ON CHAINS OF CENTERED VALUATIONS

RACHID CHIBLOUN

Received 5 June 2002

We study chains of centered valuations of a domain A and chains of centered valuations of $A[X_1,...,X_n]$ corresponding to valuations of A. Finally, we make some applications to chains of valuations centered on the same ideal of $A[X_1,...,X_n]$ and extending the same valuation of A.

2000 Mathematics Subject Classification: 13A18, 13F20.

1. Introduction and preliminary results. All rings will be commutative with unit element. The field of fractions of a domain R will be denoted by Fr(R). Let $R \subseteq S$ be domains and take a prime ideal $p \in \text{Spec}(R)$. Then we write k(p) = Fr(R/p) and denote the transcendence degree of Fr(S) over Fr(R) by trdeg_R^S . We will use the following notation: $R[n] = R[X_1, ..., X_n]$, $p[n] = p[X_1, ..., X_n]$, and $Fr(R)(n) = Fr(R)(X_1, ..., X_n)$. Let $P \in \text{Spec}(R[n])$, P lies over p if $P \cap R = p$. We call $P \in \text{Spec}(R[1])$ a superior of p if P lies over p and $P \neq p[1]$. Let A be a subring of a field K, L/K a field extension, and v a valuation on K. The subring $A_v = \{x \in K \mid v(x) \ge 0\}$ is the valuation ring associated to v, $m(v) = \{x \in K \mid v(x) \ge 0\}$ is its maximal ideal, and $k_v = A_v/m(v)$ is its residue field. The valuation v is positive on A if $A \subseteq A_v$, and then v is a valuation on A. The prime ideal $m(v) \cap A$ is called the center of v on A. The valuation v is called trivial if $A_v = K$. If v' is a valuation on k_v , then the set $\{x \in K \mid x \in A_v, \overline{x} \in A_{v'}\}$ is a valuation ring on K. The valuation associated to this valuation ring is called the composite valuation and is denoted by $v_1 = v'v$.

Let v, v' be valuations on K. By definition, $v \le v'$ if one of the following equivalent conditions is satisfied:

- (1) $A_{v'} \subseteq A_v$,
- (2) $m(v) \subseteq m(v')$,
- (3) v' = v''v for some valuation on k_v ;

v and v' are called equivalent if $A_{v'} = A_v$; v < v' if $v \le v'$ but not equivalent. A valuation w on L is an extension of v if $A_v = A_w \cap K$. The valuation w on K(X) given by

$$w\left(\sum_{i=0}^{n}a_{i}(X-a)^{i}\right) = \inf\left\{v\left(a_{i}\right) \mid 0 \le i \le n\right\}$$

$$(1.1)$$

is called the canonical extension of v to K(X). We have that $k_w = k_v(X)$.

The following classical results will be used in this paper; the proofs can be found in [2, Proposition 1.2], [4, Theorem 1.5], and [6, Propositions 1.1, 1.3, and 1.4].

PROPOSITION 1.1. Let v be a valuation on K and $w_0 < w_1$ two valuations on L extending v. If tr deg^{k_{w_0}} is finite, then

$$\operatorname{trdeg}_{k_v}^{k_{w_1}} < \operatorname{trdeg}_{k_v}^{k_{w_0}}.$$
 (1.2)

PROPOSITION 1.2. Let $v_0 < v_1$ be two valuations on *K* and w_1 a valuation on *L* extending v_1 . Then there exists a valuation w_0 on *L* extending v_0 , with $w_0 < w_1$.

PROPOSITION 1.3. Let w be a valuation on L and v its restriction to K. If $\operatorname{trdeg}_{K}^{L}$ is finite, then

$$\operatorname{trdeg}_{k_{w}}^{k_{w}} \le \operatorname{trdeg}_{K}^{L}.$$
(1.3)

PROPOSITION 1.4. If $p \subseteq q$ in Spec(*A*) and if v_0 is a valuation of *K* with center *p* on *A*, then there exists a valuation v_1 of *K* with center *q* on *A* such that $v_0 \leq v_1$.

THEOREM 1.5. Let $f : A \to B$ be a homomorphism of domains. Then there exist an algebraic extension L' of Fr(B) and a valuation v on K with center Ker(f) on A such that

$$A/\operatorname{Ker}(f) \subseteq k_{\nu} \subseteq L. \tag{1.4}$$

In this paper, we will study chains of valuations of a polynomial ring $A[X_1, ..., X_n]$ and of a field extension F of Fr(A). We give the length of chains of valuations which pass through a given valuation, and we characterize when a valuation is maximal or minimal in the following situations:

- (a) all the valuations are centered on the same ideal,
- (b) all the valuations extend the same valuation of Fr(A).

Then we study chains of centered valuations on a domain A and chains of centered valuations on $A[X_1, ..., X_n]$ corresponding to valuations on A. Finally, we give some applications to chains of valuations centered on the same ideal of $A[X_1, ..., X_n]$ and extending the same valuation on A.

2. Valuations centered on the same ideal. Throughout this section, K is the quotient field of an integral domain A, L is a field extension of K, and v is a valuation on A.

PROPOSITION 2.1. There exist n + 1 valuations $w_0 < \cdots < w_n$ on A[n] extending v in such a way that, for each $i \in \{0, \dots, n\}$,

$$\operatorname{tr} \operatorname{deg}_{k_{v}}^{k_{w_{i}}} = n - i. \tag{2.1}$$

PROOF. Let $k = k_v$ and let w_0 be the canonical extension of v to K(X). It is well known that $k_{w_0} = k(X)$. Let w be a valuation on k(X), positive on k[X] and with center (X) on k[X], and $w_1 = w w_0$ the composite valuation of w and w_0 . The valuation $w_0 < w_1$ as w is not trivial, so $A_{w_1} \cap K \subseteq A_{w_0} \cap K = A_v$ and it is easy to see that

$$A_{\nu} \subseteq \{ z \in K(X) \mid z \in A_{w_0}, \ \overline{z} \in A_w \} \cap K.$$

$$(2.2)$$

Therefore, w_1 extends v. As $A[X] \subseteq A_{w_0}$ and $k[X] \subseteq A_w$, $X \in A_{w_0}$ and $\overline{X} = X \in A_w$, that is, $X \in A_{w_1}$, and w_1 is a valuation of A[X]. We have $\operatorname{trdeg}_{k_v}^{k_{w_0}} = 1$, and according to Proposition 1.1, $0 \leq \operatorname{trdeg}_{k_v}^{k_{w_1}} < \operatorname{trdeg}_{k_v}^{k_{w_0}} = 1$, so $\operatorname{trdeg}_{k_v}^{k_{w_1}} = 0$.

Let n > 1 and suppose that the property is true for n - 1. There exists $v_0 < v_1$, two valuations of $A[X_1]$ extending v, and for each $i \in \{0, 1\}$, trdeg_{kv}^{$k_{v_i} = 1 - i$. There exists n valuations $w_1 < \cdots < w_n$ of A[n] extending v_1 , and for each $i \in \{1, \ldots, n\}$, we have that trdeg_{kv1}^{$k_{w_i} = n - i$. According to Proposition 1.2, there exists a valuation w'_0 of $K(X_1, \ldots, X_n)$ extending v_0 and $w'_0 < w_1 < \cdots < w_n$. The valuation w'_0 is a valuation of A[n] because $A[n] \subseteq A_{w_1} \subset A_{w'_0}$. For each $i \in \{1, \ldots, n\}$, w_i extends v and trdeg_{kv}^{$k_{w_i} = rrdeg_{kv_1}^{k_{w_i}} + trdeg_{kv}^{k_{v_1}} = n - i$, w'_0 extends v, and}}}

$$\operatorname{tr} \operatorname{deg}_{k_{v}}^{k_{w_{0}'}} = \operatorname{tr} \operatorname{deg}_{k_{v_{0}}}^{k_{w_{0}'}} + \operatorname{tr} \operatorname{deg}_{k_{v}}^{k_{v_{0}}}$$

=
$$\operatorname{tr} \operatorname{deg}_{k_{v_{0}}}^{k_{w_{0}'}} + 1 > \operatorname{tr} \operatorname{deg}_{k_{v}}^{k_{w_{1}}} = n - 1,$$
(2.3)

according to Proposition 1.3, $n-1 < \operatorname{trdeg}_{k_v}^{k_{w'_0}} \le n$, that is, $\operatorname{trdeg}_{k_v}^{k_{w'_0}} = n$.

COROLLARY 2.2. If $\operatorname{trdeg}_{K}^{L} = n$, then there exist n + 1 valuations $w_{0} < \cdots < w_{n}$ on L extending v such that $\operatorname{trdeg}_{k_{v}}^{k_{w_{i}}} = n - i$ for all $i \in \{0, \dots, n\}$.

PROOF. Let $\{x_1,...,x_n\}$ be a transcendence basis of L over K, v a valuation of A_v , and $A_v[x_1,...,x_n] \cong A_v[X_1,...,X_n]$. According to Proposition 2.1, there exist n + 1 valuations $v_0 < \cdots < v_n$ on $K(x_1,...,x_n)$ extending v such that trdeg^{k_{v_i}} = n - i for each $i \in \{0,...,n\}$. Let w_n be a valuation of L extending v_n . Applying Proposition 1.2, we obtain n + 1 valuations $w_0 < \cdots < w_n$ of L such that for each $i \in \{0,...,n\}$, w_i prolongs v_i , then w_i prolongs v, and

$$\operatorname{tr} \operatorname{deg}_{k_{v}}^{k_{w_{i}}} = \operatorname{tr} \operatorname{deg}_{k_{v_{i}}}^{k_{w_{i}}} + \operatorname{tr} \operatorname{deg}_{k_{v}}^{k_{v_{i}}} = n - i. \tag{2.4}$$

LEMMA 2.3. Let v_0 be a valuation on L with center q on A. For each $k \in \mathbb{N}$ strictly smaller than $\operatorname{tr} \operatorname{deg}_{k(q)}^{k_{v_0}}$, there exists a valuation v_1 of L with center q on A such that $v_0 < v_1$ and $\operatorname{tr} \operatorname{deg}_{k(q)}^{k_{v_1}} = k$.

RACHID CHIBLOUN

PROOF. Let $\{z_1,...,z_{k+1}\}$ be a family of elements of k_{v_0} , algebraically independent over k(q). According to Theorem 1.5, there exist an algebraic extension L' of $k(q)(z_1,...,z_k)$ and a valuation v' of k_{v_0} with center (z_{k+1}) on $(A/q)[z_1,...,z_{k+1}]$, such that $(A/q)[z_1,...,z_k] \subseteq k_{v'} \subseteq L'$. Let $v_1 = v'v_0$ be the composite valuation of v' with v_0 , v_1 is a valuation of L. For each $b \in A$, $b \in A_{v_0}$ and $\overline{b} \in A/q \subseteq A_{v'}$, that is, $b \in A_{v_1}$, and if $a \in m(v_1) \cap A$, then $\overline{a} \in (m(v_1)/m(v_0)) \cap (A/q) = m(v') \cap (A/q) = (0)$, that is, $a \in q$ and $m(v_1) \cap A \subseteq q$ or $q = m(v_0) \cap A \subseteq m(v_1) \cap A$; therefore the center of v_1 on A is q. As $A_{v'} = A_{v_1}/m(v_0)$, $m(v') = m(v_1)/m(v_0)$ and $k_{v'} = A_{v'}/m(v') = A_{v_1}/m(v_1)$. Thus, $v_0 < v_1$ and trdeg $_{k(q)}^{k_{v_1}} = \text{trdeg}_{k(q)}^{k_{(q)}} = \text{trdeg}_{k(q)}^{k(q)(z_1,...,z_k)} = k$.

THEOREM 2.4. Let w be a valuation on L with center q on A. Then $\operatorname{trdeg}_{k(q)}^{k_w}$ is the supremum of all natural numbers \overline{k} for which there exists a chain of valuations $w = w_0 < \cdots < w_{\overline{k}}$ on L, with center q on A.

PROOF. Suppose that we have a chain of valuations $w = w_0 < \cdots < w_k$ on *L*, with center *q* on *A*. If trdeg^{*k*}_{*k*(*q*)} is finite, then it follows from Proposition 1.1 that

$$0 \le \operatorname{tr} \operatorname{deg}_{k(q)}^{k_{w_k}} < \dots < \operatorname{tr} \operatorname{deg}_{k(q)}^{k_{w_0}} = \operatorname{tr} \operatorname{deg}_{k(q)}^{k_w},$$
(2.5)

and consequently $k \leq \operatorname{trdeg}_{k(q)}^{k_w}$. This proves that $\overline{k} \leq \operatorname{trdeg}_{k(q)}^{k_w}$.

To prove the converse inequality, we consider two different cases:

- (a) trdeg_{k(q)}^{kw} = $k_1 \in \mathbb{N}$ is finite. If $k_1 = 0$, then there is nothing to prove. Take $k_1 > 0$. By Lemma 2.3, there exists a valuation w_1 on L with center q on A such that $w < w_1$ and trdeg_{k(q)}^{kw_1} = $k_1 - 1$. Using an easy induction argument, we find $k_1 + 1$ valuations with $w = w_0 < \cdots < w_k$ on L, all with center q on A;
- (b) $\operatorname{trdeg}_{k(q)}^{k_w} = \infty$. By Lemma 2.3, we can find, for every $k \in \mathbb{N}$, a valuation w_1 on L with center q on A such that $\operatorname{trdeg}_{k(q)}^{k_{w_1}} = k$. It then follows from (a) that there exists a chain of valuations $w = w_0 < \cdots < w_k$ of L, all with center q on A. We can do this for every $k \in \mathbb{N}$, hence the supremum is infinite.

LEMMA 2.5. Let w be a valuation on A[n] with center q on A.

(a) If $\operatorname{tr} \operatorname{deg}_{k(q)}^{k_w} = \infty$, then for every $k \in \mathbb{N}$, there exists a valuation w_1 on A[n] with center q on A such that $w < w_1$ and $\operatorname{tr} \operatorname{deg}_{k(q)}^{k_{w_1}} = k$.

(b) If $\operatorname{trdeg}_{k(q)}^{k_w} = k \in \mathbb{N}$, then there exists a chain of valuations $w = w_0 < \cdots < w_k$ on A[n], all with center q on A.

PROOF. (a) Let *Q* be the center of *w* on A[n] and $k_1 = \operatorname{trdeg}_{A/q}^{A[n]/Q}$. We know that $k_1 = n - \operatorname{ht}(Q/q[n])$, where $\operatorname{ht}(Q/q[n])$ means the height of the prime ideal Q/q[n], and there exists a chain $Q = Q_0 \subset \cdots \subset Q_{k_1}$ of prime ideals of A[n], all lying over *q*.

Assume first that $k < k_1$; then there exists $i \in \{1, ..., k_1\}$ such that $\operatorname{tr} \operatorname{deg}_{A/q}^{A[n]/Q_i} = k$. Let w'' be a valuation on A[n] with center Q_i and w < w'' (see Proposition 1.4). According to Lemma 2.3, there exists a valuation w_1 on A[n] with center Q_i such that $w'' \le w_1$ and $\operatorname{tr} \operatorname{deg}_{A[n]/Q_i}^{kw_1} = 0$. Thus, $w < w_1$ and $\operatorname{tr} \operatorname{deg}_{k(q)}^{kw_1} = \operatorname{tr} \operatorname{deg}_{A[n]/Q_i}^{kw_1} + \operatorname{tr} \operatorname{deg}_{A/q}^{A[n]/Q_i} = k$.

Now assume that $k \ge k_1$ and let $\alpha = k - k_1$. By Theorem 2.4, there exists a valuation w_1 on A[n] with center Q such that $w < w_1$ and $\operatorname{trdeg}_{A[n]/Q}^{k_{w_1}} = \alpha$, hence

$$\operatorname{tr} \operatorname{deg}_{A/q}^{k_{w_1}} = \operatorname{tr} \operatorname{deg}_{A[n]/Q}^{k_{w_1}} + \operatorname{tr} \operatorname{deg}_{A/q}^{A[n]/Q} = \alpha + k_1 = k. \tag{2.6}$$

(b) Let *Q* be the center of *w* on A[n] and $k_1 = \operatorname{trdeg}_{A[n]/Q}^{k_w}$. According to Theorem 2.4, there exists a chain of valuations $w = w_0 < \cdots < w_{k_1}$ on A[n], all with center *Q*, such that $\operatorname{trdeg}_{A[n]/Q}^{k_{w_i}} = k_1 - i$ for each $i \in \{0, \dots, k_1\}$. Let $\alpha = \operatorname{trdeg}_{A/q}^{A[n]/Q}$; then there exists a chain $Q = Q_0 \subset \cdots \subset Q_\alpha$ of prime ideals of A[n] lying over *q*. According to Proposition 1.4, there exist $\alpha + 1$ valuations $w_{k_1} < \cdots < w_{k_1+\alpha} = w_k$ on A[n] such that w_{k_1+j} has center Q_j on A[n] for each $j \in \{0, \dots, \alpha\}$. Therefore, w_{k_1+j} has center *q* on *A*, and the chain of valuations $w_0 < \cdots < w_k$ meets the requirements.

THEOREM 2.6. Let w be a valuation on A[n] with center q on A. Then $\operatorname{trdeg}_{A/q}^{k_w}$ is the supremum of all natural numbers \overline{k} such that there exists a chain of valuations $w = w_0 < \cdots < w_{\overline{k}}$ on A[n] with center q on A.

PROOF. Let $w = w_0 < \cdots < w_k$ be a chain of valuations on A[n] with center q on A. If $\operatorname{trdeg}_{A/q}^{k_w}$ is finite, then $0 \leq \operatorname{trdeg}_{A/q}^{k_{w_k}} < \cdots < \operatorname{trdeg}_{A/q}^{k_{w_0}}$, so $k \leq \operatorname{trdeg}_{A/q}^{k_w}$, and it follows that $\overline{k} < \operatorname{trdeg}_{A/q}^{k_w}$.

Take $k \leq \operatorname{trdeg}_{A/q}^{k_w}$. We distinguish two cases:

- (1) trdeg^{k_w} is finite. It follows from Lemma 2.5(b) that there exists a chain of valuations $w = w_0 < \cdots < w_k$ on A[n] with center q on A;
- (2) tr deg^{*k*_{*w*}}_{*A*/*q*} is infinite. It follows from Lemma 2.5(a) that there exists a valuation w_1 on A[n] with center q on A such that $w < w_1$ and tr deg^{*k*_{*w*1}</sup>_{*A*/*q*} = k.</sup>}

ation w_1 on A[n] with center q on A such that $w < w_1$ and trdeg_{A/q} = k. In both cases, we obtain the existence of a chain of valuations $w = w_0 < \cdots < w_k$ on A[n], all with center q on A.

PROPOSITION 2.7. Let w be a valuation on A[n] (resp., L) extending v. Then $\operatorname{trdeg}_{k_v}^{k_w}$ is the supremum of the set of integers k such that there exists a chain of valuations $w = w_0 < \cdots < w_k$ on A[n] (resp., L) extending v.

PROOF. Let w' be a valuation on K(n) (resp., L). We first show that w' is a valuation on A[n] (resp., L) extending v if and only if w' is a valuation on $A_v[n]$ (resp., L) with center m(v) on A_v .

First, assume that w' is a valuation on A[n] (resp., L) extending v. Then $A_{w'} \cap K = A_v$ and w' is a valuation on A[n] (resp., L), hence w' is a valuation

on $A_v[n]$ (resp., L) and

$$m(w') \cap A_{v} = m(w') \cap K \cap A_{v} = m(v) \cap A_{v} = m(v).$$
(2.7)

Conversely, $A[n] \subseteq A_v[n] \subseteq A_{w'}$, therefore $A_v \subseteq A_{w'} \cap K$. If $z \in A_{w'} \cap K$ and $z \notin A_v$, then $z^{-1} \in m(v) = m(w') \cap K$, a contradiction. Hence, $A_{w'} \cap K = A_v$ and w' extends v.

To finish the proof, it suffices to apply Theorems 2.4 and 2.6 to *w* and $m(v) \in \text{Spec}(A_v)$.

COROLLARY 2.8. (a) Let w be a valuation on A[n] (resp., L) with center q on A. Then $ht(m(w)/qA_w)$ is the supremum \overline{k} of the integers k for which there exists a chain of valuations $w_k < \cdots < w_0 = w$ on A[n] (resp., L) with center q on A.

(b) Let w be a valuation on A[n] (resp., L) extending v. Then $ht(m(w)/m(v)A_w)$ is the supremum \overline{k} of the integers k for which there exists a chain of valuations $w_k < \cdots < w_0 = w$ on A[n] (resp., L) extending v.

PROOF. (a) Let $w_k < \cdots < w_0 = w$ be a chain of valuations on A[n] (resp., L) with center q on A. We have $qA_w \subseteq m(w_k) \subset \cdots \subset m(w_0) = m(w)$, and therefore $ht(m(w)/qA_w) \ge \overline{k}$.

Conversely, let $k_1 \in \mathbb{N}$ with $k_1 \leq \operatorname{ht}(m(w)/qA_w)$. Then there exists a chain $P_{k_1} \subset \cdots \subset P_0 = m(w)$ in $\operatorname{Spec}(A_w)$ such that $P_{k_1} \cap A = q$. The valuation rings $A_w = (A_w)_{P_0} \subset \cdots \subset (A_w)_{P_{k_1}}$ of K(n) (resp., *L*) are all with center *q* on *A*. For each $i \in \{0, \ldots, k_1\}$, let w_i be the valuation on K(n) (resp., *L*) associated to $(A_w)_{P_i}$. Then $w_{k_1} < \cdots < w_0 = w$ are valuations on A(n) (resp., *L*), all with center *q* on *A*.

(b) The proof follows immediately from (a) and the proof of Proposition 2.7.

COROLLARY 2.9. (a) A valuation w is a maximal (resp., minimal) element in the set of valuations on A[n] (resp., L) extending v if and only if $\operatorname{trdeg}_{k_v}^{k_w} = 0$ (resp., $\operatorname{ht}(m(w)/m(v)A_w) = 0$).

(b) A valuation w is a maximal (resp., minimal) element in the set of valuations on A[n] (resp., L) with center q on A if and only if tr deg^{k_w}_{A/q} = 0 (resp., ht($m(w)/qA_w$) = 0).

COROLLARY 2.10. Let w be a valuation on A[n] (resp., L).

 (a) If w has center q on A, then the maximum length of a chain of valuations on A[n] (resp., L) having center q on A and passing through w, is equal to

$$\operatorname{ht}\left(m(w)/qA_{w}\right) + \operatorname{tr}\operatorname{deg}_{A/q}^{k_{w}}.$$
(2.8)

(b) If w extends v, then the maximum length of a chain of valuations on A[n] (resp., L) extending v is equal to

$$\operatorname{ht}\left(m(w)/m(v)A_{w}\right) + \operatorname{trdeg}_{k_{w}}^{k_{w}}.$$
(2.9)

PROPOSITION 2.11. (a) Let *s* be the maximal value of $ht(m(w)/qA_w) + tr deg_{A/q}^{k_w}$, where *w* runs through all valuations on A[n] (resp., K(n)) with center *q* on *A*. Let *t* be the maximal value of $tr deg_{A/q}^{k_{v'}}$, where *v'* runs through all valuations on *K* with center *q* on *A*. Then s = n + t.

(b) The value *n* is the maximal value of $ht(m(w)/m(v)A_w) + tr \deg_{k_v}^{k_w}$, where *w* runs through all valuations on A[n] (resp., K(n)) extending *v*.

PROOF. (a) Let w be a valuation on A[n] (resp., K(n)) with center q on A and let $(k_1, k_2) \in \mathbb{N}^2$ be such that $k_1 \leq \operatorname{trdeg}_{A/q}^{k_w}$ and $k_2 \leq \operatorname{ht}(m(w)/qA_w)$. According to Theorems 2.4 and 2.6, there exists a chain of valuations $w = w_0 < \cdots < w_{k_1}$ on A[n] (resp., K(n)) with center q on A. By Corollary 2.8, there exists a chain of valuations $w_{k_2} < \cdots < w_0 = w$ on A[n] (resp., K(n)) with center q on A. By Corollary 2.8, there exists a chain of valuations $w_{k_2} < \cdots < w_0 = w$ on A[n] (resp., K(n)) with center q on A. Thus, we have a chain of valuations $w_{k_2} < \cdots < w_0 = w < \cdots < w_{k_1}$ on A[n] (resp., K(n)) with center q on A, and

$$k_1 + k_2 \le \operatorname{trdeg}_{A/q}^{k_{w_{k_2}}} = \operatorname{trdeg}_{k_{w_{k_2}|K}}^{k_{w_{k_2}|K}} + \operatorname{trdeg}_{A/q}^{k_{w_{k_2}|K}} \le \operatorname{trdeg}_{K}^{K(n)} + t \le n + t,$$
(2.10)

where $w_{k_2|K}$ is the restriction of w_{k_2} to *K*. Consequently, $s \le n + t$.

Conversely, take $k \le t$. Then there exists a valuation v' on K with center q on A such that $k \le \operatorname{trdeg}_{A/q}^{k_{v'}}$. According to Proposition 2.1, there exists a valuation w_0 on A[n] extending v' with $\operatorname{trdeg}_{k_{v'}}^{k_{w_0}} = n$, and

$$n+k \le \operatorname{tr} \deg_{k_{v'}}^{k_{w_0}} + \operatorname{tr} \deg_{A/q}^{k_{v'}} = \operatorname{tr} \deg_{A/q}^{k_{w_0}} \le s.$$
(2.11)

(b) The proof follows immediately from (a) and the preceding results. \Box

COROLLARY 2.12. If the transcendence degree of *L* on *K* is infinite, then there is no upper bound on $\operatorname{trdeg}_{A/q}^{k_w} + ht(m(w)/qA_w)$, with *w* running through all valuations on *L* with center *q* on *A*.

PROOF. The proof is immediate from the preceding proposition. \Box

3. The symbol $\delta((0), Q)$ in A[n]. Throughout this section, A will be an integral domain, $(0) \neq q$ a prime ideal of A, K the quotient field of A, and n will be a nonnegative integer.

LEMMA 3.1. Let Q be a superior of q in A[X] such that there exists $a \in A$ with $X - a \in Q$. Then, for each valuation v of K with center q on A, there exists

a valuation w of K(X) with center Q on A[X], extending v, and such that

$$\operatorname{trdeg}_{\operatorname{Fr}(A[X]/Q)}^{k_{w}} = \operatorname{trdeg}_{\operatorname{Fr}(A/q)}^{k_{v}} + 1. \tag{3.1}$$

PROOF. Let δ be a strictly positive element of the value group G_v of v. We define the valuation w on K(X) as follows: if

$$f(X) = b_0 + \dots + b_n (X - a)^n,$$
 (3.2)

then

$$w(f(X)) = \inf \{ v(a_i) + i\delta \mid i \in \{0, \dots, n\} \}.$$
(3.3)

It is well known (see [1]) that $\operatorname{trdeg}_{k_v}^{k_w} = 1$. We show that w is a valuation on A[X] with center Q on A[X]. For $f(X) = b_0 + \cdots + b_n (X-a)^n \in A[X]$, we have

$$w(f(X)) = \inf \{v(b_i) + i\delta \mid i \in \{0, \dots, n\}\} \ge 0.$$
(3.4)

If $f(X) \in m(w) \cap A[X]$, then $b_0 \in m(v) \cap A = q$ and $f(X) \in Q$.

Conversely, let $g(X) = a_0 + \cdots + a_m(X-a)^m \in Q \subset A[X]$. For each $i \in \{1, \dots, m\}$, $v(a_i) + i\delta > 0$ and $a_0 \in m(v) \cap A = q$, hence

$$w(g(X)) = \inf \{ v(a_i) + i\delta \mid i \in \{0, \dots, m\} \} > 0,$$
(3.5)

that is, $g(X) \in m(w) \cap A[X]$. Thus, we have

$$\operatorname{tr} \operatorname{deg}_{\operatorname{Fr}(A[X]/Q)}^{k_w} = \operatorname{tr} \operatorname{deg}_{\operatorname{Fr}(A/q)}^{k_w} = \operatorname{tr} \operatorname{deg}_{k_v}^{k_w} + \operatorname{tr} \operatorname{deg}_{\operatorname{Fr}(A/q)}^{k_v} = \operatorname{tr} \operatorname{deg}_{\operatorname{Fr}(A/q)}^{k_v} + 1.$$
(3.6)

LEMMA 3.2. Let *Q* be a superior of *q* in *A*[*X*] and let *v* be a valuation on *K* with center *q* on *A*. Then there exists a valuation *w* on *K*(*X*) with center *Q* on *A*[*X*] extending *v* such that $\operatorname{trdeg}_{\operatorname{Fr}(A[X]/O)}^{k_w} = \operatorname{trdeg}_{\operatorname{Fr}(A[A])}^{k_v} + 1$.

PROOF. (a) Assume that *A* is integrally closed in the algebraic closure K' of *K*. We have two different cases:

(1) *q* is a maximal ideal of *A*, Q' = Q/q[X] is generated by $g(X) = X^n + \overline{a}_{n-1}X^{n-1} + \cdots + \overline{a}_0 \in (A/q)[X]$. Let $a_i \in A$ be a representant of $\overline{a}_i \in (A/q)$. Then

$$f(X) = a_0 + \dots + a_{n-1}(X-a)^{n-1} + X^n = \prod_{i=1}^m (X-r_i)^{\alpha_i} \in K[X].$$
(3.7)

Since r_i is integral over A, so $r_i \in A$, and

$$g(X) = \prod_{i=1}^{m} \left(X - \overline{r_i} \right)^{\alpha_i} \in Q'.$$
(3.8)

Then there exists $j \in \{1, ..., m\}$ such that $X - r_j \in Q$. We conclude by Lemma 3.2.

(2) Now, let *q* be any prime ideal in *A*. Let S = A – q; we have (S⁻¹Q) which is a superior to qA_q in A_q[X] and A_q is integrally closed in K'. The valuation *v* has center qA_q on A_q, so there exists a valuation *w* of K[X] with center S⁻¹Q on A_q[X] extending *v*, with

$$\operatorname{tr} \operatorname{deg}_{\operatorname{Fr}(A_q[X]/S^{-1}Q)}^{k_w} = \operatorname{tr} \operatorname{deg}_{\operatorname{Fr}(A/q)}^{k_v} + 1,$$

$$\operatorname{tr} \operatorname{deg}_{\operatorname{Fr}(A[X]/Q)}^{k_w} = \operatorname{tr} \operatorname{deg}_{\operatorname{Fr}(A/q)}^{k_v} + 1.$$
(3.9)

(b) Let A' be the integral closure of A in the algebraic closure K' of K. Let v' be a valuation on K' extending v. The integral closure of A in K' is the intersection of all the valuation rings on K' that contain A, as v is a valuation on A, so v' is a valuation on A'. Let q' be the center of v' on A', $q' \cap A = q$, and $q'[X] \cap A[X] = q[X]$. The closure A'[X] is integral over A[X], so there exists a prime ideal Q' of A'[X] such that Q' is a superior of q', and Q' lies over Q. According to (a), there exists a valuation w' of K'(X) with center Q' on A'[X] extending v' with $\operatorname{trdeg}_{\operatorname{Fr}(A'[X]/Q')}^{k_{w'}} = \operatorname{trdeg}_{\operatorname{Fr}(A'/q')}^{k_{w'}} + 1$. Let w be the restriction of w' to K(X); w is a valuation on A[X],

$$m(w) \cap A[X] = m(w') \cap K(X) \cap A[X] = m(w') \cap A'[X] \cap A[X] = Q' \cap A[X] = Q,$$
(3.10)

and w prolongs v. Also

$$\operatorname{tr} \operatorname{deg}_{\operatorname{Fr}(A'/q')}^{k_{v'}} + \operatorname{tr} \operatorname{deg}_{\operatorname{Fr}(A/q)}^{\operatorname{Fr}(A'/q')} = \operatorname{tr} \operatorname{deg}_{\operatorname{Fr}(A/q)}^{k_{v'}} = \operatorname{tr} \operatorname{deg}_{k_{v}}^{k_{v'}} + \operatorname{tr} \operatorname{deg}_{\operatorname{Fr}(A/q)}^{k_{v}}.$$
 (3.11)

It follows from Proposition 1.3 that $\operatorname{trdeg}_{k_v}^{k_{v'}} \leq \operatorname{trdeg}_{K}^{K'} = 0$, hence

$$\operatorname{tr} \operatorname{deg}_{\operatorname{Fr}(A'/q')}^{k_{v'}} = \operatorname{tr} \operatorname{deg}_{\operatorname{Fr}(A/q)}^{k_{v}},$$

$$\operatorname{tr} \operatorname{deg}_{\operatorname{Fr}(A'[X]/Q')}^{k_{w'}} = \operatorname{tr} \operatorname{deg}_{\operatorname{Fr}(A[X]/Q)}^{k_{w}},$$

$$\operatorname{tr} \operatorname{deg}_{\operatorname{Fr}(A[X]/Q)}^{k_{w}} = \operatorname{tr} \operatorname{deg}_{\operatorname{Fr}(A/q)}^{k_{v}} + 1.$$

REMARK 3.3. Let *Q* be a prime ideal of A[X] lying over *q*. Then, for each valuation *v* of *K* with center *q* on *A*, there exists a valuation *w* of K(X) extending *v* and with center *Q* on A[X] such that

$$\operatorname{tr} \operatorname{deg}_{\operatorname{Fr}(A[X]/Q)}^{k_{w}} = \operatorname{tr} \operatorname{deg}_{\operatorname{Fr}(A/q)}^{k_{v}} + \operatorname{ht} \left(Q/q[X] \right). \tag{3.13}$$

Indeed, Lemma 3.2 implies the case where *Q* is a superior of *q*. If Q = q[X], let *w* be the canonical extension of *v* to *K*(*X*). It is well known (see Section 1) that $\operatorname{trdeg}_{\operatorname{Fr}((A/q)[X])}^{k_w} = \operatorname{trdeg}_{\operatorname{Fr}(A/q)}^{k_v}$.

RACHID CHIBLOUN

THEOREM 3.4. Let Q be a prime ideal of A[n] lying over q. Then, for each valuation v of K with center q on A, there exists a valuation w of K(n) extending v and with center Q on A[n] such that

$$\operatorname{trdeg}_{\operatorname{Fr}(A[n]/Q)}^{k_w} = \operatorname{trdeg}_{\operatorname{Fr}(A/q)}^{k_v} + \operatorname{ht}\left(Q/q[n]\right). \tag{3.14}$$

PROOF. One proceeds by induction on *n*. The case n = 1 follows from Remark 3.3. Assume that the statement is true for n - 1. Let $Q_1 = Q \cap A[X_1]$. Then there exists a valuation w_1 of $K(X_1)$ extending v, with center Q_1 on $A[X_1]$, and

$$\operatorname{tr} \operatorname{deg}_{\operatorname{Fr}(A[X_1]/Q_1)}^{k_{w_1}} = \operatorname{tr} \operatorname{deg}_{\operatorname{Fr}(A/q)}^{k_v} + \operatorname{ht} \left(Q_1/q[X_1] \right), \tag{3.15}$$

and there exists a valuation w of $K(X_1)(X_2,...,X_n) = K(n)$ extending w_1 , with center Q on A[n], and

$$\operatorname{tr} \operatorname{deg}_{\operatorname{Fr}(A[n]/Q)}^{k_{w}} = \operatorname{tr} \operatorname{deg}_{\operatorname{Fr}(A[X_{1}]/Q_{1})}^{k_{w}} + \operatorname{ht} \left(Q/Q_{1}[X_{2},...,X_{n}] \right) = \operatorname{tr} \operatorname{deg}_{\operatorname{Fr}(A/q)}^{k_{v}} + \operatorname{ht} \left(Q_{1}/q[X_{1}] \right) + \operatorname{ht} \left(Q/Q_{1}[X_{2},...,X_{n}] \right).$$
(3.16)

We conclude by remarking that

$$ht(Q_1/q[X_1]) + ht(Q/Q_1[X_2,...,X_n]) = ht(Q/q[X_1,...,X_n]).$$
(3.17)

NOTATION 3.5. Take $q_1 \subset q_2$ in Spec(*A*). We will denote by $\delta(q_1, q_2)$ the maximal value *d* for which there exists a valuation *v* on $Fr(A/q_1)$ with center q_2/q_1 on A/q_1 such that $\operatorname{trdeg}_{Fr(A/q_2)}^{k_v} = d$.

Jaffard has shown in [2] that $\delta((0), q_2)$ is the greatest number n such that there exists a chain of valuations $v_0 < \cdots < v_n$ on A with center q_2 on A.

COROLLARY 3.6. Let Q be a prime ideal of A[n] lying over q. Then

$$\delta((0), Q) = \delta((0), q) + \operatorname{ht}(Q/q[n]).$$
(3.18)

PROOF. In the case where Q = q[n], the result is well known (see [2]).

Suppose that $Q \neq q[n]$. For each valuation v of K with center q on A, there exists a valuation w of K(n) with center Q on A[n], extending v, with

$$\operatorname{tr} \operatorname{deg}_{\operatorname{Fr}(A[n]/Q)}^{k_{w}} = \operatorname{tr} \operatorname{deg}_{\operatorname{Fr}(A/q)}^{k_{v}} + \operatorname{ht} \left(Q/q[n] \right) \le \delta((0), Q), \quad (3.19)$$

and consequently

$$\delta((0), Q) \ge \delta((0), q) + \operatorname{ht}(Q/q[n]). \tag{3.20}$$

Conversely, let w' be a valuation on K(n) with center Q on A[n] and let v' be its restriction to K. The valuation v' has center q on A and

$$\operatorname{tr} \operatorname{deg}_{\operatorname{Fr}(A[n]/Q)}^{k_{w'}} + \operatorname{tr} \operatorname{deg}_{\operatorname{Fr}(A/q)}^{\operatorname{Fr}(A[n]/Q)} = \operatorname{tr} \operatorname{deg}_{k_{v'}}^{k_{w'}} + \operatorname{tr} \operatorname{deg}_{\operatorname{Fr}(A/q)}^{k_{v'}} \le n + \delta((0), q),$$
(3.21)

and therefore

$$\operatorname{tr} \operatorname{deg}_{\operatorname{Fr}(A[n]/Q)}^{k_{w'}} \leq \delta((0), q) + ht(Q/q[n]),$$

$$\delta((0), Q) \leq \delta((0), q) + ht(Q/q[n]).$$
(3.22)

PROPOSITION 3.7. Let q_1 be a prime ideal of A and $Q_1 \subset Q_2$ two prime ideals of A[n] lying over q_1 . Then

$$\delta(Q_1, Q_2) = \operatorname{ht}(Q_2/q_1[n]) - \operatorname{ht}(Q_1/q_1[n]) - 1.$$
(3.23)

PROOF. Let $T = A - q_1$. Then $T^{-1}(A[n]/Q_1)$ is an $Fr(A/q_1)$ -algebra of finite type, and therefore a Noetherian domain according to [3]. Then

$$\delta(Q_1, Q_2) = \delta((0), Q_2/Q_1) = \delta((0), T^{-1}(Q_2/Q_1))$$

= ht $(T^{-1}(Q_2/Q_1)) - 1$ = ht $(Q_2/Q_1) - 1$ (3.24)
= ht $(Q_2/q_1[n]) - ht (Q_1/q_1[n]) - 1$.

We finish this section studying the case of trivial valuations and we assume that q = (0).

PROPOSITION 3.8. Let Q be a prime ideal of A[n] lying over (0). Then there exists a valuation w of K(n) with center Q on A[n] such that

$$\operatorname{tr} \operatorname{deg}_{\operatorname{Fr}(A[n]/Q)}^{k_{w}} = \begin{cases} \operatorname{ht}(Q) - 1 & \text{if } Q \neq 0, \\ 0 & \text{if } Q = 0. \end{cases}$$
(3.25)

PROOF. If Q = (0), then it suffices to take for w the trivial valuation on K(n). We suppose that $Q \neq (0)$. If n = 1, then for each $w \in A(Q)$, according to the preceding result, $\operatorname{trdeg}_{\operatorname{Fr}(A[X]/Q)}^{k_w} \leq \delta((0), Q) = 0$, and therefore

$$\operatorname{tr} \operatorname{deg}_{\operatorname{Fr}(A[X]/Q)}^{k_W} = \operatorname{ht}(Q) - 1 = 0.$$
 (3.26)

Take n > 1, assume that the property holds for n - 1, and let $Q_1 = Q \cap A[X_1]$. Then there exists a valuation w_1 of $K(X_1)$ with center Q_1 on $A[X_1]$ and tr deg^{k_{w_1}} tr deg^{k_{w_1}} $_{Fr(A[X_1]/Q_1)} = 0$. If w_1 is the trivial valuation, then there exists a valuation w of $K(X_1)(X_2,...,X_n) = K(n)$ with center Q on $A[X_1][X_2,...,X_n] = A[n]$ and

RACHID CHIBLOUN

trdeg^{k_w}_{Fr(A[n]/Q)} = ht(Q) – 1. If w_1 is not trivial, then $Q_1 \neq (0)$ and it follows from Theorem 3.4 that there exists a valuation w on K(n) extending w_1 and with center Q on A[n], and

$$\operatorname{tr} \operatorname{deg}_{\operatorname{Fr}(A[n]/Q)}^{k_{w_{1}}} = \operatorname{tr} \operatorname{deg}_{\operatorname{Fr}(A[X_{1}]/Q_{1})}^{k_{w_{1}}} + \operatorname{ht} \left(Q/Q_{1}[X_{2}, \dots, X_{n}] \right)$$

= $\operatorname{ht}(Q) - \operatorname{ht}(Q_{1})$ (3.27)
= $\operatorname{ht}(Q) - 1.$

4. Valuations on A[n] centered on the same ideal and extending the same valuation. Let v be a valuation on K with center q on A and Q a prime ideal of A[n] lying over q. We will use the following notation:

- (a) $A(Q) = \{w \mid w \text{ is a valuation on } A[n] \text{ with center } Q\};$
- (b) $A(v) = \{w \mid w \text{ is a valuation on } A[n] \text{ extending } v\};$
- (c) $A(v,Q) = \{w \mid w \text{ is a valuation on } A[n] \text{ with center } Q \text{ extending } v\}.$

LEMMA 4.1. Let w be a valuation on K(n). Then w is maximal in A(v,Q) if and only if w is maximal in $\{w'' \mid w'' \text{ is a valuation on } A_v[n] \text{ with center } Q_1 = m(w) \cap A_v[n] \}$ and Q_1 is maximal in $\{Q' \mid Q' \in \text{Spec}(A_v[n]) \text{ with } Q' \cap A[n] = Q \}$.

PROOF. Suppose that *w* is maximal in A(v,Q). Assume that there exists $Q_2 \in \text{Spec}(A_v[n])$ such that $Q_1 \subset Q_2$ and $Q_2 \cap A[n] = Q$. By Proposition 1.4, there exists a valuation w_2 on $A_v[n]$ with center Q_2 , and $w < w_2$ such that $m(w_2) \cap A[n] = Q$ and $A_v \subseteq A_{w_2} \cap K \subseteq A_w \cap K = A_v$. Thus, w_2 extends *v* with center *Q* on A[n], which is a contradiction.

Assume that w < w', with w' a valuation on $A_v[n]$ with center Q_1 . Then $m(w') \cap A[n] = Q$ and w' extends v, that is, w' is a valuation on A[n] with center Q and extending v, which is impossible.

Conversely, if w < w' with w' a valuation on A[n] extending v and with center Q, then $m(w) \cap A_v[n] = Q_1 \subset m(w') \cap A_v[n]$, but $(m(w') \cap A_v[n]) \cap A[n] = m(w') \cap A[n] = Q$, which is again a contradiction.

REMARK 4.2. Take $w \in A(v, Q)$. Let $Q_1 = m(w) \cap A_v[n]$ and assume that Q_1 is maximal in $\{Q' \mid Q' \in \text{Spec}(A_v[n]), Q' \cap A[n] = Q\}$. The ideal $Q_1/m(v)[n]$ is maximal in $\{Q' \mid Q' \in \text{Spec}(k_v[n]), Q' \cap (A/q)[n] = Q/q[n]\}$. According to [5], we have

$$\operatorname{ht}\left(Q_{1}/m(\upsilon)[n]\right) - \operatorname{ht}\left(Q/q[n]\right) = \operatorname{inf}\left(\operatorname{trdeg}_{A/q}^{k_{\upsilon}}, \operatorname{trdeg}_{A/q}^{A[n]/Q}\right).$$
(4.1)

THEOREM 4.3. For $w \in A(v,Q)$, the following assertions are equivalent:

- (a) w is maximal in A(v,Q);
- (b) $\inf(\operatorname{tr} \operatorname{deg}_{k_{w}}^{k_{w}}, \operatorname{tr} \operatorname{deg}_{A[n]/O}^{k_{w}}) = 0.$

PROOF. First, suppose that w is maximal in A(v, Q).

CASE 1. The transcendence degree of k(v) on k(q) is finite. Let $Q_1 = m(w) \cap A_v[n]$. Then

$$\operatorname{tr} \operatorname{deg}_{A[n]/Q}^{k_{w}} + n - \operatorname{ht} \left(Q/q[n] \right)$$

$$= \operatorname{tr} \operatorname{deg}_{A/q}^{k_{w}} = \operatorname{tr} \operatorname{deg}_{A_{v}[n]/Q_{1}}^{k_{w}} + \operatorname{tr} \operatorname{deg}_{A[n]/Q}^{A_{v}[n]/Q_{1}} + n - \operatorname{ht} \left(Q/q[n] \right).$$

$$(4.2)$$

According to Lemma 4.1, trdeg^{k_w}_{$A_v[n]/Q_1$} = 0, and

$$\operatorname{tr} \operatorname{deg}_{A[n]/Q}^{A_{\nu}[n]/Q_{1}} + n - \operatorname{ht} \left(Q/q[n] \right) = n - \operatorname{ht} \left(Q_{1}/m(\nu)[n] \right) + \operatorname{tr} \operatorname{deg}_{A/q}^{k_{\nu}}, \quad (4.3)$$

and therefore

$$\operatorname{tr} \operatorname{deg}_{A[n]/Q}^{A_{\nu}[n]/Q_{1}} = \operatorname{ht} \left(Q/q[n] \right) - \operatorname{ht} \left(Q_{1}/m(\nu)[n] \right) + \operatorname{tr} \operatorname{deg}_{A/q}^{k_{\nu}},$$

$$\operatorname{tr} \operatorname{deg}_{A[n]/Q}^{k_{w}} = \operatorname{tr} \operatorname{deg}_{A[n]/Q}^{A_{\nu}[n]/Q_{1}}$$

$$= \operatorname{ht} \left(Q/q[n] \right) - \operatorname{ht} \left(Q_{1}/m(\nu)[n] \right) + \operatorname{tr} \operatorname{deg}_{A/q}^{k_{\nu}}.$$
(4.4)

Remark 4.2 implies that

$$\operatorname{tr} \operatorname{deg}_{A[n]/Q}^{k_w} = \operatorname{tr} \operatorname{deg}_{A/q}^{k_v} - \inf\left(\operatorname{tr} \operatorname{deg}_{A/q}^{k_v}, \operatorname{tr} \operatorname{deg}_{A/q}^{A[n]/Q}\right).$$
(4.5)

If tr deg_{A[n]/Q}^{k_w} \neq 0, then tr deg_{A[n]/Q}^{k_w} = tr deg_{A/q}^{k_v} + ht(Q/q[n]) - n, and therefore

$$\operatorname{tr} \operatorname{deg}_{A/q}^{k_w} = \operatorname{tr} \operatorname{deg}_{k_v}^{k_w} + \operatorname{tr} \operatorname{deg}_{A/q}^{k_v} = \operatorname{tr} \operatorname{deg}_{A/q}^{k_v}, \tag{4.6}$$

that is, $\operatorname{trdeg}_{k_v}^{k_w} = 0$.

CASE 2. The transcendence degree of k(v) on k(q) is infinite. We will show that $\operatorname{trdeg}_{k_v}^{k_w} = 0$. According to Lemma 4.1 and Remark 4.2,

$$\operatorname{ht}(Q_{1}/m(\nu)[n]) - \operatorname{ht}(Q/q[n]) = \operatorname{trdeg}_{A/q}^{A[n]/Q} = n - \operatorname{ht}(Q/q[n]), \quad (4.7)$$

and therefore $ht(Q_1/m(v)[n]) = n$. Thus,

$$\operatorname{tr} \operatorname{deg}_{A_{\nu}[n]/Q_{1}}^{k_{w}} + \operatorname{tr} \operatorname{deg}_{A_{\nu}/m(\nu)}^{A_{\nu}[n]/Q_{1}} = \operatorname{tr} \operatorname{deg}_{k_{\nu}}^{k_{w}}, \qquad (4.8)$$

so

$$\operatorname{tr} \operatorname{deg}_{k_{v}}^{k_{w}} = \operatorname{tr} \operatorname{deg}_{A_{v}/m(v)}^{A_{v}[n]/Q_{1}} = n - ht(Q_{1}/m(v)[n]) = 0. \tag{4.9}$$

Conversely, assume that $\inf(\operatorname{trdeg}_{k_w}^{k_w}, \operatorname{trdeg}_{A[n]/Q}^{k_w}) = 0$. It follows from Corollary 2.9 that w is maximal in A(v, Q).

PROPOSITION 4.4. If $w_0 \in A(v,Q)$ is not maximal in A(v,Q), then there exists w_1 in A(v,Q) such that $w_0 < w_1$ and $\operatorname{trdeg}_{A[n]/Q}^{k_{w_1}} = \operatorname{trdeg}_{A[n]/Q}^{k_{w_0}} -1$.

PROOF. Let $Q_0 = m(w_0) \cap A_v[n]$. According to Lemma 4.1, $\operatorname{trdeg}_{A_v[n]/Q_0}^{k_{w_0}} \neq 0$ or Q_0 is not maximal in $\{Q' \mid Q' \in \operatorname{Spec}(A_v[n]) \text{ with } Q' \cap A[n] = Q\}$.

If $\operatorname{trdeg}_{A_{\nu}[n]/Q_{0}}^{k_{w_{0}}} \neq 0$, then it follows from Lemma 2.3 that there exists a valuation w_{1} on $A_{\nu}[n]$ with center Q_{0} such that $w_{0} < w_{1}$ and $\operatorname{trdeg}_{A_{\nu}[n]/Q_{0}}^{k_{w_{1}}} = \operatorname{trdeg}_{A_{\nu}[n]/Q_{0}}^{k_{w_{0}}} -1$, that is, $\operatorname{trdeg}_{A[n]/Q}^{k_{w_{1}}} = \operatorname{trdeg}_{A[n]/Q}^{k_{w_{0}}} -1$. The valuation w_{1} extends v since $A_{v} \subseteq A_{w_{1}} \cap K \subseteq A_{w_{0}} \cap K = A_{v}$.

If $\operatorname{trdeg}_{A_{v}[n]/Q_{0}}^{k_{w_{0}}} = 0$, let Q_{1} be a prime ideal of $A_{v}[n]$ lying over Q with $Q_{0} \subset Q_{1}$ and $\operatorname{ht}(Q_{1}/Q_{0}) = 1$. According to Proposition 1.4 and Theorem 2.4, there exists a valuation w_{1} on $A_{v}[n]$ with center Q_{1} such that $w_{0} < w_{1}$ and $\operatorname{trdeg}_{A_{v}[n]/Q_{1}}^{k_{w_{1}}} = 0$; w_{1} is a valuation on A[n] with center Q. Then

$$\operatorname{tr} \operatorname{deg}_{A[n]/Q}^{k_{w_{0}}} = \operatorname{tr} \operatorname{deg}_{A[n]/Q}^{A_{v}[n]/Q_{0}} = \operatorname{ht} \left(Q/q[n] \right) - \operatorname{ht} \left(Q_{0}/m(v)[n] \right) + \operatorname{tr} \operatorname{deg}_{A/q}^{k_{v}},$$

$$\operatorname{tr} \operatorname{deg}_{A[n]/Q}^{k_{w_{1}}} = \operatorname{ht} \left(Q/q[n] \right) - \operatorname{ht} \left(Q_{1}/m(v)[n] \right) + \operatorname{tr} \operatorname{deg}_{A/q}^{k_{v}},$$

$$(4.10)$$

and therefore

$$\operatorname{tr} \operatorname{deg}_{A[n]/Q}^{k_{w_0}} - \operatorname{tr} \operatorname{deg}_{A[n]/Q}^{k_{w_1}} = \operatorname{ht} \left(Q_1/m(v)[n] \right) - \operatorname{ht} \left(Q_0/m(v)[n] \right)$$

=
$$\operatorname{ht} \left(Q_1/Q_0 \right) = 1.$$
 (4.11)

THEOREM 4.5. For $w \in A(v,Q)$, let $d(w,v,Q) = \sup\{k \mid k \in \mathbb{N}, \exists k+1 \text{ valu-} ations <math>w = w_0 < \cdots < w_k \text{ in } A(v,Q)\}$. Then

$$d(w, v, Q) = \inf\left(\operatorname{trdeg}_{k_v}^{k_w}, \operatorname{trdeg}_{A[n]/Q}^{k_w}\right).$$
(4.12)

PROOF. Let k = d(w, v, Q). According to Proposition 4.4, there exist $w_0 < \cdots < w_k$ in A(v, Q), with $\operatorname{trdeg}_{A[n]/Q}^{k_{w_i}} = \operatorname{trdeg}_{A[n]/Q}^{k_{w_0}} - i$ for each $i \in \{0, \dots, k\}$ and w_k maximal in A(v, Q), that is,

$$\operatorname{tr} \operatorname{deg}_{A[n]/Q}^{k_{w_{k}}} = \operatorname{tr} \operatorname{deg}_{A/q}^{k_{v}} - \inf\left(\operatorname{tr} \operatorname{deg}_{A/q}^{k_{v}}, \operatorname{tr} \operatorname{deg}_{A/q}^{A[n]/Q}\right) = \operatorname{tr} \operatorname{deg}_{A[n]/Q}^{k_{w}} - k,$$
(4.13)

and therefore

$$k = \operatorname{tr} \operatorname{deg}_{A[n]/Q}^{k_{w}} - \operatorname{tr} \operatorname{deg}_{A/q}^{k_{v}} + \inf\left(\operatorname{tr} \operatorname{deg}_{A/q}^{k_{v}}, \operatorname{tr} \operatorname{deg}_{A/q}^{A[n]/Q}\right)$$

= $\inf\left(\operatorname{tr} \operatorname{deg}_{k_{v}}^{k_{w}}, \operatorname{tr} \operatorname{deg}_{A[n]/Q}^{k_{w}}\right).$ (4.14)

PROPOSITION 4.6. For $w \in A(v, Q)$,

$$s = \sup \{k \mid \exists k+1 \text{ valuations } w_k < \dots < w_0 = w \text{ on } A(v,Q) \}$$

= h = inf (ht (m(w)/QA_w)), ht (m(w)/m(v)A_w). (4.15)

PROOF. Let $k \in \mathbb{N}$ and let $w_k < \cdots < w_0 = w$ be valuations on A(v,Q). As $A(v,Q) \subseteq A(v) \cap A(Q)$, $k \le \inf(\operatorname{ht}(m(w)/QA_w), \operatorname{ht}(m(w)/m(v)A_w))$, and consequently $s \le h$.

The converse inequality is trivial if $s = \infty$. So let $s < \infty$ and assume s < h. Take $w_k < \cdots < w_0 = w$ in A(v, Q). Then

$$ht(m(w)/QA_w) = ht(m(w)/m(w_k)) + ht(m(w_k)/QA_{w_k})$$

= k + ht(m(w_k)/QA_{w_k}), (4.16)

and therefore $ht(m(w_k)/QA_{w_k}) \neq 0$, and there exists $w'_{k+1} \in A(Q)$ with $w'_{k+1} < w_k$. As

$$ht(m(w)/m(v)A_w) = ht(m(w)/m(w_k)) + ht(m(w_k)/m(v)A_{w_k})$$

$$= k + ht(m(w_k)/m(v)A_{w_k}),$$
(4.17)

we have that $\operatorname{ht}(m(w_k)/m(v)A_{w_k}) \neq 0$, and therefore there exists $w'_{k+1} \in A(v)$ with $w''_{k+1} < w_k$. Thus, $A_{w_k} \subset A_{w'_{k+1}}$, $A_{w_k} \subset A_{w''_{k+1}}$, $A_{w'_{k+1}} = (A_{w_k})_{P'}$, and $A_{w''_{k+1}} = (A_{w_k})_{P'}$ with P' and P'' two prime ideals of A_{w_k} . As P' and P'' are comparable, $A_{w'_{k+1}} \subseteq A_{w''_{k+1}}$ or $A_{w''_{k+1}} \subseteq A_{w'_{k+1}}$. If $w''_{k+1} \leq w'_{k+1}$, $m(w''_{k+1}) \subseteq m(w'_{k+1})$ and $m(v) = m(w''_{k+1}) \cap A_v \subseteq m(w'_{k+1}) \cap A_v$, that is, $m(w'_{k+1}) \cap A_v = m(v)$ and w'_{k+1} extends v, it will be a contradiction since $w'_{k+1} \in A(v,Q)$.

If $w'_{k+1} \leq w''_{k+1}$, then $m(w'_{k+1}) \subseteq m(w''_{k+1}) \subset m(w)$, and then $m(w''_{k+1}) \cap A[n] = Q$ and $w''_{k+1} \in A(v, Q)$, which is again a contradiction.

We conclude that s = h and finish the proof.

COROLLARY 4.7. For $w \in A(v, Q)$, the following assertions are equivalent:

- (a) w is minimal in A(v,Q);
- (b) $\inf(\operatorname{ht}(m(w)/QA_w),\operatorname{ht}(m(w)/m(v)A_w)) = 0;$

(c) w is minimal in A(Q) or in A(v).

NOTATION 4.8. For each valuation w on A(v,Q), let l(w) be the maximal length of a chain of valuations on A(v,Q) passing through w. The maximum value of l(w), where w runs through the set A(v,Q), will be denoted by d(A(v,Q)).

THEOREM 4.9. For each valuation w on A(v,Q),

- (a) $l(w) = \inf(\operatorname{ht}(m(w)/QA_w),\operatorname{ht}(m(w)/m(v)A_w)) + \inf(\operatorname{tr} \operatorname{deg}_{k_v}^{k_w}, \operatorname{tr} \operatorname{deg}_{A[n]/Q}^{k_w});$
- (b) $d(A(v,Q)) = \operatorname{trdeg}_{k(q)}^{k_v} + \operatorname{ht}(Q/q[n]).$

PROOF. (a) The proof follows immediately from Theorem 4.5 and Proposition 4.6.

(b) Let $w' \in A(v, Q)$. Then

$$\operatorname{trdeg}_{A[n]/Q}^{k_{w'}} + n - \operatorname{ht}\left(Q/q[n]\right) = \operatorname{trdeg}_{k(q)}^{k_{w'}} = \operatorname{trdeg}_{k(v)}^{k_{w'}} + \operatorname{trdeg}_{k(q)}^{k_{v}}, \quad (4.18)$$

thus

$$\operatorname{trdeg}_{A[n]/Q}^{k_{w'}} = \operatorname{trdeg}_{k(q)}^{k_{v}} + \operatorname{ht}\left(Q/q[n]\right) + \left(\operatorname{trdeg}_{k(v)}^{k_{w'}} - n\right)$$

$$\leq \operatorname{trdeg}_{k(q)}^{k_{v}} + \operatorname{ht}\left(Q/q[n]\right).$$

$$(4.19)$$

Therefore, $d(A(v,Q)) \leq \operatorname{trdeg}_{k(q)}^{k_v} + \operatorname{ht}(Q/q[n]).$

Theorem 3.4 implies the existence of $w \in A(v, Q)$ satisfying $\operatorname{trdeg}_{A[n]/Q}^{k_w} = \operatorname{trdeg}_{k(q)}^{k_v} + ht(Q/q[n])$, and the converse inequality follows.

REFERENCES

- [1] N. Bourbaki, Algèbre Commutative (chapitres 5 à 7), Masson, Paris, 1965 (French).
- P. Jaffard, *Théorie de la Dimension dans les Anneaux de Polynomes*, Mémor. Sci. Math., no. 146, Gauthier-Villars, Paris, 1960 (French).
- [3] _____, Valuations d'un anneau Noetherien et Théorie de la dimension, Algèbre et Théorie Nombres, vol. 13, Sem. P. Dubreil, M.-L. Dubreil-Jacotin et C. Pisot, 1961, p. 21 (French).
- [4] S. Lang, *Introduction to Algebraic Geometry*, Interscience Publishers, New York, 1958.
- [5] A. R. Wadsworth, *The Krull dimensions of tensor products of commutative algebras over a field*, J. London Math. Soc. (2) **19** (1979), no. 3, 391-401.
- [6] O. Zariski and P. Samuel, *Commutative Algebra. Vol. II*, The University Series in Higher Mathematics, D. Van Nostrand, New York, 1960.

Rachid Chibloun: Département de Mathématiques et Informatique, Université Moulay Ismail, BP 4010, Béni M'hamed, Méknès, Morocco

E-mail address: chibloun@fsmek.ac.ma