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We give an algorithm to compute a resolvent of an algebraic variety without com-
puting its irreducible components; we decompose the radical of an ideal into prime
ideals and we test the primality of a regular ideal.
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1. Introduction. A fundamental construction in algebraic geometry is the
decomposition of a variety into irreducible components; this is connected from
commutative algebra viewpoint with the primary decomposition of ideals. The
purpose of this paper is to study the structure of an affine variety V defined by
a zero-set of a finite set of the polynomial ring K[x1,...,X,]. We characterize
the associated irreducible varieties of V by a resolvent.

The concept of resolvent was introduced by Ritt [14] in his work on differ-
ential algebra. He showed that generic zeros of a prime differential ideal are
birationally equivalent to general zeros of one differential polynomial.

Based on Ritt-Wu’s algorithm to decompose a variety into irreducible vari-
eties, Gao and Chou [8] extended Ritt’s concept of resolvent to an ideal, not
necessarily prime, with respect to a parametric set. They use a factorization
over a tower of algebraic extensions of the field of coefficients. In the ordinary
differential case, Cluzeau and Hubert [6] extended also Ritt’s concept of resol-
vent to regular differential ideals. We exploit the interplay between both results
to compute a resolvent of an ideal $ with respect to a parametric set. We use a
decomposition of /¥ as an intersection of regular ideals, we compute a basis
of /9, and then we deduce the resolvent of the ideal +/$. The approach taken
in this paper is interesting. Avoiding factorization, we compute irreducible va-
rieties associated to a given affine variety and we check whether a regular ideal
is prime.

We begin the paper with some basic definitions and properties on irre-
ducible, regular, and characterizable ideals and we recall the link between
Grobner bases and characteristic sets. In Section 4, we prove the Ritt’s theorem
and some related properties of the resolvent. Section 5 describes an algorithm
which computes a resolvent of an ideal. In Section 6, we illustrate some appli-
cations of resolvents.


http://dx.doi.org/10.1155/S0161171203205378
http://dx.doi.org/10.1155/S0161171203205378
http://dx.doi.org/10.1155/ijmms
http://www.hindawi.com

4422 D. BOUZIANE AND A. KANDRI RODY

2. Preliminaries and notation

2.1. Definitions and notation. Let K[x] = K[x1,...,X, ] be the ring of alge-
braic polynomials in n indeterminates with coefficients in a field K of charac-
teristic zero. We fix an order on the indeterminates such that x; < - - - < xp.
Let f be a polynomial not in K. The leading variable of f is the highest inde-
terminate x; appearing in f; it is denoted by lv(f). The initial of f, init(f), is
the coefficient of the highest power of Iv(f) in f. The rank of f, rank(f), is
the monomial Iv(f)4, where d is the degree of f inld(f). The tail of f, tail(f),
is the polynomial f —init(f) - Iv(f)4. The separant of f, sep(f), is equal to
of/ov with v = lv(f). We also define hy to be the product of the initial and
the separant of f.

Let = be a subset of K[x]. We denote, respectively, by (2) and +/(Z) the ideal
and the radical ideal generated by 3. An ideal $ is said to be radical if /$ = 9.

A polynomial g is said to be reduced with respect to f if the degree of g in
Iv(f) is strictly less than the degree of f in Iv(f).

Let f and g be two elements of K[x]. With a finite number of pseudodivi-
sions, we can compute a polynomial rem(g; f) reduced with respect to f such
that there exists « € N satisfying

init(f)*-g =rem(g; f)mod(f). (2.1)

Any order < on x can be extended to a partial order on K[x] as follows: for f
and g in K[x], we say that f is less than g, and we write f < g if either
(i) feKand g ¢ K;
(i) v(f) <1Iv(g); or
(iii) Iv(f) =1lv(g) = v and degree(f,v) < degree(g,v).
If neither f < g nor g < f, we say that f and g are equivalent, we write f = g.

2.2. Autoreduced sets. A subset & of K[x] is called an autoreduced set if
every element of o is reduced with respect to the others. An autoreduced set
is finite (see [13, page 77]). An autoreduced set s¢ = {A;,...,Ap} is denoted
by Ay,...,Apif Ay < --- < Ap. If ol = Ay,...,Ap and B = By,...,B; are two
autoreduced sets, we say that # is less than % and we write o < @ if either

(i) there exists k < min(p,q) such that A; = B; for i < k and Ay < By; or
(ii) p>qand A; =B; for 1 <i=<q.
If neither 4 < & nor & < A, we say that &l and % are equivalent, we write
=R

REMARK 2.1. The order on the set of autoreduced sets is Artinian (well
ordering) (see [14, page 4] and [13, page 81]).

Let F be anonempty subset of K[x], then the set of all autoreduced sets of F
has a minimal element; it is called a characteristic set of F. There is no nonzero
element of F reduced with respect to its characteristic set. Two characteristic
sets of F are equivalent.
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PROPOSITION 2.2. Let si = Ay,...,Ap be an autoreduced set. Then for any
polynomial f, there exist nonnegative integer « and a polynomial g reduced
with respect to A such that I§ - f = gmod(sd), where I is the product of the
initials of elements in A.

Let S be a nonempty subset of K[x] and let $ be an ideal of K[x]. We define
the saturation of $ by S as $:S*={fe€K[x]:h-f € $ for h a product of
elements of S}. It is also an ideal of K[x]. When S is finite, $ : S is in fact
equal to {f € K[x] | dx € N, s%- f € $} that is usually denoted by ¢ : s*,
where s is the product of elements of S.

PROPOSITION 2.3. Let 3 be a nonempty subset of K[x]. Let fi,..., fr € K[x]
and let S be a finite subset of K[x]. Then the following properties hold true:

@) E Tz ) = Nic G fo);

(i) V(X):8>® =+/(2) :s, where s is the product of elements of S.
PROOF. See [1,9]. O

2.3. Regular and characterizable ideal. Let ${ be an autoreduced set with
respect to some given order on x. Let Hy = I4S, where I, and S, are, respec-
tively, the product of initials and the product of separants of elements in «.
The autoreduced set o is said to be consistentif 1 ¢ (o) : Hg.

DEFINITION 2.4. Let $ be an ideal of K[x].

(i) The ideal ¢ is said to be a regular ideal with respect to some order <
on the variables x if it is of the form («) : HJ, where o is an autoreduced set
with respect to the same order <.

(i) The ideal $ is said to be a characterizable ideal with respect to some
order < on x if there is an autoreduced set & with respect to the same order
< such that ¢ is a characteristic set of $ and $ = () : Hy. In this case we say
that o is a characteristic set.

REMARK 2.5. (1) Every characterizable ideal is regular. The converse is false
(see [10, Example 2.5]).

(2) Every prime ideal is characterizable for any order on the variables. But a
characterizable ideal is not necessarily prime.

(3) There exists some ideal that is characterizable with respect to some order
on x but not with respect to another order (see [10, Example 3.6]).

(4) There is an algorithm to decompose a radical of an ideal as intersection
of characterizable ideals (see [5, 10]).

(5) There is an algorithm to decompose a radical of an ideal as intersection
of regular ideals (see [3]).

In the following theorem we recall some properties of a regular ideal.

THEOREM 2.6 (Lazard’s lemma). Let sl be an autoreduced set of K[x]. Then
(A) : HY is a radical ideal. Furthermore, the characteristic set of a minimal
prime component of () : Hy] has the same set of leaders as .
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PROOF. See [4, 10]. O

The following theorem gives a necessary and sufficient condition for a reg-
ular ideal to be characterizable.

THEOREM 2.7. Let s = A4,...,A, be an autoreduced set of K[x]. The au-
toreduced set s is a characteristic set if and only if
() init(A;) is not a zero divisor modulo (sdi-1) : I, ;
(ii) sep(A;) is not a zero divisor modulo () :I;‘fi,
where A =Aq,..., A

PROOF. See [1, 5]. O

2.4. Irreducible autoreduced set. Let «f = A4,...,A, be an autoreduced set
of K[x] and ¥ = y1,...,yp are the leading variables of elements in s, and let
U =Uui,...,uq be the other indeterminates that are present in the elements of
A. The autoreduced set &f becomes an autoreduced set in the ring K[u, y].

DEFINITION 2.8. An autoreduced set o is said to be irreducible if either
(i) p =1 and A, is irreducible in K(u)[y;]; or
(i) Ai,...,Ap-1 is irreducible and A, is irreducible as a polynomial in y,
with coefficients considered in the quotient field of K (u)[y1,...,yp-11/
\g’p_l, where @p_l = (&Qp_l) :H.;‘fp, and &Qp_l = Al, cee ,Ap_l.

PROPOSITION 2.9. Let s = Ay,...,A, be an autoreduced set in K[x] such
that A, is irreducible in K(u)[y1] and for alli = 2,...,p, A; has degree one in
its leading variable. Then s is an irreducible autoreduced set.

PROPOSITION 2.10. An irreducible autoreduced set s is a characteristic set
of a prime ideal. This ideal is exactly the regular one associated to s, that is,
(A):Hg.

2.5. The link between Grobner basis and characteristic set. In this section,
we recall an interesting result cited in [11, 12], which says that we can extract
a characteristic set from a lexicographical Grobner basis.

LEMMA 2.11. Let i be an autoreduced set in K[x] and let $ be an ideal
containing . Then A is a characteristic set of $ if and only if for all nonzero
polynomial f in $, f is not reduced with respect to .

PROOF. See [14, page 5]. O

Let B = B; < - - - < B, be the reduced Grobner basis (see [2] for more details
about this notion) of $ an ideal in K[x] with respect to the lexicographical
term order such that x; < - - - < xy.

Let C; = By, C; = rem(B;,;Cy) with B;, the first polynomial that contains a
new variable not appearing in B .

Let C; = rem(B;,;C1,C2) with B;, the first polynomial that contains a new
variable not appearing in B;,.
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We continue this finite processes; we obtain a family of polynomials ¢ =
Ci,...,Cs which is an autoreduced set with respect to the order x; < - - - < Xy,.

PROPOSITION 2.12. With the same notation as above, € is a characteristic
set of $ with respect to the order x, < --- < x,, and is called the extracted
characteristic set from %.

PROOF. Let f € $and f # 0; by Lemma 2.11 it is sufficient to show that f is
not reduced with respect to 6. Since % is a Grobner basis of ¢, then there is B; in
9% such that the leading lexicographical monomial of B; divides some monomial
in f. So there exists C; in 6 such that deg(f,Iv(C;)) = deg(Cj,lv(C;)). Hence,
f is not reduced with respect to 6. O

In what follows, autoreduced sets are supposed to be consistent.

3. Resolvent of an ideal. Gao and Chou have introduced in [8] the notion
of resolvent for an arbitrary ideal with respect to a parametric set as a gener-
alization of the one introduced by Ritt for a prime ideal; they have given an
algorithm to compute a resolvent using the decomposition of a radical ideal
into prime ideals. In this section, we recall some definitions and properties
about this notion. Then we give an algorithm to compute a resolvent of an
ideal $ using a decomposition of /¥ into regular ideals without using factor-
ization over a tower of algebraic extensions.

DEFINITION 3.1. Let$beanideal of K[x]. Asubsetu = uy,...,u4 of {x1,...,
Xy} is said to be a parametric set of $ if K[u]n$ = (0) and for every y €
xt,oxn i\ {ur, . ugd, Klu, y1n$ # (0).

The set of nonleading variables of elements in an autoreduced set o is called
the parametric set of .

REMARK 3.2. Let o be an irreducible autoreduced set with the parametric
set u. Then u is a parametric set of the prime ideal () : Hy.

LEMMA 3.3. Let P be a prime ideal with a parametric set uw and let f ¢ P.
Then (P, f)nK[ul = (0).

PROOF. See [14]. O

LEMMA 3.4. Let o be an autoreduced set in K[x] with u the parametric set
of d. Then u is a parametric set of (A) : Hy .

PROOF. By Lazard’s lemma, each minimal prime component of (#) : Hy
has u as a parametric set. Then (#) : Hy is a decomposition of prime ideals
such that each one has u as a parametric set. So u is a parametric set of
(A):Hg. O

LEMMA 3.5. Let $ be an ideal of K[x] = K[u,y] having u = u,...,ug as a
parametric set with y = x\u = y1,...,¥p. Let $' be the ideal obtained from ¥
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by replacing each y; by a new variable z;. Consider $ the ideal generated by $
and $' in K[u,y,z]. Then $ has u as a parametric set.

PROOF. lLet h € $ nK[u], since h is independent of y and z, then if we
replace z;’s by the y;’s, we obtain that h is in $, hence $ "nK[u] = (0). Since
$ c $,thenforalli=1,...,p,we have $nK[u,y;] + (0) and $nK[u,z;] + (0).

O

In the following theorem proved in [7] for a prime ideal, we extend the same
result for an arbitrary ideal.

THEOREM 3.6 (Ritt’s theorem). Let $ be an ideal of K[u,y] withu = u,,...,
Uy as a parametric set. Then there exist G € K[u]\ {0} and integers My,...,M,
such that two distinct zeros of $ with the u taking the same values for which G
does not vanish give different values for Q = My yy+---+Mpyp.

PROOF. Let $ = (4,9") be the ideal defined in Lemma 3.5.

(@) Let \/$=9$1n---n$ be the decomposition of /¢ into prime ideals.

(A) If, for some j € {1,...,t}, u is not a parametric set of $;, then there
ishj(u) e $jnK[u] and h; = 0.

(B) If, for some j, the ideal (1 —z1,...,¥p —2p) € $; and u is a para-
metric set of §;, then we put h; = 1.

(C) If, for some j, the ideal ()1 —z1,...,p — Zp) is not a subset of ¢;
and u is a parametric set of $;. Then there exists k € {1,...,p} such
that yy —zx ¢ $;. Since $; is a prime ideal and u is a parametric
set of $;, then by Lemma 3.3, ($j, Yk —zx) nK[u] # (0), hence there
exists h;.(u) € ($j,yk—zx) NK[ul, h;.(u) +0.

The cases (A), (B), and (C) exhaust all possibilities.

(b) Let ji,...,Js be such that u is a parametric set of $; and (y1 —z1,...,¥p—
zp) isnot a subset of ¢; for all j € {j1,...,js}. Then there exist integers
M,...,M, such that ¢ = Mi(y1 —z1) +---+Mp(yp —2zp) ¢ $; for all
J € {j1,...,Js}. Consequently, by Lemma 3.3, ($;,¢) nK[u] # (0). We
put b’ = hy ---hy with hJ e ($j,6)nKlul, hJ + 0.

(c) Let G be the product of h; (case (A)), of h;. (cases (B) and (C)), and of h"'.
Let (it,y") and (u,y"") be two distinct zeros of ¢, then (i,y’,y") is a zero of
g.

We assume that Y7 | M;(y! — y!') = 0; there are three cases to be distin-

guished:
(i) (u,y’,»")is a zero of some ¢$; satisfying case (A), then h (1) = 0, and

hence G(11) = 0;

(ii) (it,y’,»"") is a zero of some $; satisfying case (B), then y' = " and

hence (it,y’) = (i1,y""). This case is impossible;

(iii) (@,y’,»") is a zero of some $; satisfying case (C).

If there exists k € {1,...,p} such that y;, = y,/, then (i, ', ") will be a zero of
($j, ¥k —zk), and we will have h}(u) = 0; this implies that G(@) = 0.If y;, # )/
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forall k € {1,...,p}, then (it,y’,y"") will be a zero of ($;,¢), hence h'' (1) = 0,
and then G(it) = 0. |

LEMMA 3.7. Let $1 and $, be two ideals in K[x], w a new variable, and
Q= Zf:IMiyi, where the M;’s are integers. Then ($1 N %2, w0 —Q) = ($1,w —
Q)N (2, w-0Q).

PROOF. It is sufficient to prove the indirect inclusion.

Let f be in (91,0 — Q) N (92,0 — Q), then f = Fi_ | Aifi + hi(w - Q) =
25:1 H;igj + h2(w —Q), where hy, hy, A;, pu; are in K[x,w] and f; € $; and
gi€drfori=1,...,sand j=1,...,t.

We can consider the A;’s and the p;’s as free from w because otherwise we
reduce these polynomials with respect to w —Q, then >;_; A; fi — 2521 Higj =
(ho—h1)(w—-Q).

Since the left-hand side is free of w, then >;_; A; f; = Zf,:] H;igj, and f is in
(910552,0\)—Q). O

LEMMA 3.8. Let $ be a prime ideal in K[u,y] such that u is a parametric
set, w a new variable, and Q = Zf;lMiyi, where the M;’s integers. Then the
ideal ($,w — Q) is prime and has u as a parametric set.

PROOF. See [14, page 40). o

LEMMA 3.9. Let$ be an ideal of K[u,y] having u as a parametric set. Let w
be a new variable and Q = Zle M;y; with the M;’s integers. Then+/($,w —Q) =
(9, w—Q) and u is a parametric set of the ideal § = ($,w —Q) in K[x,w].

PROOEF. For the first point, let f € /($,w — Q), then there exists « € N such
that f* € ($,w—Q), hence f*=g+h(w—-Q), where g € ($) in K[x,w] and
h € K[x,w]. We reduce f and g with respect to w —Q, then we obtain f = f; +
folw=-Q) and g = g1 +g2(w—-Q) with f1 € K[x], g1 € $,and f2,92 € K[x,w].
Consequently, f* = f*+F(w-Q) = g1 +g2(w—Q) for some F € K[x, w], then
fX=g) € 9; this implies that f € (V9,w-Q).

For the second property, we show that $nK[u] = (0) and $nK[u,w] = (0).
Firstly, we assume that $ n K[u] # (0), then there exist a nonzero polyno-
mial P(u) in $ n K[u]; this implies that there exist f, f1,...,fr € K[x,w]
and g1,...,gr € 9 such that P(u) = >_; figi + f(w — Q); for w = Q, we
will have P(u) € K[u] n $, but this is impossible because u is a paramet-
ric set of $. Secondly, we decompose /¢ into prime ideals such that /9 =
(ﬂf:1 mi)N (ﬂ;zl pj), where the m;’s are the prime components having u as a
parametric set and the p;’s are those satisfying pjnK[u] # (0). By Lemma 3.8,
we have (m;,w—Q)NnK[u,w] # (0), then by the first property and Lemma 3.7,
we deduce that u is a parametric set of $. 0

THEOREM 3.10. Let $ be an ideal of K[u,y] with u a parametric set. Let
w be a new variable, M,...,M, integers satisfying the Ritt’s theorem, and
Q=" My Let § = ($,w—Q). Then \/§ has a characteristic set of the form
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R(u,w),Ri (u,w,y1),...,Rp(u,w,y,) withrespectto the orderu; < --- <uy <
w <y <---<Ypsuchthatdeg(Rj,y;) =1 forj=1,...,p.

PROOF. See [8, page 7]. |

COROLLARY 3.11. Let $ be an ideal of K[u,y] with uw a parametric set. Let
w,A1,...,Ap be indeterminates and Q = Zf’:] Aiyi. Then $ = ($,w — Q) has
u as parametric set and /§ has a characteristic set of the form R(A,u,w),
Ri(A,u,w,y1),...,Rp (A, u,w,yp) with respect to the order A1 < --- < A, <
UL < - <Ug<W <Y <+ <Yy such thatdeg(Rj,v;) =1 forj=1,...,p.

PROOF. For showing that u is a parametric set of $, we use the same proof
as the one given for Lemma 3.9.

It is clear that Ay,...,A, satisfy the Ritt’s theorem for the ideal ¢, then by
Theorem 3.10 the R;’s are linear in their leading variables. O

DEFINITION 3.12. The polynomial R defined in Theorem 3.10 is said to be
a resolvent of $ with respect to the parametric set u.

4. Computation of the resolvent
4.1. Computation of a basis of the radical of an ideal

LEMMA 4.1. Let s be an autoreduced set in K[ x| and z a new indeterminate.
Then (A):HY = (A,zHy — 1) nK[x].

PROOF. For the direct inclusion, let f € (o) : Hy, then there exists x € N
such that H f € (o), hence (zHy)*f € (o) inK[x,z] since f = f+ f(zHy)*—
f(zHy4)%, therefore f € (d,zHy4 — 1) N K[x]. For the other inclusion, we take
fe(d,zHy;—1)NnK[x], then f will be a linear combination of elements in s
and the polynomial zH — 1 with coefficients in K[x, z] since f is independent
of z, so if we replace z by 1/H,, we will obtain that f € (o) : Hy. O

REMARK 4.2. By Lemma 4.1, one can compute a basis of the ideal () : Hy
using Grobner basis.

LEMMA 4.3. Let $ be an ideal in K[x]. Then there is an effective method to
compute a basis of \/$.

PROOE. We decompose +/$ into regular ideals as v/§ = (;_; ((4;) :HZ) (see
Remark 2.5). By Lemma 4.1, we can determine a basis of each () :H;’fi. So, by
the use of Grobner-basis computation, we deduce a basis of /9. O

4.2. Computation of the resolvent of a regular ideal. In [6], Cluzeau and
Hubert have given an algorithm to compute a resolvent of a regular differen-
tial ideal in ordinary differential case. In this subsection, we give a determin-
istic method to compute a resolvent of a regular ideal using zero-dimensional
Grobner-basis computation.
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LEMMA 4.4. Let d be an autoreduced set in K[x], u the parametric set of s,
w a new variable, My, ...,M, integers satisfying Ritt’s theorem, and Q = Zf’:l.
Then the ideal (A,w — Q) : Hy is a characterizable ideal with respect to u <
w<y.

PROOF. See [6]. O

LEMMA 4.5. Let d be an autoreduced set with u the parametric set and y
the other variables. Then 4 is a characteristic set in K[u,y] if and only if s is
a characteristic set in K(u)[y].

PROOF. See [10]. O

THEOREM 4.6. Let sl be an autoreduced set in K[u,y] withu the parametric
set. Then there is an algorithm to compute a resolvent of () : Hg .

PROOF. LetAj,...,A, benew variables. The A;’s satisfy the Ritt’s theorem for
() : Hy, then, by Lemma 4.4, (oA, w — Z’f:l Aiyi) : Hy is characterizable with
respect to A < u < w < y and has a characteristic set of the form R,R;,...,R,
such that deg(R;,y;) = 1 (by Corollary 3.11). Let D =11, - - - I, with I, I,...,1I,,
respectively, the initials of R,Ry,...,R,. Let My,...,M, be integers such that
D(M,u,w) # 0. After substituting the M;’s in A;’s, we obtain R’,Ri,...,R,’g
which will be a characteristic set of ((#) : Hj,w — Zf’;lMiyi) verifying

deg(R},y;) = 1.
The polynomial R’ is a resolvent of () : Hy with respect to the parametric
set U. O

ALGORITHM 4.7. Let o be an autoreduced set in K[u,y], where u is the
parametric set.

STEP 1. LetAy,...,A, and z be new variables. We compute %, the Grobner ba-
sisin K(A,u)[w, v, z], of the zero-dimensional ideal («,zHy—1,w — Zf;l AiVi)
with respect to a lexicographical order such that w < y < z.

STEP 2. Let € := C,(,...,C, be the extracted characteristic set from BN
KA, uw)[w,y].

STEP 3. LetJ :=1,T,...,T, be obtained from ‘¢ by clearing out the denom-
inators.

STEP 4. Let % := R,Ry,...,R, be obtained from J by replacing the A;’s by
M;’s such that D(M,u,y) # 0,where D =1I; - - - I, with I, I1,...,I,, respectively,
the initials of T, T1,...,Tp.

The polynomial R is a resolvent of () : Hy with respect to the parametric
set u.

CORRECTNESS 4.8. Itis a consequence of Lemmas 4.4, 4.5 and Theorem 4.6.
4.3. Computation of the resolvent of an ideal

ALGORITHM 4.9. Let $ be an ideal of K[x].
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STEP 1 (the computation of a parametric set of $). We decompose /¥ into
regularideals ﬂle (Ai): H.jfl,. The parametric set of &{; such that |¢{;| is minimal
is a parametric set of «.

STEP 2. We compute a basis G of /9.

STEP 3. Let w,Aq,...,A, be new variables.

We compute the Grobner basis % of the ideal (+/%, w — Zf:l Aiyi) = (G, —
zf’zl Aiyi) with respect to the lexicographical order term satisfying A < u <
w < y.

Let %6 be the extracted characteristic set from %.

The autoreduced set 6 has the form R, R;,...,R, such that deg(R;,y;) = 1.

STEP 4. Let D = II;---1, with I,I,,...,I,, respectively, the initials of
R,Ry,...,R,.

Let Mj,...,M, be integers such that D(M,u,w) = 0.

Let R',Ry,... ,R;, be obtained from R, Ry,...,R, after substituting the M;’s in
)\i’S.

The autoreduced set R',R,... ,R;, is a characteristic set of (V', w—ZfZl M;yi)
verifying deg(R;,y;) = 1.

The polynomial R’ is a resolvent of $ with respect to the parametric set u.

CORRECTNESS 4.10. Itis a consequence of Proposition 2.12, Corollary 3.11,
and Lemma 4.3.

5. Applications. The resolvent has a wide range of applications, namely it
transforms a set of polynomial equations to a single polynomial equation such
that their varieties are birationally equivalent, it permits to compute a primitive
element for a finitely generated algebraic extension over a field of characteristic
zero, and obviously it has other areas of applications.

In this section, we show how the resolvent can be used to decompose a
variety into irreducible varieties and how to test that a variety associated to a
regular ideal is irreducible.

5.1. Decomposition of a variety into irreducible varieties. Let o = Ay,...,
A, be an autoreduced set, My, ..., M, integers satisfying Ritt’s theorem for the
regular ideal («) : Hy, and w a new indeterminate. Put ¢ = (4, w —Q) : Hy,
where Q = M1y, + - -+ +M,Yy,. We know that ¢ is characterizable and has a
characteristic set of the form ® = R,Ry,...,Rp, where each R; is linear in y;.
We can assume R square free because ¢ is radical.

LEMMA 5.1. With the same notations as above, the following properties hold:
(1) $=(B):Hy;
(2) $nKlu,y1=(4):Hg.

PROOF. (1) Itis a corollary of Lemma 4.4.
(2) It is sufficient to prove the direct inclusion; for this, let f bein $nK[u,y],
then there exists g € ((#) : Hy) (considered in the ring K[u,y,w]) and there
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exists h € (w — Q) such that f7 = g+h for v € N. Let g = rem(g;w — Q); we
obtain f* = g+ h for h € (w — Q). Since f* is free of w, then f" = g, hence
fre(d):HZ, therefore f € (A) : H because (#A) : Hy is perfect by Lazard’s
lemma. O

THEOREM 5.2. With the same notations as in Lemma 5.1. Let R = By - - - B
be the factorization of R into irreducible polynomials in K[ul[w] and B; =
Bi,Ry,...,R, fori=1,...,s. Then, (sd,w - Q) : Hy = (i, (B;) : Hy, and each
(9B) :H;;’i is a prime ideal with %B; a characteristic set.

PROOF. Since the M;’s satisfy The Ritt’s theorem, then, by Lemma 4.4,
(A, —Q) : Hy is a characterizable ideal with respect to u < w <  and by
Lazard’s lemma the ideal (s4,w — Q) : Hy is radical and is equal to (RY) : Hyy
with RY = R,Ry,...,Rp, then (dd,w - Q) : HY = (RY) : Hyy = \/(RY) : Hzy) =
V@RY) 1 Hag = N1/ (Bi,R1,...,Rp) : Hyy (by Proposition 2.3). To finish the
proof, it is sufficient to show that ,/(B;,R1,...,Rp) : Hay = /(%B;) : Hy,.

For this let f € \/(Bi,R1,...,Rp) : Hay, then

f'H.o];,gyE (Bi,Rl,...,Rp). (5.1)

We have Hyy = hg - Hyy = 1-S-Hgg , where ¥’ = Ry,...,R,, I = init(R) and
S = sep(R). We have sep(R) = 0R/dw = d(By - - - B) /0w = Y41 (S - [ 141 Bj),
where Sy = sep(Bg). Furthermore, init(R) = ]_[Sk:llk, where I = init(By). Since

all terms in >j_, (Sk - [1;.x Bj), except S; - [1,.;Bj, are in \/(B;,Ry,...,Rp), then
f+Hgg €/(Bi,Ry,...,Ry) = f-init(R)-S; - | [ Bj - Hay' € /(Bi,Ry,...,Rp)

Jj#i

:fl—[(IIBl)E (BilRlv"-;Rp):H%i

J#i
)
(since init(R) = [ [ I, Ha, = IiSiHM)
k=1

= f-11U;B)) € (Bi,R1,...,Rp) 1 H,
J#i

(5.2)

(the last implication follows by Proposition 2.3 and Lazard’s lemma).

The autoreduced set %; is irreducible, then it is a characteristic set of the
prime ideal (%;) :H§§i. For j # i, Bj ¢ (B;) :H(;;‘i because otherwise B; will be
equal to B;. So f € (%) : Hg,. O

In the following, we will illustrate how one obtains the decomposition of
(o) : Hy into prime ideals from the decomposition of the characterizable ideal
$=(d,w-Q):Hy.For j=1,...,s,let B, = D1,...,Dp, D; be a characteristic
set of (%) : Hy, with respect to the order u <y < w.
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LEMMA 5.3. With the same notations as above, the ideal (% ;) :H;jj NK[u,y]

has 951 = Du,...,Dy, as a characteristic set with respect to u < y and it is equal
to (9;):HZ forj=1,...,s.
(/J

PROOF. We have that %; is irreducible by Proposition 2.9, then (%;) : Hg,
is a prime ideal and also (%;) : Hy, N K[u,y].

Let f be in (%)) : 5};}, NK[u,y] and f =rem(f;%;). Since f is in K[u,y],
then rem(f;%;) = rem(f;%;) = 0 because %; is a characteristic set of (%) :
Hg;’j. It follows that (%) :H;;’J. NK[u,y]=(%;) :H;?j because it is a prime ideal

and 9 j is its characteristic set. O

The following proposition is the aim result; it gives the decomposition of
() : HS into prime ideals that each one is given by its characteristic set % e

PROPOSITION 5.4. With the same notations as above,

() :HG = () (9;) TH . (5.3)

Jj=1
PROOF. This result is a corollary of Lemma 5.1 and Theorem 5.2. O

REMARK 5.5. For the radical of an ideal $ = (2), we firstly decompose /9
into regular ideals (see [3, 4, 5, 9]), and afterwards, using the techniques above,
decompose each regular ideal into prime ideals.

5.2. Test of the primality of a regular ideal

PROPOSITION 5.6. Let $ = (o) : Hy with sd an autoreduced set having u as
the parametric set and R a resolvent of $ with respect tou. Then R is irreducible
over K(u) if and only if \/$ is a prime ideal.

PROOF. LetM,...,M, be integers satisfying the Ritt’s theorem for the ideal
9 with respect to the parametric set u, then there exist Ry, ..., R, linear in their
leading variables such that R,Rs,...,R, is a characteristic set of \/($,w —Q),
where Q = My y1 + - - - + M, yp, hence, by Lemma 4.4, \/($,w —Q) = (R) : Hy,
where % = R,Ry,...,R,. This implies, by Proposition 2.9 and Lemma 5.1, that
R is irreducible over K (u) if and only if $ is prime. O

6. Examples

EXAMPLE 6.1. Let $ be the ideal, in the ring K[x,y,z], generated by the
following polynomials:

fii=y5—2x°y3 4 x10,
foi=x?y3z—x"z-y>+x°y?,
fri=yrz-x’yz-x3y3 +x8,
fai=x122-2x%y2z + y4



RESOLVENT OF AN IDEAL 4433

Firstly, we compute the decomposition of /¢ into regular ideals; we obtain

VI :=910%s, F1:=(x2z—y2,y3—x%):(x, )™, $2:= (x, V). (6.2)

We remark that x is a parametric set of $.

We verify that M; = 1, M» = 1 are integers satisfying Ritt’s theorem for the
ideal $; with respect to the parametric set x (that is two distinct zeros of
$1, with the x taking the same value, give different values for Q = M,y +
M,z = y + z), and so we obtain a characteristic set R,R1,R; of ($;,w —y —2z),
satisfying the definition of the resolvent, that is, deg(R;,y) = deg(R»,z) = 1,
where R := -3x3w + w3 —x° —x*, Ry :i= (—x +x?)y +w? — x°w - 2x3, and
Ry = (=x +x%)z + xw —w? + 2x3. Since R is irreducible, then /% := $, N $»
is the decomposition into prime ideals. The polynomial xR is a resolvent of .$
with respect to the parametric set x.

EXAMPLE 6.2. Let «d:= A, A be an autoreduced setin K[x,y,z] with A, :=
Y2—(1+x)y+xand Ay :=z> - (3+x)z +3x.

The autoreduced set R,R;,R> is a characteristic set of ((#) : Hy , w —y —2)
with respect to x < w < y < z, where R := 24x + w* + 5w?x? —4w3x + 32x? -
2x3w +8x3 - 8w3 +19w? —54xw —28x°w — 12w +28xw?, Ry := (—4+2x)y —
8x2+15xw —6w? —14x +9w +w3 —3xw?2 +2x%w, Ry := (—4+2x)z+3xw? —
2x°w — w3+ 6w? + 14x + 8x% — 17xw — 5w, R is a resolvent of (s) : HY with
respect to the parametric set x,and R := (w —4)(w-2x)(w—-x-3)(w—-x-1)
is the factorization of R over K[u].

We put B :=w -4, B:=w -2x, B3 :'=w —-x -3, and By := w —x — 1.
Then ((A) : HY,w —y —2) = ﬂ?:l%i, where %B; := ((B;,R1,R») : H*®) and
H :=init(R;) init(R») := (4 —2x)2.

Changing of the order on the variables, we obtain

(A):Hy :=(z-3,y-Dniz-x,y—-x)n(z-x,y-1)n(z-3,y —x).
(6.3)

7. Conclusion. We have developed an algorithm to compute a resolvent of
an algebraic variety. No factorization is needed. Some of the main problems
in polynomial ideal theory can be solved by means of the resolvent. We com-
pute the irreducible varieties associated to a given affine variety, we test the
primality of a regular ideal.

The algebraic complexity of the resolvent and the computational complex-
ity of the associated algorithms have been explicitly explored by Gallo and
Mishra [7].

The generalization of the resolvent and its complexity to differential equa-
tions is a future investigation.



4434

[1]

[2]

(31

[4]

[5]

[6]

[7]

[8]

[9]

(10]
(11]

(12]

[13]

(14]

D. BOUZIANE AND A. KANDRI RODY

REFERENCES

F. Aubry, Ensembles triangulaires de polynomes et résolution de systémes al-
gebriques. Implantation en Axiom, Ph.D. thesis, Université Paris VI, Paris,
1999.

T. Becker and V. Weispfenning, Grébner Bases. A Computational Approach to
Commutative Algebra, Graduate Texts in Mathematics, vol. 141, Springer-
Verlag, New York, 1993.

F. Boulier, D. Lazard, F. Ollivier, and M. Petitot, Representation for the radical
of a finitely generated differential ideal, Proceedings of the International
Symposium on Symbolic and Algebraic Computation (Montreal, Canada)
(A. H. M. Levelt, ed.), ACM Press, New York, 1995.

______, Computing representations for radicals of finitely generated differential
ideal, Tech. Report IT-306, LIFL, Villeneuve d’Ascq, 1997.

D. Bouziane, A. Kandri Rody, and H. Maarouf, Unmixed-dimensional decomposi-
tion of a finitely generated perfect differential ideal, J. Symbolic Comput.
31 (2001), no. 6, 631-649.

T. Cluzeau and E. Hubert, Resolvent representation for regular differential ideals,
Appl. Algebra Engrg. Comm. Comput. 13 (2003), no. 5, 395-425.

G. Gallo and B. Mishra, The complexity of resolvent resolved, Proceedings of the
5th Annual ACM-SIAM Symposium on Discrete Algorithms (Arlington, Va),
ACM Press, New York, 1994, pp. 280-289.

X. Gao and S.-C. Chou, On the theory of resolvents and its applications, Systems
Sci. Math. Sci. 12 (1999), 17-30.

E. Hubert, Quelques algorithmes pour I'Etude des Solutions des Equations Dif-

férentielles Algébriques, Ph.D. thesis, Institut National Polytechnique de

Grenoble, Grenoble, 1997.

, Factorization-free decomposition algorithms in differential algebra, ]J.

Symbolic Comput. 29 (2000), no. 4-5, 641-662.

A. Kandri Rody, Effective methods in the theory of polynomial ideals, Ph.D. thesis,
Rensselaer Polytechnic Institute, New York, 1984.

A. Kandri Rody and B. D. Saunders, Primality of ideals in polynomial rings, Pro-
ceedings of the 3rd MACSYMA Users Conference, General Electric Schenec-
tady, New York, 1984, pp. 459-471.

E. R. Kolchin, Differential Algebra and Algebraic Groups, Pure Appl. Math, vol. 54,
Academic Press, New York, 1973.

J. E. Ritt, Differential Algebra, Dover Publications, New York, 1966.

Driss Bouziane: Département de Mathématiques, Faculté des Sciences Semlalia, Uni-
versité Cadi Ayyad, BP 2390, Marrakech, Morocco
E-mail address: mbouziane@ucam.ac.ma

Abdelilah Kandri Rody: Département de Mathématiques, Faculté des Sciences
Semlalia, Université Cadi Ayyad, BP 2390, Marrakech, Morocco
E-mail address: kandri@ucam.ac.ma


mailto:mbouziane@ucam.ac.ma
mailto:kandri@ucam.ac.ma

