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The general ordinary quasidifferential expression Mp of nth order, with com-
plex coefficients and its formal adjoint M+

p on any finite number of intervals
Ip = (ap,bp), p = 1, . . . ,N, are considered in the setting of the direct sums of
L2
wp(ap,bp)-spaces of functions defined on each of the separate intervals. And a

number of results concerning the location of the point spectra and regularity fields
of general differential operators generated by such expressions are obtained.
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1. Introduction. In [10, 11], Everitt considered the problem of characteriz-

ing all selfadjoint operators which can be generated by a formally symmetric

Sturm-Liouville differential (quasidifferential) expression Mp , defined on a fi-

nite number of intervals Ip , p = 1, . . . ,N, in the setting of direct sum spaces.

In [12], the author considered the problem of the location of the point spec-

tra and regularity fields of general ordinary quasidifferential operators on the

one-interval case with one regular endpoint and the other may be regular or

singular.

Our objective in this paper is to investigate the location of the point spectra

and regularity fields of the operators generated by a general quas-differential

expressions Mp on any finite number of intervals Ip , p = 1, . . . ,N, in the set-

ting of direct sums of L2
wp(ap,bp)-space of functions defined on each of the

separate intervals. These results extend those of the formally symmetric ex-

pression studied in [1, 2, 3, 15, 16, 17, 18, 19], and also extend those proved

in [6, 12, 13] for general case with one-interval case.

The operators involved are no longer symmetric but direct sums as

T0(M)=
N⊕
p=1

T0
(
MP
)
, T0

(
M+)= N⊕

p=1

T0
(
M+
P
)
, (1.1)

where T0(Mp) is the minimal operator generated by Mp on Ip and M+
p is de-

noted by the formal adjoint of Mp which form an adjoint pair of closed opera-

tors in
⊕N

p=1L2
wp(Ip). This fact allows us to use the abstract theory developed

in [1, 2] for the operators which are regularly solvable with respect to T0(Mp)
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and T0(M+
p ). Such an operator S satisfies T0(Mp) ⊂ S ⊂ [T0(M+

p )]∗, and, for

some λ ∈ C, (S−λI) is a Fredholm operator with zero index; this means that

S has the desirable Fredholm property that the equation (S−λI)u = f has a

solution if and only if f is orthogonal to the solutions of (S∗−λI)v = 0, and,

furthermore, the solution spaces of (S−λI)u= 0 and (S∗−λI)v = 0 have the

same finite dimension. This notion was originally due to Visik [20].

Throughout, we deal with a quasidifferential expression Mp of an arbitrary

ordern defined by a general Shin-Zettl matrix given in [4, 6, 8], and the minimal

operator T0(Mp) generated by w−1
p Mp[·] in L2

wp(Ip), p = 1, . . . ,N, where wp is

a positive weight function on the underlying interval Ip . The endpoints of Ip
may be regular or singular.

2. Preliminaries. In this section we give some definitions and results, which

will be needed later, see [3, 4, 5, 6, 9].

The domain and range of a linear operator T acting in a Hilbert space H
are denoted by D(T) and R(T), respectively, and N(T) denotes its null space.

The nullity of T , written nul(T), is the dimension of N(T) and the deficiency

of T , written def(T), is the codimension of R(T) in H; thus, if T is densely

defined and R(T) is closed, then def(T) = nul(T∗). The Fredholm domain of

T is (in the notation of [4]) the open subset �3(T) of C consisting of those

values λ ∈ C which are such that T −λI is a Fredholm operator, where I is

the identity operator on H. Thus, λ∈�3(T) if and only if (T −λI) has closed

range and finite nullity and deficiency. The index of (T −λI) is the number

ind(T −λI)= nul(T −λI)−def(T −λI), defined for λ∈�3(T).
Two closed densely defined operators A and B acting in H are said to form

an adjoint pair if A ⊂ B∗ and, consequently, B ⊂ A∗; equivalently, (Ax,y) =
(x,By) for all x ∈D(A) and y ∈D(B), where (·,·) denotes the inner product

on H.

The field of regularity Π(A) of A is the set of all λ∈ C for which there exists

a positive constant K(λ) such that

∥∥(A−λI)x∥∥≥K(λ)‖x‖ ∀x ∈D(A), (2.1)

or, equivalently, on using the closed-graph theorem nul(A−λI)= 0 and R(A−
λI) is closed.

The joint field of regularity Π(A,B) of A and B is the set of λ∈ C which are

such that λ∈Π(A), λ∈Π(B), and both def(A−λI) and def(B−λI) are finite.

An adjoint pair A and B is said to be compatible if Π(A,B)≠∅.

Definition 2.1. A closed operator S in H is said to be regularly solv-

able with respect to the compatible adjoint pair A and B if A ⊂ S ⊂ B∗ and

Π(A,B)∩�4(S) ≠ ∅, where �4(S) = {λ : λ ∈ �3(S), ind(S − λI) = 0}. The

term “regularly solvable” comes from Visik’s paper [20].
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Definition 2.2. The resolvent set ρ(S) of a closed operator S in H, con-

sisting of the complex numbers λ for which (S −λI)−1 exists, is defined on

H and is bounded. The complement of ρ(S) in C is called the spectrum of S
and written σ(S). The point spectrum σp(S), continuous spectrum σc(S), and

residual spectrum σr (S) are the following subsets of σ(S) (see [3, 4]):

(a) σp(S)= {λ∈ σ(S) : (S−λI) is not injective}, that is, the set of eigenval-

ues of S;

(b) σc(S)= {λ∈ σ(S) : (S−λI) is injective, R(S−λI)� R(S−λI)=H};
(c) σr (S)= {λ∈ σ(S) : (S−λI) is injective, R(S−λI)≠H}.
For a closed operator S, we have

σ(S)= σp(S)∪σc(S)∪σr (S). (2.2)

An important subset of the spectrum of a closed densely defined S in H is

the so-called essential spectrum. The various essential spectra of S are defined

as in [4, Chapter II] to be the sets

σek(S)= C\�k(S) (k= 1,2,3,4,5), (2.3)

where �3(S) and �4(S) have been defined above.

The sets σek(S) are closed and σek(S) ⊂ σej(S) if k < j. The inclusion is

strict in general. We refer the reader to [1, 2, 3] and [4, Chapter IX] for further

information about the sets σek(S).

3. Quasidifferential expressions. The quasidifferential expressions are

defined in terms of a Shin-Zettl matrix Fp on an interval Ip . The set Zn(Ip)
of Shin-Zettl matrices on Ip consists of n×n matrices Fp = {fprs}, 1≤ r ,s ≤n,

p = 1, . . . ,N, whose entries are complex-valued functions on Ip which satisfy

the following conditions:

fprs ∈ L1
loc

(
Ip
)
(1≤ r ,s ≤n, n≥ 2),

f pr,r+1 ≠ 0 a.e on Ip (1≤ r ≤n−1),

f prs = 0 a.e on Ip (2≤ r +1< s ≤n), p = 1, . . . ,N.

(3.1)

For Fp ∈ Zn(Ip), the quasiderivatives associated with Fp are defined by

y[0] :=y,

y[r] := (fpr,r+1

)−1

{(
y[r−1])′ − r∑

s=1

fprsy[s−1]

}
(1≤ r ≤n−1),

y[n] := (y[n−1])′ − n∑
s=1

fpnsy[s−1],

(3.2)

where the prime denotes differentiation.
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The quasidifferential expression Mp associated with Fp is given by

Mp[y] := iny[n] (n≥ 2), (3.3)

this being defined on the set

V
(
Mp
)

:= {y :y[r−1] ∈ACloc
(
Ip
)
, r = 1, . . . ,n; p = 1, . . . ,N

}
, (3.4)

where ACloc(Ip) denotes the set of functions which are absolutely continuous

on every compact subinterval of Ip .

The formal adjoint M+
p of Mp is defined by the matrix F+p ∈ Zn(Ip) given by

F+p :=−L−1F∗p L, (3.5)

where F∗p is the conjugate transpose of Fp and Ln×n is the nonsingular n×n
matrix

Ln×n =
{
(−1)rδr,n+1−s

}
, (1≤ r ,s ≤n), (3.6)

δ being the Kronecker delta. If F+p = (fprs)+, then it follows that

(
fprs
)+ = (−1)r+s+1fpn−s+1,n−r+1, for each r and s. (3.7)

The quasiderivatives associated with F+p are, therefore,

y[0]+ :=y,

y[r]+ := (fpn−r ,n−r+1

)−1

{(
y[r−1]
+

)′ − r∑
s=1

fpn−s+1,n−r+1y
[s−1]
+

}
,

(1≤ r ≤n−1),

y[n]+ :=
(
y[n−1]
+

)′ − n∑
s=1

fpn−s+1,1y
[s−1]
+ ,

M+
p [y] := iny[n]+ , p = 1, . . . ,N, ∀y ∈ V(M+

p
)
,

V
(
M+
p
)

:=
{
y :y[r−1]

+ ∈ACloc
(
Ip
)
, r = 1, . . . ,n; p = 1, . . . ,N

}
.

(3.8)

Note that (F+p )+ = Fp and so (M+
p )+ = Mp . We refer to [6, 12, 13, 14, 21]

for a full account of the above and subsequent results on quasidifferential

expressions.

Let the interval Ip have endpoints ap and bp (−∞ ≤ ap < bp ≤ ∞), and let

wp : Ip →R be a nonnegative weight function withwp ∈ L1
loc(Ip) andwp(Ip) > 0

(for almost all x ∈ Ip). Then, Hp = L2
wp(Ip) denotes the Hilbert function space

of equivalence classes of Lebesgue measurable functions such that
∫
Ip wp|f |2 <

∞; the inner product is defined by

(f ,g)p :=
∫
Ip
wp(x)f(x)g(x)dx

(
f ,g ∈ L2

wp
(
Ip
)
, p = 1, . . . ,N

)
. (3.9)
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The equation

Mp[u]−λwpu= 0 (λ∈ C) on Ip (3.10)

is said to be regular at the left endpoint ap ∈R if, for all X ∈ (ap,bp),

ap ∈R, wp,f
p
rs ∈ L1[ap,X], (r ,s = 1, . . . ,n; p = 1, . . . ,N). (3.11)

Otherwise, (3.10) is said to be singular at ap . If (3.10) is regular at both end-

points, then it is said to be regular; in this case we have

ap,bp ∈R, wp,f
p
rs ∈ L1(ap,bp), (r ,s = 1, . . . ,n; p = 1, . . . ,N). (3.12)

We will be concerned with the case when ap is a regular endpoint of (3.10),

the endpoint bp being allowed to be either regular or singular. Note that, in

view of (3.7), an endpoint of Ip is regular for (3.10) if and only if it is regular

for the equation

M+
p [v]−λwpv = 0 (λ∈ C) on Ip, p = 1, . . . ,N. (3.13)

Note that, at regular endpoint ap , say, u[r−1](ap)(v
[r−1]
+ (ap)), r = 1, . . . ,n,

is defined for all u∈ V(Mp) (v ∈ V(M+
p )). Set

D
(
Mp
)

:= {u :u∈ V(Mp
)
, u,w−1

p Mp[u]∈ L2
wp
(
ap,bp

)}
,

D
(
M+
p
)

:= {v : v ∈ V(M+
p
)
, v,w−1

p M+
p [v]∈ L2

wp
(
ap,bp

)}
, p = 1, . . . ,N.

(3.14)

The subspaces D(Mp) and D(M+
p ) of L2

wp(ap,bp) are domains of the so-

called maximal operators T(Mp) and T(M+
p ), respectively, defined by

T
(
Mp
)
u :=w−1

p Mp[u]
(
u∈D(Mp

))
,

T
(
M+
p
)
v :=w−1

p M+
p [v]

(
v ∈D(M+

p
))
.

(3.15)

For the regular problem, the minimal operators T0(Mp) and T0(M+
p ), p =

1, . . . ,N, are the restrictions of w−1
p Mp[u] and w−1

p M+
p [v] to the subspaces

D0
(
Mp
)

:= {u :u∈D(Mp
)
, u[r−1](ap)=u[r−1](bp)= 0, r = 1, . . . ,n

}
,

D0
(
M+
p
)

:= {v : v ∈D(M+
p
)
, v[r−1]

+
(
ap
)= v[r−1]

+
(
bp
)= 0, r = 1, . . . ,n

}
,

p = 1, . . . ,N,

(3.16)

respectively. The subspacesD0(Mp) andD0(M+
p ) are dense in L2

wp(ap,bp), and

T0(Mp) and T0(M+
p ) are closed operators (see [4, 6, 13] and [21, Section 3]).
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In the singular problem, we first introduce the operators T ′0(Mp) and T ′0(M+
p ),

T ′0(Mp) being the restriction of w−1
p Mp[·], to the subspace

D′0
(
Mp
)

:= {u :u∈D(Mp
)
, suppu⊂ (ap,bp)}, p = 1, . . . ,N, (3.17)

and with T ′0(M+
p ) defined similarly. These operators are densely defined and

closable in L2
wp(ap,bp); and we defined the minimal operators T0(Mp) and

T0(M+
p ) to be their respective closures (see [4, 6] and [21, Section 5]). We denote

the domains of T0(Mp) and T0(M+
p ) byD0(Mp) andD0(M+

p ), respectively. It can

be shown that

u∈D0
(
Mp
)
�⇒u[r−1](ap)= 0 (r = 1, . . . ,n; p = 1, . . . ,N),

v ∈D0
(
M+
p
)
�⇒ v[r−1]

+
(
ap
)= 0 (r = 1, . . . ,n; p = 1, . . . ,N),

(3.18)

because we are assuming that ap is a regular endpoint. Moreover, in both reg-

ular and singular problems, we have

T∗0
(
Mp
)= T(M+

p
)
, T∗

(
Mp
)= T0

(
M+
p
)
, p = 1, . . . ,N; (3.19)

see [21, Section 5] in the case when Mp =M+
p and compare with the treatment

in [4, Section III.10.3] and [6] in the general case.

In the case of two singular endpoints, the problem on (ap,bp) is effectively

reduced to the problems with one singular endpoint on the intervals (ap,cp]
and [cp,bp), where cp ∈ (ap,bp). We denote by T(Mp ;ap) and T(Mp ;bp) the

maximal operators with domains D(Mp ;ap) and D(Mp ;bp), and denote by

T0(Mp ;ap) and T0(Mp ;bp) the closures of the operators T ′0(Mp ;ap) and

T ′0(Mp ;bp) defined in (3.17) on the intervals (ap,cp] and [cp,bp), respectively,

see [4, 9, 13, 14, 15, 16].

Let T̃ ′0(Mp), p = 1, . . . ,N, be the orthogonal sum as

T̃ ′0
(
Mp
)= T ′0(Mp ;ap

)⊕
T ′0
(
Mp ;bp

)
(3.20)

in

L2
wp
(
ap,bp

)= L2
wp
(
ap,cp

)⊕
L2
wp
(
cp,bp

)
; (3.21)

T̃ ′0(Mp) is densely defined and closable in L2
wp(ap,bp) and its closure is given

by

T̃0
(
Mp
)= T0

(
Mp ;ap

)⊕
T0
(
Mp ;bp

)
, p = 1, . . . ,N. (3.22)
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Also,

nul
[
T̃0
(
Mp
)−λI]= nul

[
T0
(
Mp ;ap

)−λI]+nul
[
T0
(
Mp ;bp

)−λI],
def

[
T̃0
(
Mp
)−λI]= def

[
T0
(
Mp ;ap

)−λI]+def
[
T0
(
Mp ;bp

)−λI], (3.23)

and R[T̃0(Mp)−λI] is closed if and only if R[T0(Mp ;ap)−λI] and R[T0(Mp ;bp)
−λI] are both closed. These results imply, in particular, that

Π
[
T̃0
(
Mp
)]=Π[T0

(
Mp ;ap

)]∩Π[T0
(
Mp ;bp

)]
, p = 1, . . . ,N. (3.24)

We refer to [4, Section 3.10.4] and [13, 14] for more details.

Remark 3.1. If Sapp is a regularly solvable extension of T0(Mp ;ap) and Sbpp
is a regularly solvable extension of T0(Mp ;bp), then S = Sapp

⊕
Sbpp is a regularly

solvable extension of T̃0(Mp), p = 1, . . . ,N. We refer to [4, Section 3.10.4] and

[13, 14] for more details.

Next, we state the following results; the proof is similar to that in [4, Section

3.10.4] and [13, 14].

Theorem 3.2. Let

T̃0
(
Mp
)⊂ T0

(
Mp
)
, T

(
Mp
)⊂ T(Mp ;ap

)⊕
T
(
Mp ;bp

)
,

dim
{
D
[
T0
(
Mp
)]
/D
[
T̃0
(
M0
)]}=n, p = 1, . . . ,N.

(3.25)

If λ∈Π[T̃0(Mp)]∩�3[T0(Mp)−λI], then

ind
[
T0
(
Mp
)−λI]=n−def

[
T0
(
Mp ;ap

)−λI]−def
[
T0
(
Mp ;bp

)−λI], (3.26)

and, in particular, if λ∈Π[T0(Mp)],

def
[
T0
(
Mp
)−λI]= def

[
T0
(
Mp ;ap

)−λI]+def
[
T0
(
Mp ;bp

)−λI]−n. (3.27)

Remark 3.3. It can be shown that

D
[
T̃0
(
Mp
)]= {u :u∈D[T0

(
Mp
)]
, u[r−1](cp)= 0, r = 1, . . . ,n

}
,

D
[
T̃0
(
M+
p
)]= {v : v ∈D[T0

(
M+
p
)]
, v[r−1]

+
(
cp
)= 0, r = 1, . . . ,n

}
, p = 1, . . . ,N;

(3.28)

see [4, Section 3.10.4].
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Lemma 3.4. For λ ∈ Π[T0(Mp),T0(M+
p )], def[T0(Mp)−λI]+def[T0(M+

p )−
λI] is constant and

0≤ def
[
T0
(
Mp
)−λI]+def

[
T0
(
M+
p
)−λI]≤ 2n, p = 1, . . . ,N. (3.29)

In the problem with one singular endpoint,

n≤ def
[
T0
(
Mp
)−λI]+def

[
T0
(
M+
p
)−λI]≤ 2n ∀λ∈Π[T0

(
Mp
)
,T0
(
M+
p
)]
.

(3.30)

In the regular problem,

def
[
T0
(
Mp
)−λI]+def

[
T0
(
M+
p
)−λI]= 2n ∀λ∈Π[T0

(
Mp
)
,T0
(
M+
p
)]
.
(3.31)

Proof. See [4, 6] and [14, Lemma 2.4].

Let H be the direct sum

H =
N⊕
p=1

Hp =
N⊕
p=1

L2
wp
(
ap,bp

)
. (3.32)

The elements ofH will be denoted by f̃ = {f1, . . . ,fN}with f1 ∈H1, . . . ,fN ∈HN .

Remark 3.5. When Ii∩Ij =∅, i≠ j, and i,j = 1, . . . ,N, the direct sum space⊕N
p=1L2

wp(ap,bp) can be naturally identified with the space L2
w(∪Np=1Ip), where

wp =w on Ip , p = 1, . . . ,N. This remark is of significance when ∪Np=1Ip is taken

as a single interval, see [10, 11].

We now establish by [4, 10, 14] some further notations

D0(M)=
N⊕
p=1

D0
(
Mp
)
, D(M)=

N⊕
p=1

D
(
Mp
)
,

D0
(
M+)= N⊕

p=1

D0
(
M+
p
)
, D

(
M+)= N⊕

p=1

D
(
M+
p
)
,

T0(M)f := {T0
(
M1
)
f1, . . . ,T0

(
MN

)
fN
}
; f1 ∈D0

(
M1
)
, . . . ,fN ∈D0

(
MN

)
,

T0
(
M+)g := {T0

(
M+

1

)
g1, . . . ,T0

(
M+
N
)
gN
}
; g1 ∈D0

(
M+

1

)
, . . . ,gN ∈D0

(
M+
N
)
.

(3.33)

Also,

T(M)f := {T(M1
)
f1, . . . ,T

(
MN

)
fN
}
; f1 ∈D

(
M1
)
, . . . ,fN ∈D

(
MN

)
,

T
(
M+)g := {T(M+

1

)
g1, . . . ,T

(
M+
N
)
gN
}
; g1 ∈D

(
M+

1

)
, . . . ,gN ∈D

(
M+
N
)
.

(3.34)

We summarize a few additional properties of T0(M) in the form of a lemma.



ON THE SPECTRA OF NON-SELFADJOINT DIFFERENTIAL OPERATORS . . . 565

Lemma 3.6. (a) The direct sums of [T0(M)]∗ and [T0(M+)]∗ are given by

[
T0(M)

]∗ = N⊕
p=1

[
T0
(
Mp
)]∗ = N⊕

p=1

[
T
(
M+
p
)]
,

[
T0
(
M+)]∗ = N⊕

p=1

[
T0
(
M+
p
)]∗ = N⊕

p=1

[
T
(
Mp
)]
.

(3.35)

In particular,

D
[
T0(M)

]∗ =D[T(M+)]= N⊕
p=1

D
[
T
(
M+
p
)]
,

D
[
T0
(
M+)]∗ =D[T(M)]= N⊕

p=1

D
[
T
(
Mp
)]
,

(3.36)

(b) The nullities of T0(M) and T0(M+) are give by

nul
[
T0(M)−λI

]= N∑
p=1

nul
[
T0
(
Mp
)−λI],

nul
[
T0
(
M+)−λI]= N∑

p=1

nul
[
T0
(
M+
p
)−λI].

(3.37)

(c) The deficiency indices of T0(M) are given by

def
[
T0(M)−λI

]= N∑
p=1

def
[
T0
(
Mp
)−λI] ∀λ∈Π[T0

(
Mp
)
,T0
(
M+
p
)]
,

def
[
T0
(
M+)−λI]= N∑

p=1

def
[
T0
(
M+
p
)−λI] ∀λ∈Π[T0

(
Mp
)
,T0
(
M+
p
)]
.

(3.38)

Proof. Part (a) follows immediately from the definition of T0(M) and from

the general definition of an adjoint operator. The other parts are either direct

consequences of part (a) or follows immediately from the definitions.

Lemma 3.7. Let T0(M)=
⊕N

p=1T0(Mp) be a closed densely defined operator

on H. Then

Π
[
T0(M)

]=∩Np=1Π
[
T0
(
Mp
)]
. (3.39)

Proof. The proof follows from Lemma 3.4 and since R[T0(Mp)− λI] is

closed if and only if R[T0(Mp)−λI], p = 1, . . . ,N, are closed.

Lemma 3.8. If Sp , p = 1, . . . ,N, are regularly solvable with respect to T0(Mp)
and T0(M+

p ), then S =⊕N
p=1Sp is regularly solvable with respect to T0(M) and

T0(M+).
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Proof. The proof follows from Lemmas 3.4 and 3.6.

Remark 3.9. Let S =⊕N
j=1Sj be an arbitrary closed operator on H. Since

λ∈ ρ(S) if and only if nul(S−λI)= def(S−λI)= 0, see [3, Theorem 1.3.2], we

have ρ(S)=∩Nj=1ρ(Sj) and hence,

σ(S)=∪Nj=1σ
(
Sj
)
, σp(S)=∪Nj=1σp

(
Sj
)
, σr (S)=∪Nj=1σr

(
Sj
)
. (3.40)

Also,

σek(S)=∪Nj=1σek
(
Sj
)
, k= 2,3. (3.41)

We refer to [4, Chapter 9] for more details.

Theorem 3.10. Suppose that f ∈ L1
loc(Ip) and suppose that conditions (3.1)

are satisfied. Then, given any complex numbers cj ∈ C, j = 0,1, . . . ,n−1, and

x0 ∈ (ap,bp), there exists a unique solution of Mp[φp] = wφpf in (ap,bp)
which satisfies

φ[j]p
(
x0
)= cj (j = 0,1, . . . ,n−1; p = 1, . . . ,N). (3.42)

Proof. See [1, 2, 4] and [16, Theorem 16.2.2].

Theorem 3.11 (cf. [4] and [16, Lemma 5.17.1]). Let Mp be a regular qua-

sidifferential expression of order n on the closed interval [ap,bp]. For f ∈
L2
w(ap,bp), the equation Mp[u]=wf has a solution φp ∈ V(Mp) satisfying

φ[j]p
(
ap
)=φ[j]p (bp)= 0, (j = 0,1, . . . ,n−1; p = 1, . . . ,N), (3.43)

if and only if f is orthogonal in L2
w(ap,bp) to the solution space ofM+

p [φp]= 0,

that is,

R
[
T0
(
Mp
)−λI]=N[T(M+

p
)−λI]⊥, p = 1, . . . ,N. (3.44)

Corollary 3.12 (cf. [16, Section 5.17.3]). As a result from Theorem 3.11,

we have

R
[
T0
(
Mp
)−λI]⊥ =N[T(M+

p
)−λI], p = 1, . . . ,N. (3.45)

Lemma 3.13 (cf. [4, Lemma IX.9.1]). If Ip = [ap,bp], with −∞<ap < bp <∞,

p = 1, . . . ,N, then, for any λ ∈ C, the operator [T0(Mp)−λI], p = 1, . . . ,N, has
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closed range, zero nullity, and deficiency n. Hence,

σek
[
T0
(
Mp
)]=


∅ (k= 1,2,3),

C (k= 4,5),
(3.46)

where, p = 1, . . . ,N.

4. The spectra of operators in direct sum spaces. In this section, we con-

sider our interval to be I = [a,b). We denote by T(M) and T0(M) the maximal

and minimal operators defined on the interval I. Also, we deal with the var-

ious components of the spectra of T0(M) and T0(M+) as the direct sum of

differential operators T0(Mp) and T0(M+
p ), p = 1, . . . ,N.

Lemma 4.1. Let T0(M)=
⊕N

j=1T0(Mj) and T0(M+)=⊕N
j=1T0(M+

j ), then the

point spectra σp[T0(M)] and σp[T0(M+)] of T0(M) and T0(M+) are empty.

Proof. Let λ ∈ σp[T0(Mj)]. Then, there exists a nonzero element φj ∈
D0(Mj), j = 1, . . . ,N, such that

[
T0
(
Mj
)−λI]φj = 0, j = 1, . . . ,N. (4.1)

In particular, this gives that

[
T0
(
Mj
)]
φj = λwφj,

φ[r]j
(
aj
)=φ[r]j (

bj
)= 0, (r = 0,1, . . . ,n−1; j = 1, . . . ,N).

(4.2)

From Theorem 3.10, it follows that φj = 0 and hence, σp[T0(Mj)] = ∅, j =
1, . . . ,N. Similarly,

σp
[
T0
(
M+
j
)]=∅, j = 1, . . . ,N. (4.3)

Therefore, by (3.40), we have

σp
[
T0(M)

]=∪Nj=1σp
[
T0
(
Mj
)]=∅,

σp
[
T0
(
M+)]=∪Nj=1σp

[
T0
(
M+
j
)]=∅. (4.4)

Theorem 4.2. Let T0(M)=
⊕N

j=1T0(Mj) and T0(M+)=⊕N
j=1T0(M+

j ), then

(i) ρ[T0(M)]= ρ[T0(M+)]=∅,

(ii) σc[T0(M)]= σc[T0(M+)]=∅,

(iii) σ[T0(M)]= σ[T0(M+)]= C and σr [T0(M)]= σr [T0(M+)]= C.
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Proof. (i) Since R[T0(Mj)−λI], j = 1, . . . ,N, are proper closed subspaces

of L2
w(aj,bj), then the resolvent sets ρ[T0(Mj)] are empty and hence

ρ
[
T0(M)

]=∩Nj=1ρ
[
T0
(
Mj
)]=∅. (4.5)

Similarly,

ρ
[
T0
(
M+)]=∩Nj=1ρ

[
T0
(
M+
j
)]=∅. (4.6)

(ii) Since R[T0(Mj)− λI], j = 1, . . . ,N, are closed for any λ ∈ C, then the

continuous spectrum of T0(Mj) are the empty sets, that is, σc[T0(M)] = ∅,

j = 1, . . . ,N. Hence,

σc
[
T0(M)

]=∪Nj=1σc
[
T0(M)

]=∅. (4.7)

Similarly,

σc
[
T0
(
M+)]=∪Nj=1σc

[
T0
(
M+)]=∅. (4.8)

(iii) From (i), (ii), and Lemma 3.6, it follows that

σ
[
T0(M)

]=∪Nj=1σ
[
T0
(
Mj
)]= C,

σr
[
T0(M)

]=∪Nj=1σr
[
T0
(
Mj
)]=C. (4.9)

Similarly,

σ
[
T0
(
M+)]=∪Nj=1σ

[
T0
(
M+
j
)]= C,

σr
[
T0
(
M+)]=∪Nj=1σr

[
T0
(
M+
j
)]= C. (4.10)

Corollary 4.3. Let T0(M)=
⊕N

j=1T0(Mj) and T0(M+)=⊕N
j=1T0(M+

j ), then

(i) σc[T(M)]= σc[T(M+)]=∅ and σr [T(M)]= σr [T(M+)]=∅,

(ii) σ[T(M)]= σ[T(M+)]= C and σp[T(M)]= σp[T(M+)]= C,

(iii) ρ[T(M)]= ρ[T(M+)]=∅.

Proof. From Theorem 3.11 and since T(Mj) = [T0(M+
j )]∗, j = 1, . . . ,N, it

follows that R[T0(Mj)−λI], j = 1, . . . ,N, are closed and hence R[T(M)−λI]=⊕N
j=1R[T(Mj)−λI] is closed for every λ ∈ C, see [4, Theorem I.3.7]. Also, by

Lemma 3.6, we have

nul
[
T(M)−λI]= def

[
T0
(
M+)−λI]= N∑

j=1

def
[
T0
(
M+
j
)−λI]=nN,

def
[
T(M)−λI]= nul

[
T0
(
M+)−λI]= N∑

j=1

nul
[
T0
(
M+
j
)−λI]= 0.

(4.11)



ON THE SPECTRA OF NON-SELFADJOINT DIFFERENTIAL OPERATORS . . . 569

(i) Since R[T(Mj)−λI] are closed and def[T(Mj)−λI]= 0, j = 1, . . . ,N, then,

by Lemma 3.6, R[T(M)−λI]=H. This yields that σc[T(M)]= σr [T(M)]=∅.

Similarly,

σc
[
T
(
M+)]= σr [T(M+)]=∅. (4.12)

(ii) Since

nul
[
T(M)−λI]= N∑

j=1

nul
[
T
(
Mj
)−λI]=nN,

nul
[
T
(
M+)−λI]= N∑

j=1

nul
[
T
(
M+
j
)−λI]=nN, for every λ∈ C,

(4.13)

then we have

σp
[
T(M)

]=∪Nj=1σp
[
T
(
Mj
)]= C,

σp
[
T
(
M+)]=∪Nj=1σp

[
T
(
M+
j
)]= C. (4.14)

It also follows that

σ
[
T(M)

]=∪Nj=1σ
[
T
(
Mj
)]= C,

σ
[
T
(
M+)]=∪Nj=1σ

[
T
(
M+
j
)]= C, (4.15)

and hence,

ρ
[
T(M)

]= ρ[T(M+)]=∅. (4.16)

5. The field of regularity of operators in direct sum spaces. We now obtain

some results which, in fact, are a natural consequence of those in Section 4.

Theorem 5.1. Let T0(M)=
⊕N

p=1T0(Mp) and T0(M+)=⊕N
p=1T0(M+

p ), then

(i) Π[T0(M)]=Π[T0(M+)]= C and, for every λ∈ C,

def
[
T0(M)−λI

]= def
[
T0
(
M+)−λI]=nN, (5.1)

(ii) Π[T(M)]=Π[T(M+)]= C and, for every λ∈ C,

nul
[
T(M)−λI]= nul

[
T
(
M+)−λI]=nN. (5.2)

Proof. (i) From Theorem 3.11 and Lemma 4.1, for every λ ∈ C, there ex-

ists [T0(Mp)−λI]−1 with its domains R[T0(Mp)−λI] are closed subspaces of

L2
w(ap,bp), p = 1, . . . ,N. Hence, since T0(Mp), p = 1, . . . ,N, are closed opera-

tors, then [T0(Mp)−λI]−1 are also closed; so, it follows from the closed-graph

theorem that [T0(Mp)−λI]−1, p = 1, . . . ,N, are bounded; hence,

Π
[
T0(M)

]=∩Np=1Π
[
T0
(
Mp
)]= C. (5.3)
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From Theorem 3.11, R[T0(Mp)−λI]⊥, p = 1, . . . ,N, are n-dimensional sub-

spaces of L2
w(ap,bp). Thus, by Lemma 3.6,

def
[
T0(M)−λI

]= N∑
p=1

def
[
T0
(
Mp
)−λI]= N∑

p=1

dimR
[
T0
(
Mp
)−λI]⊥ =nN,

(5.4)

for every λ∈C. Similarly,

def
[
T0
(
M+)−λI]= N∑

p=1

def
[
T0
(
M+
p
)−λI]

=
N∑
p=1

dimR
[
T0
(
M+
p
)−λI]⊥ =nN, for every λ∈ C.

(5.5)

(ii) As Π[T0(M+)] = C, for every λ ∈ C, T0(M+)−λI has closed range; so,

since T(M)= [T0(M+)]∗, T(M)−λI =∑N
p=1[T(Mp)−λI] has closed range, see

[4, Theorem I.3.7]. Furthermore, from (i),

nul
[
T(M)−λI]= def

[
T0
(
M+)−λI]= N∑

p=1

def
[
T0
(
M+
p
)−λI]=nN. (5.6)

Hence, λ �∈Π[T(M)] and so, part (ii) of the theorem follows.

Corollary 5.2. The operators T0(M) and T0(M+) form a compatible ad-

joint pair with Π[T0(M),T0(M+)]= C.

Proof. From Theorem 5.1(i) and Lemma 3.7, it follows that

Π
[
T0(M),T0

(
M+)]=∩Np=1Π

[
T0
(
MP
)
,T0
(
M+
p
)]= C. (5.7)

Using (3.19), the corollary follows.

Theorem 5.3. If, for some λ0 ∈ C, there aren linearly independent solutions

of the equations

Mp
[
φp
]= λ0wφp, M+

p
[
θp
]= λ0wθp, p = 1, . . . ,N, (5.8)

that are in L2
w(ap,bp), then all solutions of the equations

Mp
[
φp
]= λwφp, M+

p
[
θp
]= λwθp, p = 1, . . . ,N, (5.9)

are in L2
w(ap,bp) for all λ∈ C.

Proof. The proof follows from Lemmas 3.4 and 3.6, see [7, 13] and [14,

Lemma 3.3] for more details.

From Corollary 5.2 and Theorem 5.3, we have the following lemma.
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Lemma 5.4. If, for some λ0 ∈ C, there are n linearly independent solutions

of the equations

Mp
[
φp
]= λ0wφp, M+

p
[
θp
]= λ0wθp, p = 1, . . . ,N, (5.10)

that are in L2
w(ap,bp), then λ0 ∈Π[T0(Mp),T0(M+

p )], p = 1, . . . ,N, see also [17,

Theorem 2.1] and [19, Lemma 5.1].

Theorem 5.5. Let T0(M) =
⊕N

p=1T0(Mp) and T0(M+) = ⊕N
p=1T0(M+

p ) be

the minimal operators defined on the interval [a,b). If Π[T0(M),T0(M+)] is

empty, then

def
[
T0(M)−λI

]+def
[
T0
(
M+)−λI]≠ 2nN. (5.11)

In particular, if Π[T0(M),T0(M+)] is empty and n= 1, then

def
[
T0(M)−λI

]+def
[
T0
(
M+)−λI]=N. (5.12)

Proof. If, for some λ0 ∈ C, def[T0(M)−λI]=
∑N
p=1 def[T0(Mp)−λI]=nN

and

def
[
T0
(
M+)−λI]= N∑

p=1

def
[
T0
(
M+
p
)−λI]=nN, (5.13)

then each of

M[u]= λ0wu, M+[v]= λ0wv, (5.14)

has nN−L2
w(a,b) solutions (see [7]). Hence, by Theorem 5.3, all the solutions

of

M[u]= λwu, M+[v]= λwv (5.15)

are in L2
w(a,b) for all λ ∈ C; hence, by Corollary 5.2, we have λ ∈ Π[T0(M),

T0(M+)]. Thus, if Π[T0(M),T0(M+)] is empty, we cannot have

def
[
T0(M)−λI

]+def
[
T0
(
M+)−λI]= 2nN. (5.16)

In particular, if n= 1, then, by Lemma 3.4, we have

N ≤ def
[
T0(M)−λI

]+def
[
T0
(
M+)−λI]≤ 2N; (5.17)
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so, if Π[T0(M),T0(M+)] is empty, we have

def
[
T0(M)−λI

]+def
[
T0
(
M+)−λI]=N. (5.18)

For a regularly solvable operator, we have the following general theorem.

Theorem 5.6. Suppose, for a regularly solvable extension S of the minimal

operator T0(M)=
⊕N

p=1T0(Mp), that

def
[
T0(M)−λI

]+def
[
T0
(
M+)−λI]=K, nN ≤K ≤ 2nN, (5.19)

for all λ∈Π[T0(M),T0(M+)]. Then,

nul
[
T(M)−λI]+nul

[
T
(
M+)−λI]≤K ∀λ∈ C. (5.20)

If Π[T0(M),T0(M+)] is empty, then

nul
[
T(M)−λI]+nul

[
T
(
M+)−λI]<K. (5.21)

Proof. Let def[T0(Mp)−λI] = rp and def[T0(M+
p )−λI] = sp , p = 1, . . . ,N,

such that

def
[
T0
(
Mp
)−λI]+def

[
T0
(
M+
p
)−λI]= rp+sp, n≤ rp+sp ≤ 2n, (5.22)

for all λ ∈ Π[T0(Mp),T0(M+
p )], p = 1, . . . ,N. Then, for any closed extension Sp

of T0(Mp) which is regularly solvable of T0(Mp) and T0(M+
p ), we have, from [4,

Theorem III.3.5],

dim
{
D
(
Sp
)
/D0

(
Mp
)}= def

[
T0
(
Mp
)−λI]= rp, p = 1, . . . ,N,

dim
{
D
(
S∗p
)
/D0

(
M+
p
)}= def

[
T0
(
M+
p
)−λI]= sp, p = 1, . . . ,N.

(5.23)

Hence, Sp and S∗p are finite-dimensional extensions of T0(Mp) and T0(M+
p ),

respectively. Thus, from [4, Corollary IX.4.2], we get

σek
[
T0
(
Mp
)]= σek(Sp) (k= 1,2,3; p = 1, . . . ,N). (5.24)

Since T0(Mp)−λI has closed range, zero nullity, and deficiency rp (see Lemma

3.13), then, for any λ∈ C, we have

Π
[
T0
(
Mp
)]∩σek[T0

(
M+
p
)]=∅, (k= 1,2,3; p = 1, . . . ,N). (5.25)
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Therefore,

�k
[
T0
(
Mp
)]=�k

(
Sp
)= C (k= 1,2,3; p = 1, . . . ,N). (5.26)

Similarly,

�k
[
T0
(
M+
p
)]=�k

(
S∗p
)= C (k= 1,2,3; p = 1, . . . ,N). (5.27)

Furthermore, the equations

Mp
[
φp
]= λ0wφp, M+

p
[
θp
]= λ0wθp, p = 1, . . . ,N, (5.28)

have at most rp and sp linearly independent solutions for λ0 ∈C, respectively.

Hence,

nul
[
T(M)−λI]+nul

[
T
(
M+)−λI]

=
N∑
p=1

nul
[
T
(
Mp
)−λI]+ N∑

p=1

nul
[
T
(
M+
p
)−λI]

=
N∑
p=1

(
rp+sp

)≤K, nN ≤K ≤ 2nN ∀λ∈ C.

(5.29)

But, for any λ0 �∈ Π[T0(Mp),T0(M+
p )], either λ0 �∈ Π[T0(Mp)] or λ0 �∈

Π[T0(M+
p )]. If λ0 �∈ Π[T0(Mp)], then either λ0 is an eigenvalue of T0(Mp) or

R[T0(Mp)−λI], p = 1, . . . ,N, are not closed. Similarly, for λ0 �∈Π[T0(M+
p )]. But

T0(Mp) and T0(M+
p ) have no eigenvalues; then, if λ0 �∈Π[T0(Mp),T0(M+

p )], we

have R[T0(Mp)−λI] and R[T0(M+
p )−λI], p = 1, . . . ,N, are both not closed, and

so we cannot have

nul
[
T(M)−λI]+nul

[
T
(
M+)−λI]

=
N∑
p=1

nul
[
T
(
Mp
)−λI]+ N∑

p=1

nul
[
T
(
M+
p
)−λI]=K. (5.30)

Hence,

nul
[
T(M)−λI]+nul

[
T
(
M+)−λI]<K, nN ≤K ≤ 2nN, (5.31)

for all λ �∈Π[T0(M),T0(M+)]=∩Np=1Π[T0(Mp),T0(M+
p )].

Remark 5.7. It remains an open question as to how many of the solutions

of the equations

M[u]= λwu, M+[v]= λwv (5.32)

may be in L2
w(a,b) for any λ ∈ C, when Π[T0(M),T0(M+)] is empty, except

that we know from above that not all of them are in L2
w(a,b). We refer to

[3, 7, 17, 19] for more details.
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