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EIGHT-DIMENSIONAL REAL ABSOLUTE-VALUED ALGEBRAS
WITH LEFT UNIT WHOSE AUTOMORPHISM
GROUP IS TRIVIAL
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We classify, by means of the orthogonal group 07(R), all eight-dimensional real
absolute-valued algebras with left unit, and we solve the isomorphism problem. We
give an example of those algebras which contain no four-dimensional subalgebras
and characterise with the use of the automorphism group those algebras which
contain one.
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1. Introduction. One of the fundamental results about finite-dimensional
real division algebras is due to Kervaire [7] and Bott and Milnor [3], and states
that the n-dimensional real vector space R"™ possesses a bilinear product with-
out zero divisors only in the case where the dimension n = 1, 2,4, or 8. All eight-
dimensional real division algebras that occur in the literature contain a four-
dimensional subalgebra (see [1, 2, 4, 5, 6]). However, it is still an open problem
whether a four-dimensional subalgebra always exists in an eight-dimensional
real division algebra, even for quadratic algebras [4]. In [9], Ramirez Alvarez
gave an example of a four-dimensional absolute-valued real algebra contain-
ing no two-dimensional subalgebras. On the other hand, any four-dimensional
absolute-valued real algebra with left unit contains a two-dimensional subal-
gebra. Therefore, a natural question to ask is whether an eight-dimensional
real absolute-valued algebra with left unit contains a four-dimensional subal-
gebra. In this note, we give a negative answer and we characterise the eight-
dimensional absolute-valued real algebras with left unit containing a four-
dimensional subalgebra in terms of the automorphism group.

2. Notation and preliminary results. For simplicity, we only consider vec-
tor spaces over the field R of real numbers.

DEFINITION 2.1. Let A be an algebra; A is not assumed to be associative or
unital.
(1) An element x € A is called invertible if the linear operators

Ly:y— xy, Ry:y — yx (2.1)
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are invertible in the associative unital algebra End(A). The algebra A is called
a division algebra if all nonzero elements in A are invertible.

(2) A unital algebra A is called a quadratic algebra if {1,x,x?2} is linearly de-
pendent for all x € A.If (-/-) is a symmetric bilinear form over A, then a linear
operator f on A is called an isometry with respect to (-/-) if (f(x)/f(y)) =
(x/y) for all x,y € A. If, moreover, (xy/z) = (x/yz), forall x,y,z € A, then
(-/-) is called a trace form over A.

(3) The algebra A is termed normed (resp., absolute-valued) if it is endowed
with a space norm | - || such that [[xy| < x|y |(resp., IxyI|l = lxIlyI)
for all x,y € A. A finite-dimensional absolute-valued algebra is obviously a
division algebra and has a subjacent Euclidean structure (see [11]).

(4) An automorphism f € Aut(A) is called a reflexion of A if f + I, and
f2=14.

Write Aut(Q) = G». We denote by S(E) and vect{xy,...,x,}, respectively,
the unit sphere of a normed space E and the vector subspace spanned by
X1,...,Xn€E.

It is known that a quadratic algebra A is obtained from an anticommutative
algebra (V, A) and a bilinear form (-, -) over V as follows: A = Re&V as a vector
space, with product

(@+x)(B+y) = (xB+(x,¥)) +(xy + Bx+X AY). (2.2)
We have a bilinear form associated to A, namely,
AXA — R, (x+x,B+y) — B+ (x,Vy), (2.3)

(V,A) is called the anticommutative algebra associated to A. The elements
of V are called vectors, while the elements of R are called scalars. We write
A= (V,(-,-),A) (see [8]).

We will write (W, (-/-),x) for the (quadratic) Cayley-Dickson octonions al-
gebra Q with its trace form (-/-) and the anticommutative algebra (W, x). For
u +0e W, W (u) will be the orthogonal subspace of R-u in W. It is well known
that O is an alternative algebra, that is, it satisfies the identities x2y = x(xy)
and yx? = (yx)x.

REMARK 2.2. Let A be an eight-dimensional absolute-valued algebra with
left unit e, and f is an isometry of the Euclidian space A such that f(e) = e.
Let Ar be equal to A as a vector space, with a new product given by the formula
x*xy = f(x)y,forall x,y € A. Then Ay is also an absolute-valued algebra with
leftunite. Itis clear that an f-invariant subalgebra of A is a subalgebra of Ar.In
particular, if we consider the isometry R, !, then we obtain an absolute-valued
algebra Agt with unit e, which is isomorphic to O (see [12]).
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3. Isometries of O with no invariant four-dimensional subalgebras. Let
@ be an isometry of the Euclidian space O = R & W, fixing the element 1.
Then there exists an orthonormal basis % = {1,x1,...,x7} of O such that x;
is an eigenvector of @ and Wy = vect{xok,X2k+1} iS a @-invariant subspace of
O, for k = 1,2,3. If B is a four-dimensional @-invariant subspace of QO con-
taining 1, then the basis % can be chosen as an extension of an orthonormal
basis {1,u,y,z} of B, with u € W an eigenvector of @, and E = vect{y,z} is
a @-invariant subspace of B. Thus, B can be written as a direct orthogonal
@-invariant sum ReR-ueFE.

In the following important example, we use the notation introduced above.

ExAMPLE 3.1. If @ fixes x; and its restriction to every Wy is the rotation
with angle k7t /4, then vect{1,x;} is the eigenspace E; (@) of @ associated to
the eigenvalue 1. The characteristic polynomial Py, (X) of @ is then

(X—1)2(X2—2Xcos (%) + 1) (XZ —2Xcos (2717) + 1) (XZ —2Xcos (37") + 1)

=[] X
0<k=<3
3.1)

with
5 krm
P (X)=X"-2Xcos e +1. 3.2)

The characteristic polynomial Py, (X) of the restriction of @ to B is a poly-
nomial of degree 4, a multiple of X — 1, and a divisor of Py (X). Actually,
Py, p(X) = (X - 1)2P,(X) for k € {1,2,3}, and this “forces” B to be of the
form E; (@) ® Wy for a certain k € {1,2,3}. In particular, if % is obtained from
the canonical basis {1,e1,...,e7} of O by taking

7e1+ez _er—ep 7e3+e4

X1 = ées, X2 N X3 N X4 N

e3—ey egtez € — €7
X5 = \/E y X6 = \/E y X7 = \/g 5
then for each i # j and [, x; X x; and x; are not colinear. This shows that

Ei (@) ® Wy is not a subalgebra of Q, for k = 1,2, 3. It follows that @ has no
four-dimensional g-invariant subalgebras.

(3.3)

4. Eight-dimensional real absolute-valued algebras with left unit. First re-
call the following result from [11].

LEMMA 4.1. Every homomorphism from a normed complete algebra into
an absolute-valued algebra is contractive. In particular, every isomorphism of
absolute-valued algebras is an isometry.

As a consequence we have the following lemma.
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LEMMA 4.2. Let y : A — B be an isomorphism of absolute-valued R-algebras
and f: A — A an isometry. Then o foy~':B — B is an isometry and y : Ay —
By foy-1 Is an isomorphism. In particular, @ : Ay — O is an isomorphism if and
onlyif  : A — Q. p-1,4-1 IS an isomorphism.

PROOF. The first statement is a consequence of Lemma 4.1. For x,y € A,
we have

W(f)Y) =w(fC))Y) = (wofow (W) w(y), (4.1)

hence @ : Ay — By, f.y-1 is an isomorphism. |

THEOREM 4.3. Every eight-dimensional absolute-valued left unital algebra
is isomorphic to Oy where f is an isometry of the Euclidian space O which fixes
1. Moreover, the following two properties are equivalent:

(1) Oy and Q4 are isomorphic (f, g being two isometries of O fixing 1);
(2) there exists ¢ € G, suchthatg = @o fow™!, thatis, f and g are in the
same orbit of conjugations by isometries of Q fixing 1.

PROOF. The first statement is a consequence of a Remark 2.2 and Lemma
4.2. The second statement can be proved as follows: ¢ : Oy — O, is an isomor-
phism if and only if ¢: O = (Qg) yop10y-1 = Oyop-1.y-1.4 iS an isomorphism.
This is equivalent to

(pof_lo(p_log=1@, (IIEGZ. (4.2)
O

5. Subalgebras and automorphisms of Oy. The following preliminary re-
sult allows us to characterise the subalgebras of O,.

LEMMA 5.1. If A is an algebra with left unit and without zero divisors, then
every nontrivial finite-dimensional subalgebra of A contains the left unit element
of A.

PROOF. Such a subalgebra B is a division algebra and for every x + 0 € B,
there exists v € B such that yx = x. On the other hand, if e is the left unit
of A, then ex = x. Then the absence of zero divisors in A shows that y = e € B.

O

What are the subalgebras of Qg ?

PROPOSITION 5.2. Let @ be an isometry of the Euclidian space O that fixes
1 and B is a subspace of Q. Then the following two properties are equivalent:

(1) B is a subalgebra of Oy;

(2) B is a @-invariant subalgebra of O.

PROOF. (1)=(2). The subalgebra B contains the left unit element 1 of Oy,
and is @-invariant. Indeed,
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product in O
—
1eB, VxeB:p(x)= @(x)1 = x*x1 €B. (5.1)
——
product in O

(2)=(1). See Remark 2.2. O

REMARK 5.3. (1) The algebra O, has a two-dimensional subalgebra because
@ has an eigenvector x € W and the subalgebra vect{1,x} of O is g-invariant.
This argument shows that Hy, has a two-dimensional subalgebra.

(2) Let @ be the isometry considered in Example 3.1. Then Oy has no four-
dimensional subalgebras.

The following elementary result is useful for characterising the automor-
phisms of the algebra Q.

LEMMA 5.4. Let A be an algebra with left unit e and without zero divisors. If
f €Aut(A), then f(e) =e.

PROOF. We have (f(e)—e)f(e) =0. |
What are the automorphisms of the algebra O ?

PROPOSITION 5.5. If @ is an isometry of the Euclidian space O that fixes 1,
then f € Aut(Qy,) if and only if f € G, and f commutes with @.

PROOF. For all x,y € O, we have that f(@(x)y) = @(f(x))f(»), hence
f(@x)) = f(x)]) = p(f(x)f(1) =p(f(x)),and fop =@o fand f €
Go. O

REMARK 5.6. If f € Aut(QOgy) \ {Ip} is a reflexion, then B = Ker(f —1Ip) is a
four-dimensional subalgebra of O,.

6. The relation in O, between four-dimensional subalgebras and nontriv-
ial automorphisms. We begin with the following useful preliminary result
taken from [10].

LEMMA 6.1. Every four-dimensional subalgebra B of O = (W,(-/-),X) coin-
cides with the square of its orthogonal B+ and satisfies the equality BB+ = B*B =
B*.

PROOF. Letv € S(B'), then B* = vB. Indeed, taking into account the trace
property of (-/-), we have for all x,y € B that (vx/y) = (v/xy) = 0, hence
vB C B*, and we have equality because the dimensions of both spaces are
equal. Using the middle Moufang identity, we compute that

(vx)(vy) =—-(vx)(yv) =v(xy)v =X (6.1)

for all x,y € B. Taking into account the anticommutativity of the product x,
we find that BB+ = B*B. Finally, the trace property of (-/-) shows that BB+ is
orthogonal to B, hence BB+ C B*. O
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PROPOSITION 6.2. Let B be a @-invariant four-dimensional subalgebra of Q.
Then the map

f:0=B®B* — 0, fla+b)=a-b, (6.2)

is a reflexion which commutes with .

PROOF. Take a,x € B and b,y € B*. Using Lemma 6.1, we compute

fa+b)(x+y))=flax+by+ay+bx)
=(ax+by)—(ay+bx)
=(a-b)(x-y)
=fla+b)f(x+y),
B+ is p-invariant since B is g-invariant, and we have
(fe@)(a+b)=f(pa)+eb))
=@(a)-@(b)
=@(a-b)
=(pof)a+b).

(6.4)

O

THEOREM 6.3. If @ is an isometry of the Euclidian space O which fixes 1,
then the following four properties are equivalent:

(1) Oy contains a four-dimensional subalgebra;

(2) O contains a -invariant four-dimensional subalgebra;

(3) Aut(Qgy) contains a reflexion;

(4) Aut(Qy) is not trivial.

PROOF. The only thing that remains to be shown is that (4) implies (1). Let
g € Aut(Oyp) —{Ip}.If g is areflexion, then the result follows from Remark 5.6.
By assuming that g is not a reflexion, we distinguish two cases.

CASE 1. The automorphism g admits two linearly independent orthonor-
mal eigenvectors u,y € W. Then g(uy) =g(u)g(y) =(xu)(+xy) = tuy and
vect{l,u,y,uy} = Ker(g? —Ip) is a @-invariant four-dimensional subalgebra
of O.

CASE 2. The automorphism g has only one eigenvector u € S(W) except
the sign. Then u is an eigenvector of ¢ and g and @ induce isometries

Ju, Qu W) — Wu). (6.5)

Using the minimal polynomials P (X) and Q (X) of g,, and ¢, we will first show
that W (u) contains a two-dimensional g-invariant and @-invariant subspace of
E. The irreducible factors of P(X) are polynomials of degree two with negative
discriminant. However Q (X) can have a factor of degree one, and then the
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existence of E is assured by the fact that the eigenspaces of @, are f-invariant,
and their direct sum is of even dimension. So we can assume that Q (X) is a
product of polynomials of degree two with negative discriminant. Now, we
have three different cases.

(@) P(X) = X? —aX - B and Q(X) = X? —AX — u are polynomials of degree
two. Since o? +48 < 0 and A2 +4u < 0, there exists w € R* such that ?+4p =
w2 (A% +4pu), and we have

2 2
o< o<
(Qu**IW(u)> = Z"‘ﬁ)IW(u)

2
AZ
= w? (Z ""IJ)IW(M) (6.6)
A 2
= w? <Q9u - EIW(M))
Now g, and @, commute, SO

X

2

A
2 2 Iw(u)"‘w(CPu—E)) =0. (6.7)

1o A
(gu ——Iyw —w ((pu - *IW(u))) ° (gu -
@) If gu—(x/2) ) = tw(@y—(A/2) Iy (1)), then every g-invariant two-
dimensional subspace of W (u) is g-invariant, as well as its orthogonal.
(i) If gy — (¢/2) Ly ) # £ (@Qy — (A/2) Iy (w)), then

(04

H=Ker<gu— >

IW(u) —(,O((Pu— %IW(u)>> (68)
and H* are gy-invariant and @, -invariant proper subspaces of W(u).
One of them is necessarily two-dimensional and the other one is four-
dimensional.

(b) If deg(P(X)) > 2, then we consider an irreducible component P; (X) of
P(X). The kernel Ker(P;(g,)) and its orthogonal are then g,-invariant and
@y -invariant proper subspaces of W(u).

(c) The case deg(Q (X)) > 2 is similar to the case deg(P (X)) > 2.

The subspace vect{1,u} @F is then a subalgebra of O.Indeed, E = vect{y, z},
with v,z € W(u) orthogonal, and there exist a,b € R with a? + b? = 1 such
that the matrix of the restriction of g to E is

a -b a b
(b ! ) (b a) . ©.9)
Thus, g(vz) = g(y)g(z) = *(a® +b?)yz = +yz, and consequently yz = +u.

Using alternativity and anticommutativity for vectors, we then obtain that
uy==+zand uz ==+y. ]
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