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We classify, by means of the orthogonal group �7(R), all eight-dimensional real
absolute-valued algebras with left unit, and we solve the isomorphism problem. We
give an example of those algebras which contain no four-dimensional subalgebras
and characterise with the use of the automorphism group those algebras which
contain one.
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1. Introduction. One of the fundamental results about finite-dimensional

real division algebras is due to Kervaire [7] and Bott and Milnor [3], and states

that the n-dimensional real vector space Rn possesses a bilinear product with-

out zero divisors only in the case where the dimensionn= 1,2,4, or 8. All eight-

dimensional real division algebras that occur in the literature contain a four-

dimensional subalgebra (see [1, 2, 4, 5, 6]). However, it is still an open problem

whether a four-dimensional subalgebra always exists in an eight-dimensional

real division algebra, even for quadratic algebras [4]. In [9], Ramírez Álvarez

gave an example of a four-dimensional absolute-valued real algebra contain-

ing no two-dimensional subalgebras. On the other hand, any four-dimensional

absolute-valued real algebra with left unit contains a two-dimensional subal-

gebra. Therefore, a natural question to ask is whether an eight-dimensional

real absolute-valued algebra with left unit contains a four-dimensional subal-

gebra. In this note, we give a negative answer and we characterise the eight-

dimensional absolute-valued real algebras with left unit containing a four-

dimensional subalgebra in terms of the automorphism group.

2. Notation and preliminary results. For simplicity, we only consider vec-

tor spaces over the field R of real numbers.

Definition 2.1. Let A be an algebra; A is not assumed to be associative or

unital.

(1) An element x ∈A is called invertible if the linear operators

Lx :y � �→ xy, Rx :y � �→yx (2.1)
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are invertible in the associative unital algebra End(A). The algebra A is called

a division algebra if all nonzero elements in A are invertible.

(2) A unital algebra A is called a quadratic algebra if {1,x,x2} is linearly de-

pendent for all x ∈A. If (·/·) is a symmetric bilinear form over A, then a linear

operator f on A is called an isometry with respect to (·/·) if (f (x)/f(y)) =
(x/y) for all x,y ∈A. If, moreover, (xy/z)= (x/yz), for all x,y,z ∈A, then

(·/·) is called a trace form over A.

(3) The algebra A is termed normed (resp., absolute-valued) if it is endowed

with a space norm ‖ · ‖ such that ‖xy‖ ≤ ‖x‖‖y‖(resp., ‖xy‖ = ‖x‖‖y‖)
for all x,y ∈ A. A finite-dimensional absolute-valued algebra is obviously a

division algebra and has a subjacent Euclidean structure (see [11]).

(4) An automorphism f ∈ Aut(A) is called a reflexion of A if f ≠ IA and

f 2 = IA.

Write Aut(O) = G2. We denote by S(E) and vect{x1, . . . ,xn}, respectively,

the unit sphere of a normed space E and the vector subspace spanned by

x1, . . . ,xn∈E.

It is known that a quadratic algebra A is obtained from an anticommutative

algebra (V ,∧) and a bilinear form (·,·) over V as follows: A=R⊕V as a vector

space, with product

(α+x)(β+y)= (αβ+(x,y))+(αy+βx+x∧y). (2.2)

We have a bilinear form associated to A, namely,

A×A �→R, (α+x,β+y) � �→αβ+(x,y), (2.3)

(V ,∧) is called the anticommutative algebra associated to A. The elements

of V are called vectors, while the elements of R are called scalars. We write

A= (V ,(·,·),∧) (see [8]).

We will write (W,(·/·),×) for the (quadratic) Cayley-Dickson octonions al-

gebra O with its trace form (·/·) and the anticommutative algebra (W,×). For

u≠ 0∈W ,W(u) will be the orthogonal subspace of R·u inW . It is well known

that O is an alternative algebra, that is, it satisfies the identities x2y = x(xy)
and yx2 = (yx)x.

Remark 2.2. Let A be an eight-dimensional absolute-valued algebra with

left unit e, and f is an isometry of the Euclidian space A such that f(e) = e.
LetAf be equal toA as a vector space, with a new product given by the formula

x∗y = f(x)y , for allx,y ∈A. ThenAf is also an absolute-valued algebra with

left unit e. It is clear that an f -invariant subalgebra ofA is a subalgebra ofAf . In

particular, if we consider the isometry R−1
e , then we obtain an absolute-valued

algebra AR−1
e

with unit e, which is isomorphic to O (see [12]).
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3. Isometries of O with no invariant four-dimensional subalgebras. Let

ϕ be an isometry of the Euclidian space O = R⊕W , fixing the element 1.

Then there exists an orthonormal basis � = {1,x1, . . . ,x7} of O such that x1

is an eigenvector of ϕ and Wk = vect{x2k,x2k+1} is a ϕ-invariant subspace of

O, for k = 1,2,3. If B is a four-dimensional ϕ-invariant subspace of O con-

taining 1, then the basis � can be chosen as an extension of an orthonormal

basis {1,u,y,z} of B, with u ∈ W an eigenvector of ϕ, and E = vect{y,z} is

a ϕ-invariant subspace of B. Thus, B can be written as a direct orthogonal

ϕ-invariant sum R⊕R·u⊕E.

In the following important example, we use the notation introduced above.

Example 3.1. If ϕ fixes x1 and its restriction to every Wk is the rotation

with angle kπ/4, then vect{1,x1} is the eigenspace E1(ϕ) of ϕ associated to

the eigenvalue 1. The characteristic polynomial Pϕ(X) of ϕ is then

(X−1)2
(
X2−2X cos

(
π
4

)
+1

)(
X2−2X cos

(
2π
4

)
+1

)(
X2−2X cos

(
3π
4

)
+1

)

=
∏

0≤k≤3

Pk(X)

(3.1)

with

Pk(X)=X2−2X cos
(
kπ
4

)
+1. (3.2)

The characteristic polynomial Pϕ//B (X) of the restriction of ϕ to B is a poly-

nomial of degree 4, a multiple of X − 1, and a divisor of Pϕ(X). Actually,

Pϕ//B (X) = (X − 1)2Pk(X) for k ∈ {1,2,3}, and this “forces” B to be of the

form E1(ϕ)⊕Wk for a certain k∈ {1,2,3}. In particular, if � is obtained from

the canonical basis {1,e1, . . . ,e7} of O by taking

x1 = e5, x2 = e1+e2√
2
, x3 = e1−e2√

2
, x4 = e3+e4√

2
,

x5 = e3−e4√
2
, x6 = e6+e7√

2
, x7 = e6−e7√

2
,

(3.3)

then for each i ≠ j and l, xi ×xj and xl are not colinear. This shows that

E1(ϕ)⊕Wk is not a subalgebra of O, for k = 1,2,3. It follows that O has no

four-dimensional ϕ-invariant subalgebras.

4. Eight-dimensional real absolute-valued algebras with left unit. First re-

call the following result from [11].

Lemma 4.1. Every homomorphism from a normed complete algebra into

an absolute-valued algebra is contractive. In particular, every isomorphism of

absolute-valued algebras is an isometry.

As a consequence we have the following lemma.
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Lemma 4.2. Let ψ :A→ B be an isomorphism of absolute-valued R-algebras

and f :A→A an isometry. Thenψ◦f ◦ψ−1 : B→ B is an isometry andψ :Af →
Bψ◦f◦ψ−1 is an isomorphism. In particular, ψ :Af →O is an isomorphism if and

only if ψ :A→Oψ◦f−1◦ψ−1 is an isomorphism.

Proof. The first statement is a consequence of Lemma 4.1. For x,y ∈ A,

we have

ψ
(
f(x)y

)=ψ(f(x))ψ(y)= (ψ◦f ◦ψ−1)(ψ(x))ψ(y), (4.1)

hence ψ :Af → Bψ◦f◦ψ−1 is an isomorphism.

Theorem 4.3. Every eight-dimensional absolute-valued left unital algebra

is isomorphic to Of where f is an isometry of the Euclidian space O which fixes

1. Moreover, the following two properties are equivalent:

(1) Of and Og are isomorphic (f , g being two isometries of O fixing 1);

(2) there exists ψ ∈ G2 such that g =ψ◦f ◦ψ−1, that is, f and g are in the

same orbit of conjugations by isometries of O fixing 1.

Proof. The first statement is a consequence of a Remark 2.2 and Lemma

4.2. The second statement can be proved as follows:ψ :Of →Og is an isomor-

phism if and only if ψ :O→ (Og)ψ◦f−1◦ψ−1 =Oψ◦f−1◦ψ−1◦g is an isomorphism.

This is equivalent to

ψ◦f−1 ◦ψ−1◦g = IO, ψ∈G2. (4.2)

5. Subalgebras and automorphisms of Oϕ. The following preliminary re-

sult allows us to characterise the subalgebras of Oϕ.

Lemma 5.1. If A is an algebra with left unit and without zero divisors, then

every nontrivial finite-dimensional subalgebra ofA contains the left unit element

of A.

Proof. Such a subalgebra B is a division algebra and for every x ≠ 0 ∈ B,

there exists y ∈ B such that yx = x. On the other hand, if e is the left unit

of A, then ex = x. Then the absence of zero divisors in A shows that y = e∈ B.

What are the subalgebras of Oϕ?

Proposition 5.2. Let ϕ be an isometry of the Euclidian space O that fixes

1 and B is a subspace of O. Then the following two properties are equivalent:

(1) B is a subalgebra of Oϕ;

(2) B is a ϕ-invariant subalgebra of O.

Proof. (1)⇒(2). The subalgebra B contains the left unit element 1 of Oϕ
and is ϕ-invariant. Indeed,
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1∈ B, ∀x ∈ B :ϕ(x)= ϕ(x)1︸ ︷︷ ︸
product in O

=
product in Oϕ︷ ︸︸ ︷
x∗1 ∈ B. (5.1)

(2)⇒(1). See Remark 2.2.

Remark 5.3. (1) The algebraOϕ has a two-dimensional subalgebra because

ϕ has an eigenvector x ∈W and the subalgebra vect{1,x} ofO isϕ-invariant.

This argument shows that Hϕ has a two-dimensional subalgebra.

(2) Let ϕ be the isometry considered in Example 3.1. Then Oϕ has no four-

dimensional subalgebras.

The following elementary result is useful for characterising the automor-

phisms of the algebra Oϕ.

Lemma 5.4. Let A be an algebra with left unit e and without zero divisors. If

f ∈Aut(A), then f(e)= e.
Proof. We have (f (e)−e)f(e)= 0.

What are the automorphisms of the algebra Oϕ?

Proposition 5.5. If ϕ is an isometry of the Euclidian space O that fixes 1,

then f ∈Aut(Oϕ) if and only if f ∈G2 and f commutes with ϕ.

Proof. For all x,y ∈ O, we have that f(ϕ(x)y) = ϕ(f(x))f(y), hence

f(ϕ(x)) = f(ϕ(x)1) =ϕ(f(x))f(1) =ϕ(f(x)), and f ◦ϕ = ϕ ◦f and f ∈
G2.

Remark 5.6. If f ∈ Aut(Oϕ)\{IO} is a reflexion, then B = Ker(f − IO) is a

four-dimensional subalgebra of Oϕ.

6. The relation inOϕ between four-dimensional subalgebras and nontriv-

ial automorphisms. We begin with the following useful preliminary result

taken from [10].

Lemma 6.1. Every four-dimensional subalgebra B of O = (W,(·/·),×) coin-

cides with the square of its orthogonal B⊥ and satisfies the equality BB⊥ = B⊥B =
B⊥.

Proof. Let v ∈ S(B⊥), then B⊥ = vB. Indeed, taking into account the trace

property of (·/·), we have for all x,y ∈ B that (vx/y) = (v/xy) = 0, hence

vB ⊂ B⊥, and we have equality because the dimensions of both spaces are

equal. Using the middle Moufang identity, we compute that

(vx)(vy)=−(vx)(yv)= v(xy)v = xy (6.1)

for all x,y ∈ B. Taking into account the anticommutativity of the product ×,

we find that BB⊥ = B⊥B. Finally, the trace property of (·/·) shows that BB⊥ is

orthogonal to B, hence BB⊥ ⊂ B⊥.
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Proposition 6.2. Let B be aϕ-invariant four-dimensional subalgebra ofO.

Then the map

f :O= B⊕B⊥ �→O, f (a+b)= a−b, (6.2)

is a reflexion which commutes with ϕ.

Proof. Take a,x ∈ B and b,y ∈ B⊥. Using Lemma 6.1, we compute

f
(
(a+b)(x+y))= f(ax+by+ay+bx)

= (ax+by)−(ay+bx)
= (a−b)(x−y)
= f(a+b)f(x+y),

(6.3)

B⊥ is ϕ-invariant since B is ϕ-invariant, and we have

(f ◦ϕ)(a+b)= f (ϕ(a)+ϕ(b))
=ϕ(a)−ϕ(b)
=ϕ(a−b)
= (ϕ◦f)(a+b).

(6.4)

Theorem 6.3. If ϕ is an isometry of the Euclidian space O which fixes 1,

then the following four properties are equivalent:

(1) Oϕ contains a four-dimensional subalgebra;

(2) O contains a ϕ-invariant four-dimensional subalgebra;

(3) Aut(Oϕ) contains a reflexion;

(4) Aut(Oϕ) is not trivial.

Proof. The only thing that remains to be shown is that (4) implies (1). Let

g ∈Aut(Oϕ)−{IO}. If g is a reflexion, then the result follows from Remark 5.6.

By assuming that g is not a reflexion, we distinguish two cases.

Case 1. The automorphism g admits two linearly independent orthonor-

mal eigenvectors u,y ∈W . Then g(uy)=g(u)g(y)= (±u)(±y) = ±uy and

vect{1,u,y,uy} = Ker(g2− IO) is a ϕ-invariant four-dimensional subalgebra

of O.

Case 2. The automorphism g has only one eigenvector u ∈ S(W) except

the sign. Then u is an eigenvector of ϕ and g and ϕ induce isometries

gu,ϕu :W(u) �→W(u). (6.5)

Using the minimal polynomials P(X) andQ(X) of gu andϕu, we will first show

thatW(u) contains a two-dimensional g-invariant andϕ-invariant subspace of

E. The irreducible factors of P(X) are polynomials of degree two with negative

discriminant. However Q(X) can have a factor of degree one, and then the
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existence of E is assured by the fact that the eigenspaces ofϕu are f -invariant,

and their direct sum is of even dimension. So we can assume that Q(X) is a

product of polynomials of degree two with negative discriminant. Now, we

have three different cases.

(a) P(X) = X2−αX−β and Q(X) = X2−λX−µ are polynomials of degree

two. Since α2+4β < 0 and λ2+4µ < 0, there existsω∈R∗ such that α2+4β=
ω2(λ2+4µ), and we have

(
gu− α

2
IW(u)

)2

=
(
α2

4
+β

)
IW(u)

=ω2
(
λ2

4
+µ

)
IW(u)

=ω2
(
ϕu− λ

2
IW(u)

)2

.

(6.6)

Now gu and ϕu commute, so

(
gu− α

2
IW(u)−ω

(
ϕu− λ

2
IW(u)

))
◦
(
gu− α

2
IW(u)+ω

(
ϕu− λ

2

))
≡ 0. (6.7)

(i) If gu−(α/2)IW(u) =±ω(ϕu−(λ/2)IW (u)), then every g-invariant two-

dimensional subspace ofW(u) isϕ-invariant, as well as its orthogonal.

(ii) If gu−(α/2)IW(u) ≠±ω(ϕu−(λ/2)IW(u)), then

H = Ker
(
gu− α

2
IW(u)−ω

(
ϕu− λ

2
IW(u)

))
(6.8)

and H⊥ are gu-invariant and ϕu-invariant proper subspaces of W(u).
One of them is necessarily two-dimensional and the other one is four-

dimensional.

(b) If deg(P(X)) > 2, then we consider an irreducible component P1(X) of

P(X). The kernel Ker(P1(gu)) and its orthogonal are then gu-invariant and

ϕu-invariant proper subspaces of W(u).
(c) The case deg(Q(X)) > 2 is similar to the case deg(P(X)) > 2.

The subspace vect{1,u}⊕E is then a subalgebra ofO. Indeed, E = vect{y,z},
with y,z ∈ W(u) orthogonal, and there exist a,b ∈ R with a2+b2 = 1 such

that the matrix of the restriction of g to E is

(
a −b
b a

)
or

(
a b
b −a

)
. (6.9)

Thus, g(yz)= g(y)g(z)=±(a2+b2)yz =±yz, and consequently yz =±u.

Using alternativity and anticommutativity for vectors, we then obtain that

uy =±z and uz =±y .
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