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We prove an isomorphism theorem for generalized triangular matrix-rings, over
rings having only the idempotents 0 and 1, in particular, over indecomposable
commutative rings or over local rings (not necessarily commutative). As a conse-
quence, we obtain a recovery result for the tile in a tiled matrix-ring.
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Matrix-rings play a fundamental role in mathematics and its applications. A

difficult question is to decide whether a given ring is isomorphic to a matrix-

ring or one of its variants. Several “hidden matrix-rings” have been shown in

the literature (see [5]). These rings did not appear as being matrix-rings at the

first sight, nevertheless they proved out to be isomorphic to matrix-rings. An-

other type of problem concerned to matrices is to decide whether two rings of

matrices are isomorphic or not. For instance, it is known that for commutative

rings R and S, the matrix-rings M2(R) and M2(S) are isomorphic if and only if

the rings R and S are isomorphic, for the simple reason that R is isomorphic to

the center of M2(R). However, if R and S are not commutative, this is not true

anymore. Examples have been given in [7], also in [6] for simple Noetherian in-

tegral domains R,S, or in [2] for prime Noetherian R,S. A different but related

problem is the recovery of the tile in a triangular matrix-ring. More precisely,

if R is a ring and I, J are two-sided ideals of R such that the rings
(R I

0 R
)

and(R J
0 R
)

are isomorphic, what can we say about I and J? Are they isomorphic

as R-bimodules? If we do not impose any condition to the ring, then there is

no hope to recover the tile. For instance, in [3] a ring R was constructed such

that

(
R R
0 R

)
�
(
R 0

0 R

)
. (1)

It was proved in [1] that if R satisfies a certain finiteness condition (in partic-

ular in the case where R is a left Noetherian), the above isomorphism cannot

hold. For the situation where the tile is not necessarily 0 or the whole ring R,

the situation behaves worse. Even when the ring is finite, the tile cannot be
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recovered. It was proved in [4] that if R =
(A 0 A

0 A A
0 0 A

)
, A is a ring, and

I =




0 0 0

0 0 A
0 0 0


 , J =




0 0 A
0 0 0

0 0 0


 , (2)

then the rings
(R I

0 R
)

and
(R J

0 R
)

are isomorphic, while I and J are not isomorphic

as R-bimodules.

The aim of this paper is to obtain a recovery result for the tile in the case

where the underlying ringR has only trivial idempotents, that is,R has only two

idempotents, 0 and 1. Relevant examples of such rings are for instance: inde-

composable commutative rings and local rings (not necessarily commutative).

In fact we can investigate the isomorphism among more general matrix-type

rings. Recall that ifR and S are two rings, andM is anR,S-bimodule (this means

left R and right S), we can define the generalized triangular matrix-ring
(R M

0 S
)
,

with multiplication induced by the bimodule actions and the usual rule for

matrix multiplication. With this notation we can prove the following theorem.

Theorem 1. Let R and S be rings having only trivial idempotents, and let

M,N be twoR,S-bimodules. Then a mapφ :
(R M

0 S
)→ (R N

0 S
)

is a ring isomorphism

if and only if there exist a∈N, f ∈Aut(R), g ∈Aut(S), and an isomorphism v :

M →N of additive groups satisfying v(rx)= f(r)v(x) and v(xs)= v(x)g(s)
for any x ∈M , r ∈ R, s ∈ S, such that

φ
(
r x
0 s

)
=

f(r) f(r)a−ag(s)+v(x)

0 g(s)


 , (3)

for any r ∈ R, x ∈M , and s ∈ S.

In particular, we obtain a recovery result for the tile. This is not exactly an

isomorphism, but an isomorphism relative to some automorphisms of the ring.

We recall that if f ,g ∈ Aut(R), and X,Y are two R,R-bimodules, then an ad-

ditive map v : X → Y is called an f ,g-morphism if v(rxr ′)= f(r)v(x)g(r ′),
for any r ,r ′ ∈ R, x ∈X.

Corollary 2 (recovery of the tile). Let R be a ring having only trivial idem-

potents, and I,J be ideals of R. Then the matrix-rings
(R I

0 R
)

and
(R J

0 R
)

are iso-

morphic if and only if I and J are f ,g-isomorphic as the R,R-bimodules for

some f ,g ∈Aut(R).

A complete recovery of the tile (up to isomorphism) is obtained in some

special cases when the ring has only the trivial automorphism.
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Corollary 3. Let R be a ring having only trivial idempotents such that, the

only automorphism of R is the identity. If I,J are ideals of R, then the matrix-

rings
(R I

0 R
)

and
(R J

0 R
)

are isomorphic if and only if I and J are isomorphic as

the R,R-bimodules.

Proof of Theorem 1. An element
(r x

0 s
)∈ (R M0 S

)
is idempotent if and only

if r 2 = r , s2 = s, and rx+xs = x. Since the only idempotents of R and S are 0

and 1, we have that any of r and s is either 0 or 1. If r = 0 and s = 0, we find

x = 0. If r = 1 and s = 1, we find again x = 0. If r = 1 and s = 0, then x can

be anything in M , and the same in the case where r = 0 and s = 1. Thus, apart

from 0 and the identity element, the idempotents of
(R M

0 S
)

are the elements of

the form

ex =
(

1 x
0 0

)
, x ∈M,

fx =
(

0 x
0 1

)
, x ∈M.

(4)

It is easy to see that the following relations hold:

exey = ey, fxfy = fx, exfy =
(

0 x+y
0 0

)
, fxey = 0, (5)

for any x,y ∈M . We denote by e′z,f ′z, z ∈N, the similar idempotents of
(R N

0 S
)
.

Let φ :
(R M

0 S
)→ (R N

0 S
)

be a ring isomorphism. Then φ(e0) must be a nontrivial

idempotent of
(R N

0 S
)
. We distinguish two cases.

Case 1. We have φ(e0) = e′a for some a ∈ N. Then if for some x ∈ M we

have φ(ex)= f ′b for some b ∈N, we see that

e′a =φ
(
e0
)=φ(exe0

)=φ(ex)φ(e0
)= f ′be′a = 0, (6)

a contradiction. Therefore, φ(ex) = e′u(x) for some u(x) ∈ N for any x ∈ M .

Then we have that

φ
(
fx
)=φ(I2−e−x)= I2−e′u(−x) = f ′−u(−x). (7)

Thus, for any x ∈M we have

φ
(

0 x
0 0

)
=φ(e0fx

)=φ(e0
)
φ
(
fx
)= e′af ′−u(−x) =

(
0 a−u(−x)
0 1

)
. (8)

Denote v :M →N, v(x)= a−u(−x). Then clearly v is a morphism of additive

groups. Moreover, v is an isomorphism. Indeed, if φ−1(e′z)= fh for some z ∈
N,h∈M , thenφ(fh)= e′z, a contradiction. Thusφ({ex | x ∈M})={e′z | z∈N},



536 R. KHAZAL ET AL.

showing that u is surjective, so then v is also surjective. Obviously, v is injec-

tive.

Now

φ
(
r 0

0 0

)
=φ

(
e0

(
r 0

0 0

))
= e′aφ

(
r 0

0 0

)
∈
(
R N
0 0

)
(9)

thus φ
(r 0

0 0

)= (f(r) h(r)0 0

)
for some additive maps f : R→ R, h : R→N. Since φ

is a ring morphism, we obtain that

f
(
r1r2

)= f (r1
)
f
(
r2
)
, f (1)= 1,

h
(
r1r2

)= f (r1
)
h
(
r2
)
, h(1)= a, (10)

for any r1,r2 ∈ R. Similarly, one gets φ
(

0 0
0 s
)= (0 p(s)

0 g(s)

)
for some additive maps

g : S → S, p : S →N satisfying

g
(
s1s2

)= g(s1
)
g
(
s2
)
, g(1)= 1,

p
(
s1s2

)= p(s1
)
g
(
s2
)
, p(1)=−a. (11)

Then h(r) = h(r1) = f(r)h(1) = f(r)a for any r ∈ R, and similarly p(s) =
−ag(s) for any s ∈ S. We obtain that

φ
(
r x
0 s

)
=φ

(
r 0

0 0

)
+φ

(
0 x
0 0

)
+φ

(
0 0

0 s

)

=
(
f(r) f(r)a

0 0

)
+
(

0 v(x)
0 0

)
+
(

0 −ag(s)
0 g(s)

)

=
(
f(r) f(r)a−ag(s)+v(x)

0 g(s)

)
,

(12)

for any r ∈ R, s ∈ S, and x ∈M . By using the relation

φ
((
r x
0 s

)(
r ′ x′

0 s′

))
=φ

(
r x
0 s

)
φ
(
r ′ x′

0 s′

)
, (13)

we obtain, by computing the (1,2)-slots in the two sides, that f(r)v(x′)+
v(x)g(s′) = v(rx′)+v(xs′) for any r ∈ R, x,x′ ∈ M , s′ ∈ S. For s′ = 0, we

find v(rx′)= f(r)v(x′), and for r = 0, we obtain v
(
xs′

)= v(x)g(s′).
It remains to show that f and g are bijective. Clearly, ker(f )= 0 since f(r)=

0 impliesφ
(r 0

0 0

)= (0 0
0 0

)
, and then r must be 0. Also f is surjective since for any
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b ∈ R, there exists
( r x

0 s
) ∈ (R M0 S

)
with φ

(r x
0 s
) = (b 0

0 0

)
, in particular, f(r) = b.

Thus f is a ring isomorphism, and so is g.

Case 2. We have φ(e0)= f ′a for some a∈N. Then for any x ∈M , we have

that

f ′a =φ
(
e0
)=φ(exe0

)=φ(ex)φ(e0
)=φ(ex)f ′a. (14)

If φ(ex)= e′z for some x ∈M , z ∈N, we obtain that

f ′a = e′zf ′a =
(

0 z+a
0 0

)
, (15)

a contradiction. Thus, φ(ex)= f ′u(x) for any x ∈M , where u :M →N is a map.

Hence φ(fx)=φ(I2−e−x)= I2−f ′u(−x) = e′−u(−x), and then

φ
(

0 x
0 0

)
=φ(e0fx

)=φ(e0
)
φ
(
fx
)= f ′u(0)e′−u(−x) = 0, (16)

a contradiction, for x ≠ 0. Therefore this case cannot occur.

For the other way around, it is straightforward to check that any map φ of

the given form is an isomorphism of rings.

Examples. (1) Let m and n be two nonnegative integers, and let Z be the

ring of integers which has only 0 and 1 as idempotents. Then by Corollary 3

the rings
(Z mZ

0 Z

)
and

(Z nZ
0 Z

)
are isomorphic if and only if m=n.

(2) Let Z[i] be the ring of Gauss integers which is a principal ideal domain

(PID), in particular, it also has only trivial idempotents. If x,y ∈ Z[i], then the

rings
(
Z[i] xZ[i]

0 Z[i]

)
and

(
Z[i] yZ[i]

0 Z[i]

)
are isomorphic if and only if either x =uy or

x =uy for some u∈ {1,−1, i,−i}, where y denotes the complex conjugate of

y . Indeed, this follows from Corollary 2 and the fact that the only automor-

phisms of Z[i] are the identity and the complex conjugation.
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