularities, the connected
components of S2

f , S1
f , and S0

f will be called, respectively, faces, edges, and vertices.

Proposition 2.1. If f ∈�(S), then there are no strata of dimension 0 if there are no strata
of dimension 1.

Proof. If there are no strata of dimension 1, then the stratification determined on S by f
forces S to have only one face, say F.

Assume now that strata of dimension 0 are also present. Let x be a point on F, v a
vertex on S, and γ :R→ S a geodesic segment such that γ(0)= x, γ(t)= v, (t ∈R+), and∫ t

0 ‖γ(t)‖ = dS(x,v), inducing a piecewise geodesic segment γ� = f ◦ γ on S, for which t
is the smallest positive singularity of γ�. Choose δ > 0 sufficiently small in order to have
t as the unique singularity of γ� on [0, t+ δ].

Now, consider the point y = γ(t + ε) t < ε < t + δ. On one hand, dS( f (x), f (y)) <
dS(x, y) (the geodesic segment joining x and y contains a singularity of f ) and on the
other hand, dS( f (x), f (y)) = dS(x, y), since x, y ∈ F and f|F is an isometric immersion,
leading to a contradiction. �

The same reasoning yields that any i-stratum, i= 0,1, belongs to the frontier of at least
two (i+ 1)-strata.

The converse of Proposition 2.1 is false. In fact, the finite folding of the Euclidean
plane given by f (x, y)= (|x|, y) determines a stratification of R2 composed by two faces
F<
>
= {(x, y)∈R2 : x<

>
0}, one edge E = {(x, y)∈R2 : x = 0}, and no vertices.

Having in consideration that vertices of the singularity set of an isometric folding obey
the angle folding relation, we may deduce the following.

Proposition 2.2. If f is a finite, planar, or spherical folding and S0
f is nonempty then S f is

connected.

This proposition is not true when S is the hyperbolic plane. It is enough to consider
the four foldings illustrated in Figure 2.1.
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Proposition 2.3. Under composition of maps, the set �(S) is a semigroup with identity,
containing the isometry group of S as a subsemigroup.

Proof. Let f ,g ∈ �(S). Assume that A1,A2, . . . ,As and B1,B2, . . . ,Br are the faces deter-
mined on S by f and g, respectively. Then, x ∈ S2

g◦ f if and only if x ∈ Ai ∩ f −1(Bj) for
some i∈ {1, . . . ,s} and some j ∈ {1, . . . ,r}.

Since Ak ∩Am =∅ whenever k �=m and for every i= 1, . . . ,s, fi = f|Ai is an isometric
immersion of Ai into S, one has

x ∈ S2
g◦ f ⇐⇒ x ∈ Ai∩ f −1

i

(
Bj ∩ fi

(
Ai
))

, i= 1, . . . ,s; j = 1, . . . ,r, (2.1)

and so the number of faces determined by g ◦ f is less than or equal to rs. The result now
follows. �

Next, we will show that �(S) is a subset of �(S), the set of all continuous proper maps
of S (maps for which the inverse images of noncompact sets are not compact sets).

Proposition 2.4. �(S)⊂�(S).

Proof. Let f ∈�(S) and F1,F2, . . . ,Fn n ≥ 1 be the faces determined by f . Then, for all
k = 1, . . . ,n, f|Fk is an isometric immersion into S, and due to the continuity of f so is f|Fk .
Since S is a complete Hausdorff space, f (Fk) is a closed subset of S.

Let K be a compact set of S. Since f −1(K)=⋃n
k=1 f

−1
|Fk ( f (Fk)∩K), f is a proper map.

�

In view of Proposition 2.4, the Hopf degree of a finite folding, denoted by deg, is well
defined. See [1] for a comprehensive discourse on the Hopf degree of a map.

Let f ∈�(S). Denoting, respectively, by V , V+, V−, and Vf the surface area of S, of
the subset of S where f is an orientation-preserving isometry, of the subset of S where f
is an orientation-reversing isometry, and of f (S), it follows immediately that

(i) if S is compact and deg( f )= 0, then V+ =V− = (1/2)V ≥Vf ;
(ii) if f is not surjective, then deg( f )= 0;

(iii) if S is compact, then deg( f )= 0 or deg( f )=±1 according as S f �= ∅ or S f =∅.

Let R2 be the Euclidean plane, S2 = {x ∈R3 : ‖x‖ = 1} the two-sphere, andH2 = {x ∈
R2 : ‖x‖ < 1} the hyperbolic plane.

Proposition 2.5. If f ∈�(S) where S is either the Euclidean plane, the two-sphere, or the
hyperbolic plane, then

deg( f )=



0,1,−1 if S=R2 or S= S2,

n, n∈ Z if S=H2.
(2.2)

Proof. If S= S2, the result follows directly from compactness.
Assume now that S= R2. Let f ∈�(R2). In view of Proposition 2.4, f is a proper map

and so the map g : S2 → S2 given by

g(x)=


PN ◦ f ◦P−1

N (x) if x ∈ S2 \N ,

N if x =N ,
(2.3)
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where N = (0,0,1) and PN denotes the stereographic projection from the North pole, N ,
is a continuous map. Since f is a finite folding for a sufficiently small neighborhood U of
N , one has g−1(U)⊂U , and the singular set of g in U is either empty or a cone of apex N
with an even number of circles emanating from it. Accordingly, the degree of g is either 0
or ±1 and so is the degree of f .

Suppose now that S=H2. The identity maps, the map m given by m(x+ iy)=−x+ iy
and the map n given by n(x + iy) = |x|+ iy, are examples of finite hyperbolic foldings
of degrees 1, −1, and 0, respectively. Let p ∈ Z, |p| > 1. Choose |p|+ 1 points, Pj , cor-
respondent to a subdivision of S1, border of H2, into |p|+ 1 equal arcs. The hyperbolic
geodesic segment lines hj with end points Pj and Pj+1 partition H2 into |p|+ 2 regions,
Aj , j = 1, . . . ,|p|+ 2, as illustrated in Figure 2.2.

The map h :H2 →H2 given by

h(z)=


z if z ∈A|p|+2,

Rm(z) if z ∈Am, m= 1, . . . ,|p|+ 1,
(2.4)

where Rm is the reflection map in the geodesic line hm and h◦m, is an example of hyper-
bolic finite foldings of degrees |p| and −|p|, respectively. �

3. Image sets of foldings of constant curvature surfaces

An end e of a locally compact space Y is a function which assigns to each compact subset
K ⊂ Y precisely one nonempty component e(K) of the complement Y −K , subject to the
requirement that e(K)⊃ e(L) whenever K ⊂ L. Any set N ⊂ Y which contains some e(K)
is a neighborhood of the end e.

Roughly speaking, the number of ends of Y is the number of nonempty connected
components of K \K for a sufficiently big compact subset of Y .
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For any f ∈�(S,S)=�(S), we denote by e f the number of ends of the subset Im( f )=
{ f (x) : x ∈ S}.
Proposition 3.1. If f : X → X is a proper map and X has one end, then f (X) has one end.

Proof. Since f is proper, f (X) cannot be compact and hence has at least one end. Suppose
for contradiction that it has more than one end. Then there is a compact set K in f (X)
such that f (X) \K has at least two unbounded components U1 and U2. Since f is proper,
f −1(K) is compact. But then X \ f −1(K) has at least the two unbounded components
f −1(U1) and f −1(U2), so X would have at least two ends. �

Corollary 3.2. Let S be either the Euclidean plane, the two-sphere S2, or the hyperbolic
planeH2. If f ∈�(S), then

e f =



0 if S= S2,

1 if S=R2 or S=H2.
(3.1)

Proof. If f ∈�(S2), Im( f ) is a bounded subset of S2 and so e f = 0.
Assume now that f ∈�(R2). As seen in Proposition 2.4, f is a proper map. The result

now follows directly from Corollary 3.2. �

Proposition 3.3. Let S be either the euclidian plane, the two-sphere S2 or the hyperbolic
planeH2. If f ∈�(S) then,

e f =



0 if S= S2,

infinitely many if S=R2 or S=H2.
(3.2)

Proof. Since �(S2)=�(S2), by Corollary 3.2, e f = 0 for any f ∈�(S2).
Let S beR2 and let n be an arbitrary integer. The isometric foldings whose construction

is illustrated in Figure 3.1 are planar isometric foldings with n ends.
This construction can easily be adapted to produce an image with infinitely many

ends—each time one retraces to make the vertical columns longer, add one more vertical
column.

Assume now S to be the hyperbolic plane and let n be an arbitrary positive integer.
Take the n + 2 hyperbolic points P1 = 1 and Pj = exp i(π/2 + π/4 + ··· + π/2 j−1), j =
2, . . . ,n+ 2, and denote by ρt the reflection on the hyperbolic line t.

For i= 1, . . . ,n, the following hold:

(i) let ri be the hyperbolic line through Pi and Pi+1;
(ii) let Ui, Qi be the points determined uniquely by Ui = ρri(Pi+2)= ρ�PiQi

(Pi+1);
(iii) let (Qi,k)k∈N0 be n sequences of hyperbolic points defined by Qi,0 = Pi, Qi,1 =Qi,

Qi,2 =Ui, and for k ≥ 2, Qi,k = ρP̂iQi,k−1
(Qi,k−2).

The hyperbolic folding, whose set of singularities is

⋃
i=1,...,n; k∈N0

(
P̂iPi+1

⋃
P̂iQi,k

)
, (3.3)
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Figure 3.1. Planar folding with n ends.
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Figure 3.2. Hyperbolic folding with 3 ends.
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is a folding with n ends. In Figure 3.2, the folding process of a hyperbolic folding with 3
ends is illustrated. �

As in the previous case, the above construction can easily be adapted to produce a
hyperbolic folding with infinitely many ends.
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