THE EIGENVALUE PROBLEM FOR THE p-LAPLACIAN-LIKE EQUATIONS

ZU-CHI CHEN and TAO LUO

Received 16 February 2001

We consider the eigenvalue problem for the following *p*-Laplacian-like equation: $-\operatorname{div}(a(|Du|^p)|Du|^{p-2}Du) = \lambda f(x,u)$ in Ω , u = 0 on $\partial\Omega$, where $\Omega \subset \mathbb{R}^n$ is a bounded smooth domain. When λ is small enough, a multiplicity result for eigenfunctions are obtained. Two examples from nonlinear quantized mechanics and capillary phenomena, respectively, are given for applications of the theorems.

2000 Mathematics Subject Classification: 35J60, 35P30.

1. Introduction. This paper is devoted to the study of the eigenvalue problem for the *p*-Laplacian-like equation

$$-\operatorname{div}(a(|Du|^{p})|Du|^{p-2}Du) = \lambda f(x,u), \quad x \in \Omega,$$

$$u(x) = 0, \quad x \in \partial\Omega,$$

(1.1)

where $\lambda > 0$ is a real parameter, $1 , <math>\Omega$ is a bounded smooth domain in \mathbb{R}^n , and Du denotes the gradient of $u, f \in C(\overline{\Omega} \times \mathbb{R}, \mathbb{R}), a \in C(\mathbb{R}^+, \mathbb{R})$.

We call λ an eigenvalue of (1.1) provided (1.1), for this λ , has a nontrivial weak solution, say u_{λ} , which is then called an eigenfunction corresponding to λ . Denote

$$A(r) = \int_0^r a(s) \, ds, \qquad F(x,t) = \int_0^t f(x,s) \, ds. \tag{1.2}$$

We look for nontrivial solutions of (1.1), and this question is reduced to show, for some $\lambda \in \mathbb{R}$, the existence of critical points for the functional

$$I_{\lambda}(u) = \frac{1}{p} \int_{\Omega} A(|Du|^p) dx - \lambda \int_{\Omega} F(x, u) dx, \quad u \in E = W_0^{1, p}(\Omega).$$
(1.3)

In [5], Pielichowski discussed the existence and nonnegativity of the first eigenvalue and eigenfunction, in a weak sense, of the *p*-Laplace equations with some kind of nonlinear terms below

$$-\operatorname{div}(|Du|^{p-2}Du) + a(x)|u|^{p-2}u = \lambda m(x)|u|^{p-2}u.$$
(1.4)

Under the assumption that $A(\sigma) \le \phi(\sigma(x))/|\psi(\sigma(x))| \le B(\sigma)$ where $A(\sigma)$, $B(\sigma)$ are constants, Garcia-Huidobro et al. [4] proved the existence of eigenvalues and eigenfunctions for the *p*-*Laplacian-like* equation in the radial form

$$[r^{n-1}\phi(u')]' + \lambda r^{n-1}\psi(u) = 0, \quad r \in (0,R),$$

$$u'(0) = 0, \qquad u(R) = 0.$$
 (1.5)

They used the fixed-point theorem and continuation to techniques. Recently, Boccardo [2] showed the existence of positive eigenfunctions to a kind of *p*-*Laplace-like* equations

$$-\operatorname{div}(M(x,u)Du) = \lambda u, \quad x \in \Omega,$$

$$u > 0, \quad x \in \Omega,$$

$$\|u\|_{L^{2}(\Omega)} = r \quad r \in \mathbb{R}^{+}.$$
(1.6)

We are especially interested in Ubilla's paper [7], which studied the solvability of the boundary value problem for *p*-*Laplacian-like* equation in the radial form

$$-\left(a\left(|u'(r)|^{p}\right)|u'(r)|^{p-2}u'(r)\right)' = f(u(r)) \quad r \in I = (0,1)$$

$$u(0) = u(1) = 0.$$
 (1.7)

Under the assumption that

$$a(|t|^{p})|t|^{p-2}t \in C^{1}(R \setminus \{0\}, R) \cap C(R, R), \quad (a(|t|^{p})|t|^{p-2}t)' > 0, \quad \forall t \neq 0,$$
(1.8)

a multiplicity result was obtained by using energy relations and the shooting method. The key of our trick is to change this assumption into that the mapping $r \mapsto A(|r|^p)$ defined in (1.2) is strictly convex, and then consider the eigenvalue problem (1.1). Also, the method we used, the mountain pass theorem and the minimax principle, is different from [7] and some other related papers (see [7] and the references therein). We got the existence of two eigenfunctions u_{λ}, v_{λ} not necessarily radial ones. In addition, we found that the behaviors of these two eigenfunctions near $\lambda = 0$ are much different as $\lim_{\lambda \to 0^+} ||u_{\lambda}||_E = +\infty$, $\lim_{\lambda \to 0^+} ||v_{\lambda}||_E = 0$. Our idea comes partially from [1].

2. Main results. Assume that

- (A1) the mapping $r \mapsto B(r) = A(|r|^p)$ is strongly convex;
- (A2) there exist constants $c_0 > 0$, T > 0 such that $A(t) \ge c_0 t$, for all $t \ge 0$ and $a(s) \le T$, for all $s \ge 0$;
- (A3) there exist constants $b_0 > 0$, $b_1 > 0$ such that for all $x \in \Omega$,

$$|f(x,u)| \le b_0 |u|^{r-1} + b_1 |u|^{q-1}$$
, for $1 < q < p < r < p^*$, $p^* = \frac{np}{n-p}$; (2.1)

576

(A4) there exist constants t_0 , θ such that $0 < \theta < c_0/pT$ where c_0 , T are constants as in (A2), and

$$\theta f(x,t)t > F(x,t) > 0, \quad \forall x \in \overline{\Omega}, \ 0 < t_0 < |t|; \tag{2.2}$$

(A5) for all $x \in \overline{\Omega}$, $t \ge 0$, $f(x,t) \ge 0$, it holds that

$$\lim_{t \to 0+} \frac{F(x,t)}{t^p} = +\infty.$$
 (2.3)

Then we have the main results.

THEOREM 2.1. Under assumptions (A1) to (A5), there exists a number $\lambda^* > 0$ such that for each $\lambda \in (0, \lambda^*)$, there exists an eigenfunction u_{λ} of (1.1) satisfying $\lim_{\lambda \to 0} \|u_{\lambda}\|_{E} = +\infty$.

THEOREM 2.2. Assume (A1) to (A5) and $f(x,t) \ge 0$, then there is a number $\lambda^* > 0$ such that for each $\lambda \in (0,\lambda^*)$, (1.1) has one eigenfunction u_{λ} behaving $\lim_{\lambda \to 0^+} \|u_{\lambda}\|_E = 0$.

3. Proof of the main results

LEMMA 3.1. Assume (A1) to (A4), then I_{λ} defined in (1.3) belongs to $C^{1}(E, R)$.

PROOF. Denote

$$I_A(u) = \frac{1}{p} \int_{\Omega} A(|Du|^p) dx, \quad I_F(u) = \lambda \int_{\Omega} F(x, u) dx, \quad u \in E$$
(3.1)

so $I_{\lambda}(u) = I_A(u) - I_F(u)$. We will then complete the proof by the following two claims.

CLAIM 1 ($I_A \in C^1(E, R)$). In fact, by (A1), for all $\lambda \in (0, 1)$, $\varphi \in E$, we have

$$\int_{0}^{|\lambda Du+(1-\lambda)(Du+D\varphi)|^{p}} a(s) ds$$

$$\leq \lambda \int_{0}^{|Du|^{p}} a(s) ds + (1-\lambda) \int_{0}^{|Du+D\varphi|^{p}} a(s) ds,$$
(3.2)

that is,

$$\int_{0}^{|Du+(1-\lambda)D\varphi|^{p}} a(s) \, ds - \int_{0}^{|Du|^{p}} a(s) \, ds$$

$$\leq (1-\lambda) \left(\int_{0}^{|Du+D\varphi|^{p}} a(s) \, ds - \int_{0}^{|Du|^{p}} a(s) \, ds \right).$$
(3.3)

Set, in the above inequality, $1 - \lambda = t$, we then have

$$\frac{I_A(u+t\varphi) - I_A(u)}{t} = \frac{1}{tp} \int_{\Omega} \left(\int_0^{|Du+tD\varphi|^p} a(s) \, ds - \int_0^{|Du|^p} a(s) \, ds \right) dx
\leq \frac{1}{p} \int_{\Omega} \left(\int_0^{|Du+D\varphi|^p} a(s) \, ds - \int_0^{|Du|^p} a(s) \, ds \right) dx$$

$$< +\infty,$$
(3.4)

which is independent of t. Hence, we can apply the Lebesgue dominated convergence theorem to the equality

$$\frac{I_A(u+t\varphi)-I_A(u)}{t} = \frac{1}{p} \int_{\Omega} a(|Du|^p + \eta(|Du+tD\varphi|^p - |Du|^p))$$
$$\cdot \frac{1}{t} (|Du+tD\varphi|^p - |Du|^p) dx, \quad \text{for some } \eta \in (0,1),$$
(3.5)

and letting $t \to 0$, we then get

$$I'_{A}(u)\varphi = \int_{\Omega} a(|Du|^{p})|Du|^{p-2} \cdot D\varphi \, dx.$$
(3.6)

Next, we show that I'_A is continuous in u. In the following, the constant C may vary line by line.

Suppose $\{u_m\} \subset E$ satisfying $||u_m - u||_E \to 0$ as $m \to \infty$. We then claim that $||I'_A(u_m) - I'_A(u)|| \to 0$. In fact,

$$\begin{split} \left\| \left| I'_{A}(u_{m}) - I'_{A}(u) \right| \right\| \\ &= \sup_{\varphi \in E} \frac{\left| \int_{\Omega} \left(a\left(\left| Du_{m} \right|^{p} \right) \left| Du_{m} \right|^{p-2} Du_{m} \cdot D\varphi - a\left(\left| Du \right|^{p} \right) \left| Du \right|^{p-2} Du \cdot D\varphi \right) dx \right|}{\|\varphi\|_{E}} \\ &\leq \frac{1}{p} \left\| \left| B'\left(Du_{m} \right) - B'\left(Du \right) \right\|_{L^{p'}(\Omega)}, \end{split}$$

$$(3.7)$$

where

$$B'(r) \equiv DB(r) = pa(|r|^p)|r|^{p-2}r, \quad r \in \mathbb{R}^n, \ p' = \frac{p}{p-1}.$$
 (3.8)

Because $u_m \to u$ in *E*, by Egorov theorem, for any $\eta > 0$ there exists $\Omega_\eta \subset \Omega$ such that $|\Omega \setminus \Omega_\eta| < \eta$ and u_m , Du_m converge uniformly to *u*, Du, respectively,

in Ω_{η} . Also, Ω_{η} can be chosen large enough so that the following holds as well

$$\int_{\Omega \setminus \Omega_{\eta}} |Du|^p dx < \frac{\varepsilon}{2}$$
(3.9)

for any given $\varepsilon > 0$. By virtue of $Du_m \rightarrow Du$ in $L^p(\Omega)$, when *m* is large enough,

$$\int_{\Omega\setminus\Omega_{\eta}} |Du_{m}|^{p} dx < C \left(\int_{\Omega\setminus\Omega_{\eta}} |Du_{m} - Du|^{p} dx + \int_{\Omega\setminus\Omega_{\eta}} |Du|^{p} dx \right) < C \left(\int_{\Omega} |Du_{m} - Du|^{p} dx + \varepsilon/2 \right) < C\varepsilon.$$
(3.10)

Then, by (A2), (3.8), and (3.10), when *m* is large enough, we obtain

$$\left(\int_{\Omega\setminus\Omega_{\eta}} |B'(Du_{m})|^{p/(p-1)} dx\right)^{(p-1)/p} \leq p \left(\int_{\Omega\setminus\Omega_{\eta}} \left(T |Du_{m}|^{p-1}\right)^{p/(p-1)} dx\right)^{(p-1)/p} \leq T(C\varepsilon)^{(p-1)/p},$$
(3.11)

that is, $||B'(Du_m)||_{L^{p'}(\Omega \setminus \Omega_n)}^{p'} \leq C\varepsilon$. Similarly,

$$\left\| B'(Du) \right\|_{L^{p'}(\Omega \setminus \Omega_{\eta})}^{p'} \le C\epsilon.$$
(3.12)

Noticing that

$$\begin{split} ||B'(Du_{m}) - B'(Du)||_{L^{p'}(\Omega)}^{p'} &\leq ||B'(Du_{m}) - B'(Du)||_{L^{p'}(\Omega\eta)}^{p'} \\ &+ ||B'(Du_{m})||_{L^{p'}(\Omega\setminus\Omega\eta)}^{p'} + ||B'(Du)||_{L^{p'}(\Omega\setminus\Omega\eta)}^{p'}. \end{split}$$
(3.13)

We then get $||I'_A(u_m) - I'_A(u)|| \to 0$ as $m \to \infty$. Therefore, I'_A is continuous at the point u, that is, $I_A \in C^1(E, R)$.

CLAIM 2 ($I_F \in C^1(E, R)$). The proof is similar to Claim 1 and we then omit it. This completes the proof of Lemma 3.1.

LEMMA 3.2. Assume (A1) to (A4), then I_{λ} satisfies (PS) condition.

PROOF. From Lemma 3.1, we know that

$$I'_{\lambda}(u)\varphi = \int_{\Omega} \left[a(|Du|^p) |Du|^{p-2} Du \cdot D\varphi - \lambda f(x,u)\varphi \right] dx \quad \forall u, v \in E.$$
(3.14)

Suppose that $S = {u_m} \subset E$ satisfies that for some M > 0,

$$I_{\lambda}(u_m) \le M, \quad \forall u_m \in S, \tag{3.15}$$

$$I'_{\lambda}(u_m) \longrightarrow 0. \tag{3.16}$$

We prove below that there exists a subsequence of $\{u_m\}$ converging strongly in *E*.

(a) At first, we show that *S* is bounded in *E*. From (3.16), for all $\varphi \in E$, it holds that

$$\int_{\Omega} \left[a \left(\left| Du_{m} \right|^{p} \right) \left| Du_{m} \right|^{p-2} Du_{m} \cdot D\varphi - \lambda f(x, u_{m})\varphi \right] dx = o(1) \|\varphi\|_{E}.$$
(3.17)

Using (A4) and (A2), we have

$$I_{\lambda}(u_{m}) - \theta I_{\lambda}'(u_{m})u_{m} = \frac{1}{p} \int_{\Omega} A(|Du_{m}|^{p}) dx - \theta \int_{\Omega} a(|Du_{m}|^{p}) |Du_{m}|^{p} dx$$
$$+ \lambda \int_{\Omega} [\theta f(x, u_{m})u_{m} - F(x, u_{m})] dx$$
$$> \frac{1}{p} \int_{\Omega} A(|Du_{m}|^{p}) dx - \theta \int_{\Omega} a(|Du_{m}|^{p}) |Du_{m}|^{p} dx$$
$$> \frac{c_{0}}{p} \int_{\Omega} |Du_{m}|^{p} dx - \theta \int_{\Omega} T |Du_{m}|^{p} dx.$$
(3.18)

Combining this with (3.17) yields

$$\left(\frac{c_0}{p} - \theta T\right) \int_{\Omega} |Du_m|^p dx < M + o(1)\theta ||u_m||_E,$$
(3.19)

which implies

$$||u_m||_E \le C.$$
 (3.20)

Hence, there exists a subsequence of *S*, still denoted by $\{u_m\}$, such that $u_m \rightarrow u$ in *E* and hence $Du_m \rightarrow Du$ in $L^p(\Omega)$, $u_m \rightarrow u$ in $L^s(\Omega)$, $1 < s < p^*$.

(b) Set

$$p_{m}(x) \equiv \left(a\left(|Du_{m}|^{p}\right)|Du_{m}|^{p-2}Du_{m}-a(|Du|^{p})|Du|^{p-2}Du\right)(Du_{m}-Du),$$
(3.21)

580

then

$$I_{m} \equiv \int_{\Omega} p_{m}(x) dx$$

=
$$\int_{\Omega} a(|Du_{m}|^{p}) |Du_{m}|^{p-2} Du_{m}(Du_{m} - Du) dx$$

$$- \int_{\Omega} a(|Du|^{p}) |Du|^{p-2} Du(Du_{m} - Du) dx$$

$$\equiv I_{m}^{(1)} + I_{m}^{(2)}.$$

(3.22)

We show below that $p_m(x) \to 0$ a.e. in Ω . As $Du_m \to Du$ in $L^p(\Omega)$, it is obvious that $I_m^{(2)} \to 0$. We choose in (3.17) $\varphi = u_m - u$, then

$$I_m^{(1)} = \lambda \int_{\Omega} f(x, u_m) (u_m - u) \, dx + o(1) ||u_m - u||_E.$$
(3.23)

By (A3) and the Sobolev imbedding theorem,

$$\left| \int_{\Omega} f(x, u_m) (u_m - u) \, dx \right| \leq ||f(x, u_m)||_{r'} ||u_m - u||_{r}, \quad r' = r/r - 1$$

$$\leq \left(b_0 ||u_m^{r-1}||_{r'} + b_1 ||u_m^{q-1}||_{r'} \right) ||u_m - u||_{r}$$

$$\leq c \left(||u_m||_E^{r-1} + ||u_m||_E^{q-1} \right) ||u_m - u||_{r}$$

$$\to 0, \quad \text{as } m \to \infty.$$

(3.24)

Therefore, from (3.23), $I_m^{(1)} \to 0$ and so $I_m \to 0$ as $m \to \infty$. Because B(r) is strictly convex, then for all $r_1, r_2 \in \mathbb{R}^n$, it holds that

$$(B'(r_1) - B'(r_2)) \cdot (r_1 - r_2) \ge 0, \tag{3.25}$$

where the equality sign holds if and only if $r_1 = r_2$. From this and the definition of $p_m(x)$, we then get $p_m(x) \ge 0$, which with $I_m \to 0$ gives $p_m(x) \to 0$, a.e. $x \in \Omega$. So we can find $\Omega_0 \subset \Omega$ such that meas $(\Omega - \Omega_0) = 0$, $u_m(x) \to u(x)$ and $p_m(x) \to 0$ on Ω_0 .

(c) Based on (3.25) and the fact that $p_m(x) \ge 0$, very similar to the first part of the proof of [3, Lemma 1], we can get $Du_m(x) \rightarrow Du(x)$, for all $x \in \Omega_0$.

(d) At last, we prove $||u_m - u||_E \to 0$. From the step (c), $Du_m \to Du$, a.e. $x \in \Omega$. By Egorov theorem, for any $\delta > 0$, there exists $\Omega_{\delta} \subset \Omega$ such that meas $(\Omega - \Omega_{\delta}) < \delta$ and Du_m converges uniformly to Du on Ω_{δ} . Because B(r) is convex, then for any $r_1, r_2 \in \mathbb{R}^n$ we have

$$B'(r_1) \cdot (r_1 - r_2) \ge B(r_1) - B(r_2). \tag{3.26}$$

Choosing $r_2 = 0$, with B(0) = A(0) = 0, then

$$B'(r_1) \cdot r_1 \ge B(r_1) = A(|r_1|^p) \ge c_0 |r_1|^p.$$
(3.27)

Suppose $\Omega' \subset \Omega$, by (3.27) and (3.8). Using (A2) and Young's inequality, we get

$$\frac{c_{0}}{p} \int_{\Omega'} |Du_{m}(x)|^{p} dx \leq \int_{\Omega'} a(|Du_{m}|^{p}) |Du_{m}|^{p} dx$$

$$= \int_{\Omega'} p_{m}(x) dx + \int_{\Omega'} a(|Du_{m}|^{p}) |Du_{m}|^{p-2} Du_{m} \cdot Du dx$$

$$+ \int_{\Omega'} a(|Du|^{p}) |Du|^{p-2} Du \cdot Du_{m} dx$$

$$- \int_{\Omega'} a(|Du|^{p}) |Du|^{p} dx$$

$$\leq \int_{\Omega'} p_{m}(x) dx + T \int_{\Omega'} |Du_{m}|^{p-1} |Du| dx$$

$$+ T \int_{\Omega'} |Du|^{p-1} |Du_{m}| dx + T \int_{\Omega'} |Du|^{p} dx$$

$$\leq \int_{\Omega'} p_{m}(x) dx + \varepsilon_{1} \int_{\Omega'} |Du_{m}|^{p} dx + C(\varepsilon_{1}) \int_{\Omega'} |Du|^{p} dx$$

$$+ \varepsilon_{2} \int_{\Omega'} |Du_{m}|^{p} dx + C(\varepsilon_{2}) \int_{\Omega'} |Du|^{p} dx$$

$$+ T \int_{\Omega'} |Du|^{p} dx.$$
(3.28)

Setting $\varepsilon_1 = \varepsilon_2 = c_0/4p$ in the above inequality yields

$$\frac{c_0}{2p}\int_{\Omega'}\left|Du_m(x)\right|^p dx \le \int_{\Omega'} p_m(x)\,dx + C\int_{\Omega'}\left|Du\right|^p dx.$$
(3.29)

Let $|\Omega'|$ be small enough so that for a given $\varepsilon > 0$ there holds

$$\int_{\Omega'} |Du|^p dx < \varepsilon. \tag{3.30}$$

Since $I_m \rightarrow 0$ and $p_m(x) > 0$, then when *m* is large enough we have

$$\int_{\Omega'} p_m(x) \, dx \le \int_{\Omega} p_m(x) \, dx < \varepsilon. \tag{3.31}$$

Combining this with (3.29), we get $\int_{\Omega'} |Du_m(x)|^p dx < C\varepsilon$ when *m* become large enough. Noticing $Du_m \to Du$ uniformly on $\Omega \setminus \Omega'$, then

$$\begin{aligned} ||Du_{m} - Du||_{L^{p}(\Omega)} &= ||Du_{m} - Du||_{L^{p}(\Omega \setminus \Omega')} + ||Du_{m} - Du||_{L^{p}(\Omega')} \\ &\leq ||Du_{m} - Du||_{L^{p}(\Omega \setminus \Omega')} + ||Du_{m}||_{L^{p}(\Omega')} + ||Du||_{L^{p}(\Omega')} \quad (3.32) \\ &\leq C\varepsilon \quad \text{as } m \text{ is large enough.} \end{aligned}$$

This completes the proof of Lemma 3.2.

PROOF OF THEOREM 2.1. We complete the proof by three steps. **STEP 1.** In fact, from (A3) we find

$$|F(x,u)| \le \frac{b_0}{r} |u|^r + \frac{b_1}{q} |u|^q, \quad x \in \Omega.$$
 (3.33)

Condition (A2) and the Sobolev imbedding theorem yield

$$I_{\lambda}(u) \geq \frac{c_0}{p} \int_{\Omega} |Du|^p dx - \lambda \int_{\Omega} \left(\frac{b_0}{r} |u|^r + \frac{b_1}{q} |u|^q\right) dx$$

$$\geq \frac{c_0}{p} \|u\|_E - k_0 \lambda \|u\|_E^r - k_1 \lambda \|u\|_E^q, \qquad (3.34)$$

where $k_0 > 0$, $k_1 > 0$ are constants and independent of u.

Suppose $u \in E$ satisfying that $||u||_E = \lambda^{-\alpha}$, $0 < \alpha < 1/(r-p)$, then by (3.34) we have

$$I_{\lambda}(u) \ge \frac{c_0}{p} \lambda^{-\alpha p} - k_0 \lambda^{1-\alpha r} - k_1 \lambda^{1-\alpha q}.$$
(3.35)

Because $0 < \alpha < 1/(r-p)$, then $\alpha_{\lambda} \equiv (c_0/p)\lambda^{-\alpha p} - k_0\lambda^{1-\alpha r} - k_1\lambda^{1-\alpha q} \rightarrow +\infty$ as $\lambda \rightarrow 0^+$. Hence, there exists $\lambda^* > 0$ small enough such that $\alpha_{\lambda} > 0$ for all $\lambda \in (0, \lambda^*)$. Then, we get

$$I_{\lambda}(u) \ge \alpha_{\lambda} > 0 \quad \text{for } \|u\|_{E} = \rho_{\lambda},$$
 (3.36)

where $\rho_{\lambda} = \lambda^{-\alpha}$.

STEP 2. Condition (A4) implies that

$$F(x,t) > d_0 t^{1/\theta} - d_1, \quad \forall (x,t) \in \overline{\Omega} \times R,$$
(3.37)

where d_0 , d_1 are positive constants. Using (3.37) and condition (A2), we find

$$I_{\lambda}(tv) = \frac{1}{p} \int_{\Omega} A(t^{p} | Dv |^{p}) dx - \lambda \int_{\Omega} F(x, tv) dx$$

$$\leq \frac{T}{p} \int_{\Omega} t^{p} | Dv |^{p} dx - \lambda \int_{\Omega} (d_{0}t^{1/\theta}v^{1/\theta} - d_{1}) dx \qquad (3.38)$$

$$= \frac{T}{p} t^{p} ||v||_{E}^{p} - \lambda d_{0}t^{1/\theta} ||v||_{1/\theta}^{1/\theta} + \lambda \tilde{d}_{1}.$$

Condition (A2) implies that $c_0 \le T$, and then by (A4) we get $p < 1/\theta$. Thus as $t \to +\infty$, $I_{\lambda}(tv) \to -\infty$.

STEP 3. By Lemma 3.2, I_{λ} satisfies the (PS) condition. Then, by the results of Steps 1 and 2, we can apply the mountain pass theorem to get that there exists a nontrivial critical point u_{λ} of I_{λ} such that

$$I_{\lambda}(u_{\lambda}) = c_{\lambda} \ge \alpha_{\lambda} > 0, \qquad (3.39)$$

and then

$$I_{\lambda}(u_{\lambda}) \leq \frac{1}{p} \int_{\Omega} T |Du_{\lambda}|^{p} dx + \lambda \int_{\Omega} \left(\frac{b_{0}}{r} |u_{\lambda}|^{r} + \frac{b_{1}}{q} |u_{\lambda}|^{q} \right) dx$$

$$= \frac{T}{p} ||u_{\lambda}||_{E}^{p} + \frac{\lambda b_{0}}{r} ||u_{\lambda}||_{r}^{r} + \frac{\lambda b_{1}}{q} ||u_{\lambda}||_{q}^{q}$$

$$\leq \frac{T}{p} ||u_{\lambda}||_{E}^{p} + \tilde{b}_{0} ||u_{\lambda}||_{E}^{r} + \tilde{b}_{1} ||u_{\lambda}||_{E}^{q}.$$
(3.40)

Let $\lambda \to 0+$ in (3.40) as $\alpha_{\lambda} \to +\infty$, then we obtain $||u_{\lambda}||_{E} \to +\infty$. This completes the proof.

PROOF OF THEOREM 2.2. For $0 < \alpha < 1/p$, let $||u||_E = \lambda^{\alpha}$. By (3.34), we have

$$I_{\lambda}(u) \geq \frac{c_0}{p} \lambda^{\alpha p} - k_0 \lambda^{1+\alpha r} - k_1 \lambda^{1+\alpha q} = \lambda \left(\frac{c_0}{p} \lambda^{\alpha p-1} - k_0 \lambda^{\alpha r} - k_1 \lambda^{\alpha q}\right).$$
(3.41)

As $\alpha p - 1 < 0$, then there exists $\lambda^* > 0$ small enough so that $I_{\lambda}(u) > 0$ for $\lambda \in (0, \lambda^*)$, that is,

$$I_{\lambda}(u) > 0, \quad \forall 0 < \lambda < \lambda^*, \ \|u\|_E = \rho_{\lambda}, \tag{3.42}$$

where $\rho_{\lambda} = \lambda^{\alpha}$. Set $B_{\rho_{\lambda}} = \{u \in E : ||u||_{E} < \rho_{\lambda}\}$, then for $u \in \overline{B}_{\rho_{\lambda}}$, by (3.34), we find

$$I_{\lambda}(u) \geq \frac{c_{0}}{p} \|u\|_{E}^{p} - k_{0}\lambda \|u\|_{E}^{r} - k_{1}\lambda \|u\|_{E}^{q}$$

$$\geq -k_{0}\lambda\rho_{\lambda}^{r} - k_{1}\lambda\rho_{\lambda}^{q} \geq -k_{0}(\lambda^{*})^{1+r\alpha} - k_{1}(\lambda^{*})^{1+q\alpha},$$
(3.43)

then I_{λ} is bounded blow on $\overline{B}_{\rho_{\lambda}}$. Choosing $v \in C_0^{\infty}(\Omega)$, 0 < v < 1, $0 \le |Dv| \le 1$, $t \ge 0$, then

$$I_{\lambda}(tv) = \frac{1}{p} \int_{\Omega} A(t^{p} | Dv |^{p}) dx - \lambda \int_{\Omega} F(x, tv) dx$$

$$\leq \frac{T}{p} \int_{\Omega} t^{p} | Dv |^{p} dx - \lambda \int_{\Omega} F(x, tv) dx$$

$$\leq t^{p} \left[\frac{T}{p} \int_{\Omega} | Dv |^{p} dx - \lambda \frac{\inf_{x \in \overline{\Omega}} F(x, t)}{t^{p}} \int_{\Omega} \frac{F(x, tv)}{F(x, t)} dx \right].$$
(3.44)

From (A5), we know that $f(x,t) \ge 0$, for all $x \in \overline{\Omega}$, $t \ge 0$ and hence $F(x,tv)/F(x,t) \le 1$. By (3.44), (A5), and applying the dominated convergence theorem to (3.44), we find that there exist $\delta > 0$, $0 < t < \delta$, $tv \in B_{\rho_{\lambda}}$ such that

$$I_{\lambda}(tv) < 0. \tag{3.45}$$

Because I_{λ} satisfies the (PS) condition, the minimax theorem on $\overline{B}_{\rho_{\lambda}}$ claims that I_{λ} has a nontrivial critical point $u_{\lambda} \in B_{\rho_{\lambda}}$, which is a local minimum and $I_{\lambda}(u_{\lambda}) < 0$. Then $||u_{\lambda}||_{E} < \rho_{\lambda} = \lambda^{\alpha}$, $||u_{\lambda}||_{E} \to 0$ as $\lambda \to 0+$. This ends the proof.

4. Examples

EXAMPLE 4.1. Let $\Omega \subset \mathbb{R}^n$ be a bounded smooth domain. We consider the *p*-Laplacian problem from nonlinear quantized mechanics as

$$-\operatorname{div}(|Du|^{p-2}Du) = \lambda(|u|^{q-2}u + |u|^{r-2}u), \quad x \in \Omega,$$

$$u(x) = 0, \quad x \in \partial\Omega,$$
(4.1)

where $\lambda > 0$, $1 , <math>\Omega \subset \mathbb{R}^n$ is a bounded smooth domain, $1 < q < p < r < p^*$, $p^* = np/(n-p)$. In this case, a(s) = 1, $B(r) = |r|^p$ is strictly convex, and conditions (A2) and (A4) are satisfied for $c_0 = T = 1$ while $0 < \theta < 1/p$. Obviously, (A3) also holds. These conditions have been posted directly on the given functions in some papers which dealt with the solvability of the boundary value or eigenvalue problem for the *p*-*Laplacian* equation (see [6] and the references therein). Then, by virtue of Theorems 2.1 and 2.2, when λ is small enough, problem (4.1) possesses at least two eigenfunctions u_{λ} and v_{λ} , and

$$\lim_{\lambda \to 0} ||u_{\lambda}||_{E} = +\infty, \qquad \lim_{\lambda \to 0} ||v_{\lambda}||_{E} = 0.$$
(4.2)

EXAMPLE 4.2. Consider the eigenvalue problem for generalized capillarity equation originated from the capillary phenomena

$$-\operatorname{div}\left(\left(1+\frac{|Du|^{p}}{\sqrt{1+|Du|^{2p}}}\right)|Du|^{p-2}Du\right) = \lambda(|u|^{q-2}u+|u|^{r-2}u), \quad x \in \Omega,$$
$$u(x) = 0, \quad x \in \partial\Omega,$$
(4.3)

where $\lambda > 0$, 1 < q < p, $2p < r < p^*$, $p^* = np/(n-p)$. We also can check that (A1) to (A5) are satisfied. By Theorems 2.1 and 2.2, there exist two eigenfunctions u_{λ} and v_{λ} and $\lim_{\lambda \to 0} ||u_{\lambda}||_{E} = +\infty$, $\lim_{\lambda \to 0} ||v_{\lambda}||_{E} = 0$.

ACKNOWLEDGMENT. The paper was supported by National Natural Science Foundation (NNSF) of China (project no. 10071080 and 10101024).

REFERENCES

- A. Ambrosetti, H. Brezis, and G. Cerami, *Combined effects of concave and convex nonlinearities in some elliptic problems*, J. Funct. Anal. **122** (1994), no. 2, 519–543.
- [2] L. Boccardo, Positive eigenfunctions for some unbounded differential operators, Recent Trends in Nonlinear Analysis, Progress in Nonlinear Differential Equations and Their Applications, vol. 40, Birkhäuser, Basel, 2000, pp. 41-45.
- [3] Z.-C. Chen and X.-D. Yan, A class of pseudo-monotone operators and its applications in PDE, Acta Math. Sinica (N.S.) 13 (1997), no. 4, 517–526.
- [4] M. Garcia-Huidobro, R. Manásevich, and K. Schmitt, On principal eigenvalues of p-Laplacian-like operators, J. Differential Equations 130 (1996), no. 1, 235– 246.
- [5] W. Pielichowski, On the first eigenvalue of a quasilinear elliptic operator, Selected Problems of Mathematics, 50th Anniv. Cracow Univ. Technol. Anniv. Issue, vol. 6, Cracow University of Technology, Kraków, 1995, pp. 235-241.
- Y.-T. Shen and S.-S. Yan, Variational Method in Quasilinear Elliptic Equations, Press of Southern China University of Science and Technology, Guang Zhou, 1995 (Chinese).
- P. Ubilla, Multiplicity results for the 1-dimensional generalized p-Laplacian, J. Math. Anal. Appl. 190 (1995), no. 2, 611–623.

Zu-Chi Chen: Department of Mathematics, University of Science and Technology of China, Hefei, Anhui 230026, China

E-mail address: chenzc@ustc.edu.cn

Tao Luo: Department of Mathematics, University of Science and Technology of China, Hefei, Anhui 230026, China