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We present a method to construct inverse scattering problems for integrable nonlinear evo-
lution equations in the two-spatial dimension. The temporal component is the adjoint of the
linearized equation and the spatial component is a partial differential equation with respect
to the spatial variables. Although this idea has been known for the one-spatial dimension
for some time, it is the first time that this method is presented for the case of the higher-
spatial dimension. We present this method in detail for the Veselov-Novikov equation and
the Kadomtsev-Petviashvili equation.
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1. Introduction. The search for the methods to construct inverse scattering prob-

lems for integrable nonlinear evolution equations has been an interesting subject, see

[5, 9, 14] for example, since the discovery of the soliton solutions for the Korteweg-de

Vries equation [1, 2, 6, 7, 10, 11]. It was known that the adjoint of the linearized equation

could be used as the temporal component to construct an inverse scattering problem

for integrable equations in the case of the one-spatial dimension [3]. In this note, we

extend this concept to the case of the two-spatial dimension. Let the spatial variables

be x and y . The spatial component is assumed to be of the form Lφy = Rφ, where

L and R are assumed to be partial differential operators with respect to x. Requiring

the temporal equation and the spatial equation to be compatible, we obtain an explicit

form for the spatial component as a special solution to the compatibility condition. To

find the spatial component is the main work of this note. A consequence of this pro-

cess is a natural derivation of a Miura-type transformation that can be used to generate

Lax pairs for the integrable equations. We present it in details for the Veselov-Novikov

equation [13], which is also known as the Nizhnik-Veselov-Novikov equation [12], and

the Kadomtsev-Petviashvili equation [8].

2. Veselov-Novikov equation.

ut =uxxx+uyyy+3(uv)x+3(uw)y, (2.1)

where u is a function of t, x, and y , v and w depend on u with vy = ux , wx = uy ,

and the subscript denotes the partial differentiation, for example, ux = ∂u/∂x, uy =
∂u/∂y , a1,x = ∂a1/∂x, and so forth.
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The adjoint of the linearized equation of (2.1) is

φt =φxxx+φyyy+3vφx+3Ψx+3wφy+3∂−1
x ∂y

(
uφy

)
, (2.2)

where

Ψy =uφx. (2.3)

We now propose

Lφy = Rφ, (2.4)

where L and R are partial differential operators with respect to x,

L= e0+e1∂x+e2∂2
x+···+em∂mx ,

R = r0+r1∂x+r2∂2
x+···+rn∂nx ,

(2.5)

and where ei, 0≤ i≤m, and rj , 0≤ j ≤n, are functions depending on u and its partial

derivatives but not explicitly on t, x, or y .

We request that (2.2) and (2.4) be compatible. Since (2.2) is symmetric with respect to

x and y , we also request that (2.4) be symmetric with respect to x and y . Interchanging

x and y in (2.4), we get

(
e∗0 +e∗1 ∂y+e∗2 ∂2

y+···+e∗m∂my
)
φx =

(
r∗0 +r∗1 ∂y+r∗2 ∂2

y+···+r∗n ∂ny
)
φ, (2.6)

where e∗i and r∗j are obtained from ei and rj , 0≤ i≤m, 0≤ j ≤n, by interchanging x
and y , respectively. In order for (2.6) to be the same as (2.4), we need m= 1 and n= 1.

Thus (2.4) becomes

(
e0+e1∂x

)
φy =

(
r0+r1∂x

)
φ. (2.7)

In order to find e0, e1, r0, and r1, we rewrite (2.7) as

φy =
(
e0+e1∂x

)−1(r0+r1∂x
)
φ= (b0+b−1∂−1

x +b−2∂−2
x +···)φ. (2.8)

Equating the coefficients of ∂(n)x φ, n≤ 1, on both sides of

(
e0+e1∂x

)(
b0+b−1∂−1

x +b−2∂−2
x +···)φ= (r0+r1∂x

)
φ, (2.9)

we get

e1b0 = r1, (2.10)

e1b0,x+e0b0+e1b−1 = r0, (2.11)

e1b−1,x+e0b−1+e1b−2 = 0, (2.12)

e1b−h,x+e0b−h+e1b−h−1 = 0, h≥ 1. (2.13)

Now back to (2.3), Ψ must be expressible in terms of φ. Therefore, we propose

Ψ = (ak∂kx+ak−1∂k−1
x +···)φ. (2.14)
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Substituting it into (2.3), we get

Ψy = ak,y∂kxφ+ak∂kxφy+ak−1,y∂k−1
x φ+ak−1∂k−1

x φy+··· =uφx. (2.15)

Substitutingφy by (2.8) into (2.15) and equating the coefficients of ∂(n)x φ on both sides

of (2.15), we get k= 1. Thus

Ψ = (a1∂x+a0+a−1∂−1
x +···)φ. (2.16)

Furthermore, equating the coefficients of ∂(n)x φ on both sides of (2.15) with k = 1 for

n≤ 1, we get, for the coefficient of φx ,

a1,y+a1b0 =u, (2.17)

for the coefficient of φ,

a1b0,x+a1b−1+a0,y+a0b0 = 0, (2.18)

for the coefficient of ∂−1
x φ,

a1b−1,x+a1b−2+a0b−1+a−1,y+a−1b0 = 0, (2.19)

for the coefficient of ∂−2
x φ,

a1b−2,x+a1b−3+a0b−2−a−1b0,x+a−1b−1+a−2,y+a−2b0 = 0, (2.20)

and for the coefficient of ∂−hx φ,

a1b−h,x+a1b−h−1+a0b−h+
(
terms linear in a−1, . . . ,a−h+1

)+a−h,y+a−hb0 = 0,
(2.21)

for h≥ 2.

We now demand that (2.2) and (2.8) be compatible, that is, φtxy =φytx .

Differentiating both sides of (2.2) with respect to x and y , we get

φtxy =φxxxxy+φyyyxy+3vxyφx+3vxφxy+3vyφxx+3vφxxy
+3Ψxxy+3wxyφy+3wxφyy+3wyφxy
+3wφxyy+3uyyφy+6uyφyy+3uφyyy.

(2.22)

Differentiating both sides of (2.8) with respect to t and x, we get

φytx =
∑
j≤0

(
bj,tx∂

j
xφ+bj,t∂j+1

x φ+bj,x∂jxφt+bj∂j+1
x φt

)
. (2.23)

By equating the coefficients of ∂(n)x φ on both sides of φtxy =φytx after we use (2.2),

(2.8), and (2.16) to express both sides in terms of ∂(n)x φ, we get, for the coefficient of

∂4
xφ,

b0 = b0, (2.24)
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for the coefficient of ∂3
xφ,

u=−b0,x+b0a1, (2.25)

for the coefficient of ∂2
xφ,

2b0,xx+b−1,x+vy+2ux = b0,xa1+2b0a1,x+b0a0+b−1a1, (2.26)

and for the coefficient of ∂xφ,

4b0,xxx+6b−1,xx+3b−2,x+b0,yyy+4b0,yyb0+3
(
b0,y

)2+6b0,yb2
0+3vxy

+3vb0,x+3uxx+3wyb0+3wb0,y

= b0,t+3b0,x
(
a1,x+a0

)+b0b0,yy+3b0,yb2
0+3b0

(
a1,xx+2a0,x+a−1

)
+3b−1,xa1+3b−1

(
a1,x+a0

)+3b−2a1.

(2.27)

From (2.17) and (2.25), we get a1,y =−b0,x . Let q =−∂−1
x a1, then

a1 =−qx, b0 = qy, (2.28)

and, from (2.25),

u=−qxy−qxqy. (2.29)

Substituting (2.29) into (2.1), we get

0=ut−uxxx−uyyy−3(uv)x−3(uw)y

=M(qt−qxxx−qyyy−3qxxqx−q3
x−3vqx−3qyyqy−q3

y−3wqy
)
,

(2.30)

where M =−qy∂x−qx∂y−∂2
xy .

Thus (2.29) is a Miura-type transformation relating the Veselov-Novikov equation,

(2.1), to the modified Veselov-Novikov equation

qt−qxxx−qyyy−3qxxqx−q3
x−3vqx−3qyyqy−q3

y−3wqy = 0. (2.31)

From (2.18), we get

b−1 =
(−1
a1

)(
a1b0,x+a0,y+a0b0

)
. (2.32)

Note that a1 ≠ 0 from (2.17).

Substituting (2.32) into (2.26) and using (2.28) and (2.29), we get

(
qx∂2

xy+
(−qxx+q2

x
)
∂y+qxqy∂x+qxqxy−qyqxx

)(
a0−q2

x
)= 0. (2.33)

We take

a0 = q2
x (2.34)
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as it is an obvious solution to the above equation. Therefore, from (2.32), we have

b−1 = qxy+qxqy =−u. (2.35)

Now, from (2.19), we have

b−2 =
(−1
a1

)(
a1b−1,x+a0b−1+a−1,y+a−1b0

)
. (2.36)

Substituting it into (2.27) and using (2.28), (2.29), (2.31), (2.34), and (2.35), we get

[
∂y+∂x

((
1
qx

)(
∂y+qy

))]
a−1 = 0. (2.37)

Thus we take

a−1 = 0 (2.38)

as an obvious solution. Therefore, (2.36) becomes

b−2 =−qxxy−qxxqy+q2
xqy. (2.39)

We are now ready to solve (2.7). Normalizing e1 = 1, we have, from (2.10),

r1 = b0 = qy. (2.40)

From (2.12) and (2.39), we have

e0
(
qxy+qxqy

)=−(qxy+qxqy)x−(−qxxy−qxxqy+q2
xqy

)
=−qx

(
qxy+qxqy

)
.

(2.41)

Hence e0 =−qx , since qxy+qxqy =−u≠ 0. From (2.11), we have

r0 = qxy+
(−qx)qy+qxy+qxqy = 2qxy. (2.42)

Hence, (2.7) becomes

(
∂x−qx

)
φy =

(
qy∂x+2qxy

)
φ. (2.43)

Thus (2.2) and (2.43) form a pair of inverse scattering problems for (2.1).

Remark 2.1. Since vy =ux , wx =uy , and u=−qxy−qxqy , we have

v =−qxx−∂−1
y
(
qxxqy

)−(1
2

)
q2
x,

w =−qyy−∂−1
x
(
qxqyy

)−(1
2

)
q2
y.

(2.44)

Substituting u, v , and w by their expressions in terms of q into (2.2), and using (2.43),

we get an inverse scattering problem for the modified Veselov-Novikov equation, (2.31).
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Remark 2.2. From (2.13), we have

b−h,x−qxb−h+b−h−1 = 0, h≥ 1. (2.45)

Multiplying it by a1,

a1b−h,x−a1qxb−h+a1b−h−1 = 0. (2.46)

Since a0 =−a1qx ,

a1b−h,x+a0b−h+a1b−h−1 = 0. (2.47)

Now, suppose a−1 = ··· = a−h+1 = 0, then from (2.21) and (2.47),

(
a−h

)
y+a−hb0 = 0, (2.48)

that is,

(
∂y+qy

)
a−h = 0. (2.49)

Thus we can take a−h = 0. Since we have shown in (2.38) that we can take a−1 = 0,

hence we can take a−h = 0, h≥ 1. Note that this provides a consistency between (2.13)

and (2.21). Also, (2.14) becomes Ψ = (a1∂x+a0)φ=−qxφx+q2
xφ.

Remark 2.3. From (2.47),

b−h−1 =−b−h,x+qxb−h =
(−∂x+qx)b−h

= (−∂x+qx)hb−1 =−
(−∂x+qx)hu, for h≥ 1.

(2.50)

This provides a recursive relation among the coefficients of (2.8).

Remark 2.4. Let q = lnΨ ; we get from (2.29) and (2.31) that

Ψxy+uΨ = 0, Ψt = Ψxxx+3vΨx+Ψyyy+3wΨy. (2.51)

This is the inverse scattering problem for (2.1) given in [13].

3. Kadomtsev-Petviashvili equation. We now turn to the Kadomtsev-Petviashvili

equation [8]

ut = ∂−1
x uyy−uxxx−6uux. (3.1)
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The adjoint of its linearized equation is

φt = ∂−1
x φyy−φxxx−6uφx. (3.2)

Just like in the case of the Veselov-Novikov equation, we propose (2.4) where L and R
are partial differential operators with respect to x and the coefficients depend on u
and its partial derivatives but not explicitly on x, y , or t.

We demand that (3.2) and (2.4) be compatible. In order to do so, we rewrite (2.4) as

φy = L−1Rφ, where, formally,

L−1R = am∂mx +am−1∂m−1
x +···+a0+a−1∂−1

x +··· =
∑
k≤m

ak∂kx. (3.3)

Thus

φy =
∑
k≤m

ak∂kxφ. (3.4)

We now demand that (3.2) and (3.4) be compatible, that is, φtxy =φytx .

Differentiating both sides of (3.2) with respect to x and y , we get

φtxy =
∑
k≤m

ak,yy∂kxφ+2
∑
k≤m

ak,y∂kxφy+
∑
k≤m

ak∂kxφyy−6uxyφx

−6ux

( ∑
k≤m

ak,x∂kxφ+
∑
k≤m

ak∂k+1
x φ

)
−6uyφxx

−6u
( ∑
k≤m

ak,xx∂kxφ+2
∑
k≤m

ak,x∂k+1
x φ+

∑
k≤m

ak∂k+2
x φ

)

−
( ∑
k≤m

ak,xxxx∂kxφ+4
∑
k≤m

ak,xxx∂k+1
x φ+6

∑
k≤m

ak,xx∂k+2
x φ

+4
∑
k≤m

ak,x∂k+3
x φ+

∑
k≤m

ak∂k+4
x φ

)
.

(3.5)

Differentiating both sides of (3.4) with respect to t and x, we get

φytx = am,t∂m+1
x φ+

∑
k≤m

(
ak,tx+ak−1,t

)
∂kxφ

+
∑
k≤m

ak∂kxφyy−6
∑
k≤m

ak∂k+1
x

(
uφx

)− ∑
k≤m

ak∂k+4
x φ

+
∑
k≤m

ak,x∂k−1
x φyy−6

∑
k≤m

ak,x∂kx
(
uφx

)− ∑
k≤m

ak,x∂k+3
x φ.

(3.6)
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Demanding φytx =φtxy , we get, after simplification,

am,t∂m+1
x φ+

∑
k≤m

(
ak,tx+ak−1,t

)
∂kxφ−6

∑
k≤m

ak∂k+1
x

(
uφx

)+ ∑
k≤m

ak,x∂k−1
x φyy

−6
∑
k≤m

ak,x∂kx
(
uφx

)+3
∑
k≤m

ak,x∂k+3
x φ

=
∑
k≤m

ak,yy∂kxφ+2
∑
k≤m

ak,y∂kxφy−6uxyφx

−6ux

( ∑
k≤m

ak,x∂kxφ+
∑
k≤m

ak∂k+1
x φ

)
−6uyφxx

−6u
( ∑
k≤m

ak,xx∂kxφ+2
∑
k≤m

ak,x∂k+1
x φ+

∑
k≤m

ak∂k+2
x φ

)

−
( ∑
k≤m

ak,xxxx∂kxφ+4
∑
k≤m

ak,xxx∂k+1
x φ+6

∑
k≤m

ak,xx∂k+2
x φ

)
.

(3.7)

Claim 3.1 (if m ≥ 3, then am = 0). Suppose m ≥ 3 and am ≠ 0. Using (3.4) for φy
and φyy to equate the coefficients of the same order of partial derivatives of φ with

respect to x on both sides of (3.7), we get, for the coefficient of ∂3m−1
x φ : am,xa2

m = 0.

Hence,

am = constant≠ 0. (3.8)

Note that sincem≥ 3, ∂3m−1
x φ is the highest order of partial derivative ofφwith respect

to x. Substituting (3.8) into (3.7), we get

am−1,t∂mx φ+
∑

k≤m−1

(
ak,tx+ak−1,t

)
∂kxφ−6

∑
k≤m

ak∂k+1
x

(
uφx

)

+
∑

k≤m−1

ak,x∂k−1
x φyy−6

∑
k≤m−1

ak,x∂kx
(
uφx

)+3
∑

k≤m−1

ak,x∂k+3
x φ

=
∑

k≤m−1

ak,yy∂kxφ+2
∑

k≤m−1

ak,y∂kxφy−6uxyφx

−6ux

( ∑
k≤m−1

ak,x∂kxφ+
∑
k≤m

ak∂k+1
x φ

)
−6uyφxx

−6u
( ∑
k≤m−1

ak,xx∂kxφ+2
∑

k≤m−1

ak,x∂k+1
x φ+

∑
k≤m

ak∂k+2
x φ

)

−
( ∑
k≤m−1

ak,xxxx∂kxφ+4
∑

k≤m−1

ak,xxx∂k+1
x φ+6

∑
k≤m−1

ak,xx∂k+2
x φ

)
.

(3.9)

Again, using (3.4) for φy and φyy to equate the coefficients of the partial derivatives

of φ with respect to x on both sides of (3.9), we get, for the coefficient of ∂3m−2
x φ,

am−1,xa2
m = 0. Hence am−1,x = 0, am−1 = constant. Note that since m ≥ 3, ∂3m−2

x φ is

the highest order of partial derivatives of φ with respect to x in (3.9).
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Repeating the above argument, we can show that, for the coefficient of ∂3m−h
x φ,

am−h+1,xa2
m = 0 for 1 ≤ h < 2m−2. Hence am−h+1,x = 0, am−h+1 = constant for 1 ≤

h < 2m− 2. When h = 2m− 2, ∂3m−h
x φ = ∂m+2

x φ. Now, equating the coefficient of

∂m+2
x φ on both sides of (3.9), we get−6amu−a−m+3,xa2

m =−6uam. Hence a−m+3,x = 0,

a−m+3 = constant. Now, equating the coefficient of ∂m+1
x φ on both sides of (3.9), we get

−6am(m+1)ux−6am−1u= 6uxam−6uam−1. Hence 6am(m+2)ux = 0.

Hence am = 0. But this is a contradiction to the assumption that am ≠ 0.

Thus, if m≥ 3, then am = 0. Therefore, (3.4) becomes

φy =
∑
k≤2

ak∂kxφ. (3.10)

Now with m = 2 in (3.7) and using (3.10) to equate the coefficients of ∂(h)x φ on both

sides of (3.7) for h≤ 5, we get, for ∂5
xφ,

(
a2

2+3
)
a2,x = 0 (hence either a2

2+3= 0 or a2 = constant). (3.11)

For ∂4
xφ,

(
a2

2+3
)
a1,x = 0 (hence either a2

2+3= 0 or a1 = constant). (3.12)

For ∂3
xφ,

12a2ux−2a1,xa2a1−6a1,xx+2a1,ya2−
(
a2

2+3
)
a0,x = 0. (3.13)

For ∂2
xφ,

a1,t−18a2uxx−6a1ux+2a1,xa0a2+2
(
a1,x

)2a2

+a2
1a1,x+2a1a2a0,x+6a1,xu−2a1,ya1

+6uy−2a0,ya2+4a1,xxx+6a0,xx+
(
a2

2+3
)
a−1,x = 0.

(3.14)

In view of (3.11) and (3.12), we will take a2
2+3 = 0 so that a1 does not have to be a

constant. Without loss of generality, let a2 =−(3)1/2i, where i= (−1)1/2. From (3.13),

12a2ux = 2a1,xa2a1+6a1,xx−2a1,ya2. (3.15)

Hence

ux =
(

1
6

)
a1,xa1+

(
1(

2a2
))a1,xx−

(
1
6

)
a1,y . (3.16)

Thus

u=
(

1
12

)
a2

1+
(

1(
2a2

))a1,x−
(

1
6

)
∂−1
x a1,y+λ for some constant λ. (3.17)
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Substituting (3.17) into (3.1), we get

0=ut−∂−1
x uyy+uxxx+6uux

=M
(
a1,t−∂−1

x a1,yy+a1,xxx+
(

1
2

)
a2

1a1,x−
(
∂−1
x a1,y

)
a1,x+6λa1,x

)
,

(3.18)

where M = (1/6)a1+(1/(2a2))∂x−(1/6)∂−1
x ∂y .

Thus (3.17) is a Miura-type transformation relating the Kadomtsev-Petviashvili equa-

tion, (3.1), to the modified Kadomtsev-Petviashvili equation

a1,t−∂−1
x a1,yy+a1,xxx+

(
1
2

)
a2

1a1,x−
(
∂−1
x a1,y

)
a1,x+6λa1,x = 0. (3.19)

Substituting (3.17) and (3.19) into (3.14), we get

K
(
a0−a1,x

)= 0, (3.20)

where K = 6∂2
x+2a1a2∂x+2a1,xa2−2a2∂y .

Thus a0−a1,x = 0 is a solution to (3.20). Hence, we take

a0 = a1,x. (3.21)

Now equating the coefficient of ∂xφ on both sides of (3.7) with the use of (3.17), (3.19),

and (3.21), we get K(a−1)= 0. Again we take

a−1 = 0 (3.22)

as the solution. Now equating the coefficient of φ on both sides of (3.7) with the use

of (3.17), (3.19), (3.21), and (3.22), we get K(a−2) = 0. Again, we take a−2 = 0 as the

solution.

We now claim that we can take a−n = 0 for all n ≥ 1. Assume that a−h = 0 for

1≤ h≤n+1, where n≥ 1. We want to show that we can take a−n−2 = 0 as a solution.

Equating the coefficient of ∂−nx φ on both sides of (3.7) and using (3.17), (3.19), and

(3.21) and the assumption that a−h = 0 for 1≤ h≤n+1, where n≥ 1, we get K(a−n−2)
= 0. Thus we can take a−n−2 = 0 as a solution. Since we have already shown that we

can take a−1 = 0 and a−2 = 0, we can take a−n = 0 for all n ≥ 1. Hence (3.4) can be

terminated at a0, that is,

φy = a2φxx+a1φx+a0φ, (3.23)

where a2 =−(3)1/2i, a0 = a1,x , and a1 satisfies (3.17) and (3.19). Thus (3.2) and (3.23),

φt = ∂−1
x φyy−φxxx−6uφx,

φy = a2φxx+a1φx+a0φ,
(3.24)

form a pair of inverse scattering problems for (3.1).
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Remark 3.2. Substitutingu= (1/12)a2
1+(1/(2a2))a1,x−(1/6)∂−1

x a1,y+λ into (3.2),

and using (3.23), we get a pair of inverse scattering problems for the modified

Kadomtsev-Petviashvili equation, (3.19).

Remark 3.3. Let a1 = 2(3)1/2iΨx/Ψ . With a2 = −(3)1/2i, we get, from (3.17) and

(3.19),

Ψxx+(3)−1/2iΨy+uΨ = λΨ ,
Ψt+4Ψxxx+6uΨx+3uxΨ−(3)1/2

(
∂−1
x uy

)
Ψ = 0.

(3.25)

These are the Lax-pair equations found by Dryuma [4].

4. Conclusion. We have demonstrated a method to construct the inverse scattering

problems for the integrable nonlinear evolution equations in the two-spatial dimension

in which the temporal equation is the adjoint of the linearized equation. A Miura-type

transformation and a modified equation are obtained as a byproduct of the process. An

inverse scattering problem for the modified equation is also found. The applicability

of this method for testing the integrability of nonlinear evolution equations in the two-

spatial dimension is currently under study.
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