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For a coalgebraC , the rational functor Rat(−) : �C∗ →�C∗ is a left exact preradical
whose associated linear topology is the family �C , consisting of all closed and
cofinite right ideals of C∗. It was proved by Radford (1973) that if C is right �-
Noetherian (which means that every I ∈�C is finitely generated), then Rat(−) is a
radical. We show that the converse follows if C1, the second term of the coradical
filtration, is right �-Noetherian. This is a consequence of our main result on �-
Noetherian coalgebras which states that the following assertions are equivalent:
(i) C is right �-Noetherian; (ii) Cn is right �-Noetherian for all n∈N; and (iii) �C is
closed under products and C1 is right �-Noetherian. New examples of right �-
Noetherian coalgebras are provided.
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1. Introduction. Let C be a coalgebra over a field k and C∗ its dual alge-

bra. Let C� denote the category of left C-comodules and �C∗ the category of

right C∗-modules. It is well known that C� is isomorphic to the subcategory

Rat(�C∗) of all rational right C∗-modules. Indeed, Rat(�C∗) is a hereditary

pretorsion class in �C∗ (i.e., a class closed under subobjects, quotients, and ar-

bitrary direct sums). The linear topology �C on C∗ associated to Rat(�C∗) con-

sists of all closed and cofinite right ideals ofC∗. The problem of when Rat(�C∗)
is a torsion class (closed under extensions) has been studied in [5, 6, 8, 10] and,

recently, in [2]. In this paper, we continue the study of this problem and relate

it to a finiteness condition on �C , that every I ∈�C is finitely generated. Coal-

gebras satisfying this property are called right �-Noetherian. It was proved in

[8] that Rat(�C∗) is a torsion class if C is right �-Noetherian. In this paper,

we find a hypothesis under which the converse holds. This is a consequence

of our main theorem (Theorem 3.11) on �-Noetherian coalgebras that allows

to lift the property of being �-Noetherian through the terms of the coradical

filtration. It states that C is right �-Noetherian if and only if each term Cn of

the coradical filtration is so, or equivalently, C1 is right �-Noetherian and �C

is closed under products. From this theorem, it follows that, for C1 being right

�-Noetherian, Rat(�C∗) is a torsion class if and only if C is right �-Noetherian.

The hypothesis of C1 being right �-Noetherian is investigated in several cases.

When C is almost connected, C1 is right �-Noetherian if and only if C1 is finite

dimensional. If C is pointed, C1 is right �-Noetherian if and only if, for every
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group-like element x ∈ G(C), the set {dim(Px,y(C)) : y ∈ G(C)} is bounded.

Finally, as another consequence of the main theorem, we provide new exam-

ples of right �-Noetherian coalgebras. These are constructed by imposing the

terms of the coradical filtration to be left semiperfect.

2. Preliminary results. Recall the following facts on torsion theories and

coalgebras that will be needed in the sequel.

Torsion theory. Our main reference is [11, Chapter VI]. Let R be a ring

and �R the category of right R-modules. A class �⊂�R is called a hereditary

pretorsion class if it is closed under subobjects, quotients, and direct sums.

If, in addition, � is closed under extensions, then it is called a torsion class.

A functor r : �R → �R is called a left exact preradical if it is an idempotent

left exact subfunctor of the identity functor of �R . Such a functor is called a

radical if r(M/r(M)) = {0} for all M ∈ �R . A right linear topology on R is a

family � of right ideals of R satisfying the following:

(T1) if I ∈� and I ⊂ J, then J ∈�;

(T2) if I,J ∈�, then I∩J ∈�;

(T3) for any I ∈� and a∈ R, the right ideal (I : a)∈�.

A Gabriel topology is a right linear topology � satisfying the additional axiom

(T4) if I is a right ideal of R and there is J ∈ � such that (I : b) ∈ � for all

b ∈ J, then I ∈�.

There is a bijective correspondence between

(i) right linear topologies on R,

(ii) hereditary pretorsion classes in �R ,

(iii) left exact preradicals in �R .

Given a linear topology �, the associated hereditary pretorsion class is � =
{M ∈�R | Ann(m) ∈ � for all m ∈M}. The associated left exact preradical r
is defined as follows: for any M ∈ �R , r(M) = {m ∈ M : Ann(m) ∈ �}. Con-

versely, if � is a hereditary pretorsion class, the corresponding linear topology

� consists of all right ideals I of R for which R/I ∈�. The associated left exact

preradical is defined in the following way: for any M ∈�R , r(M) is the sum of

all submodules of M belonging to �. This correspondence becomes a bijective

correspondence between Gabriel topologies, torsion classes, and radicals.

Coalgebras and comodules. Throughout all vector spaces, algebras,

coalgebras, ⊗, and so forth, are over a fixed ground field k. For general facts

on coalgebras and comodules, we refer to [1, 7, 12]. For a coalgebra C , its dual

algebra C∗ is a topological vector space with the weak-* topology. The closed

subspaces of C∗ are the annihilators W⊥(C∗) of subspaces W of C . A subspace

U of C∗ is called cofinite if C∗/U is of finite dimension. A right ideal J of C∗

is closed and cofinite if and only if there is a finite-dimensional right coidealW
of C such that J =W⊥(C∗).

The category C� of left C-comodules is isomorphic to the full subcategory

Rat(�C∗) of �C∗ consisting of all rational right C∗-modules. LetM ∈�C∗ and
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m∈M . We say that m is a rational element if there is ρm =
∑
i ci⊗mi ∈ C⊗M

such that

m·c∗ =
n∑
i=1

〈
c∗,ci

〉
mi ∀c∗ ∈ C∗. (2.1)

The set consisting of all rational elements of M , denoted by Rat(M), is a C∗-

submodule of M . When M = Rat(M), M is called rational. The assignment

RatC(−) : �C∗ → �C∗ , M � Rat(M), called the rational functor, is a left ex-

act preradical. The hereditary pretorsion class associated to this preradical is

the subcategory Rat(�C∗) of all rational left C∗-modules. The linear topology

�C corresponding to this class is the family of all closed cofinite right ideals of

C∗. It follows from the fundamental theorem on coalgebras that �C is a sym-

metric linear topology. This means that, for every J ∈�C , there is a two-sided

ideal K of C∗ such that K ∈�C and K ⊂ J.

3. When is the rational functor a radical?

Definition 3.1. A coalgebra C is said to have a right torsion rat functor if

it satisfies one of the following equivalent conditions:

(i) Rat(�C∗) is closed under extensions;

(ii) the rational functor is a radical;

(iii) �C is a Gabriel topology.

It was proved in [5, Proposition 4 and Theorem 6] that these coalgebras enjoy

the following properties.

Proposition 3.2. Having a right torsion rat functor is closed under subcoal-

gebras and arbitrary direct sums.

We give a necessary condition to have a torsion rat functor. We recall from [4]

that a coalgebra C is locally finite if D∧C D is finite dimensional for any finite-

dimensional subcoalgebraD, where ∧C denotes the wedge product over C . See

[12, Section 9.0] for the definition of the wedge product and its properties.

Lemma 3.3. Let C be a coalgebra such that �C is closed under products. Then

C is locally finite.

Proof. Let D be a finite-dimensional subcoalgebra of C . By hypothesis,

there is a finite-dimensional subspaceW ofC such thatD⊥(C∗)D⊥(C∗) =W⊥(C∗).
Now, D∧C D = (D⊥(C∗)D⊥(C∗))⊥(C) =W⊥(C∗)⊥(C) =W . Hence, D∧C D is of finite

dimension.

The converse of Lemma 3.3 is not true. A counterexample may be found

in [9, Example 3.4]. Since any Gabriel topology is closed under products [11,

Lemma 5.3], we have the following corollary.
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Corollary 3.4. Any coalgebra having a right torsion rat functor is locally

finite.

A sufficient condition to have a torsion rat functor was given in [8, page 521].

Proposition 3.5. Let C be a coalgebra such that every J ∈ �C is finitely

generated. Then C has a right torsion rat functor.

Definition 3.6. A coalgebra C satisfying the hypothesis of Proposition 3.5

is called right �-Noetherian.

Example 3.7. (i) Let A be an algebra such that every cofinite right ideal of

A is finitely generated. It follows from [4, Theorem 3.3] that the finite dual Ao

is right �-Noetherian. In particular, the dual of a finitely generated algebra is

right and left �-Noetherian.

(ii) Recall from [6] that a coalgebra C is called left semiperfect if the injective

hull of any simple left C-comodule is finite dimensional. It was proved in [2,

Theorem 2.12] that any left semiperfect coalgebra is right �-Noetherian.

(iii) Subcoalgebras and arbitrary direct sums of right �-Noetherian coalge-

bras are also right �-Noetherian, see [10, Corollary 4.9] and [2, Proposition

2.8].

Our next step is to find out some structural properties of right �-Noetherian

coalgebras. Recall from [13, Example 1.2] that a right C-comodule M is said to

be finitely cogenerated if there is an injective C-comodule map f : M → C(n)

for some n∈N. For any M ∈�C , let E(M) denote its injective hull.

Proposition 3.8. Let I be a right coideal of C . The following assertions are

equivalent:

(i) C/I is finitely cogenerated;

(ii) E(I)/I is finitely cogenerated;

(iii) I⊥(C∗) is a finitely generated right ideal of C∗.

Proof. (i)�(ii). It is just to take into account that C 
 E(I)⊕T for some

subcomodule T of C and C/I 
 E(I)/I⊕T , see [3, Theorem 1.5g].

(i)⇒(iii). Notice that (C/I)∗ 
 I⊥(C∗) as right C∗-modules. Since C/I is finitely

cogenerated, there is an injective C-comodule map f : C/I → C(n) for some

n ∈ N. The dual map f∗ : C∗(n) → (C/I)∗ 
 I⊥(C∗) is a surjective C∗-module

map. Thus, I⊥(C∗) is finitely generated.

(iii)⇒(i). We can express C(n) = W ⊗C with W a space of dimension n. Let

{wi}ni=1 be a basis ofW and {w∗
i }ni=1 its dual basis inW∗. By hypothesis, there

is a surjective C∗-module map f :W∗⊗C∗ → I⊥(C∗). Let c∗i = f(w∗
i ⊗ε) for all

i = 1, . . . ,n (ε is the counit of C). We define g : C → C(n) by g(c) = ∑n
i=1wi⊗

(
∑
(c)〈c∗i ,c(1)〉c(2)) for all c ∈ C . It is easy to check that g∗ = f . Hence, g is a

C-comodule map. Moreover, I⊥(C∗) = Im(g∗) = Ker(g)⊥(C∗). Then I = Ker(g).
Therefore, C/I is finitely cogenerated.
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In view of the preceding result, the closed right ideals of C∗ are finitely

generated if the quotients of C are finitely cogenerated as a right comodule. For

a locally finite coalgebra, this latter property may be characterized by studying

the socle of such a quotient. It is known that there is a bijective correspondence

between simple subcoalgebras of C and isomorphism classes of simple right C-

comodules, see [1, Theorem 3.1.4]. Let � denote the set of simple subcoalgebras

of C . For each D ∈�, let SD be the corresponding simple right comodule. It is

also known that the socle of C as a right comodule coincides with the coradical

of C and C0 and it decomposes as C0 = soc(C)
⊕D∈�S
(nD)
D , where the nD are

natural numbers, see [3, Theorem 1.3b]. For any right C-comoduleM , soc(M)

M�CC0. The isotypic component of SD in M is given by ρ−1(M�CD), where

ρ :M →M⊗C is the structure map of M .

The following technical lemma will be useful to describe the simple comod-

ules appearing in soc(C/I) for a right coideal I of C .

Lemma 3.9. Let I be a right coideal of C and E a subcoalgebra of C . Then,

(I∧C E)/I 
 (C/I)�CE as right E-comodules.

Proof. It is not difficult to verify that the map

Φ : I∧C E �→ C
I
�CE, c � �→

∑
(c)

(
c(1)+I

)⊗c(2), (3.1)

is a surjective E-comodule map whose kernel is I.

Lemma 3.10. Let C be a locally finite coalgebra and I a right coideal of finite

dimension. Then C/I is finitely cogenerated if and only if there is γ ∈ N such

that dim((I∧C D)/I)≤ γnD dim(SD) for every D ∈�.

Proof. Using Lemma 3.9, we have that

soc
(
C
I

)

 C
I
�CC0 
⊕D∈�

C
I
�CD 
⊕D∈�

I∧C D
I

. (3.2)

Each (I∧C D)/I 
 S(mD)
D andmD is finite because C is locally finite. Notice that

C/I is finitely cogenerated if and only if soc(C/I) is finitely cogenerated as a

C0-comodule. This happens if and only if there is γ ∈N such that mD ≤ γnD
for all D ∈�. Equivalently, dim((I∧C D)/I)=mD dim(SD)≤ γnD dim(SD).

This description of the socle using the wedge yields a method to lift the

property of being right �-Noetherian through the terms of the coradical filtra-

tion.

Theorem 3.11. Let {Cn}n∈N be the coradical filtration of C . The following

assertions are equivalent:

(i) C is right �-Noetherian;

(ii) Cn is right �-Noetherian for all n∈N;

(iii) C1 is right �-Noetherian and �C is closed under products.
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Proof. We first prove that if C is right �-Noetherian, then �C is closed

under products. Let J,K ∈ �C . By hypothesis, J, K are finitely generated. Let

H be a two-sided ideal such that H ∈�C and H ⊆ J. Again by hypothesis, H is

finitely generated as a right ideal. By [4, Lemma 1.1.1], KH is finitely generated

and cofinite. Since it is finitely generated, it is closed by [4, Proposition 1.3.1(b)].

Hence, KH ∈�C . From KH ⊂KJ, it follows that KJ ∈�C .

(i)⇒(ii) and (i)⇒(iii) follow from the fact that being right �-Noetherian is

closed under subcoalgebras.

(ii)⇒(i). Since Cn is right �-Noetherian, �C is closed under products. From

Lemma 3.3, Cn is locally finite for all n ∈ N. In particular, C1 is locally finite.

By [4, Proposition 2.4.5], C is locally finite.

Let I be a finite-dimensional right coideal of C . In view of Proposition 3.8, it

suffices to prove that C/I is finitely cogenerated. There is m∈N such that I ⊂
Cm. By hypothesis and Proposition 3.8, Cm+1/I is finitely cogenerated. Apply-

ing Lemma 3.10, there is γ ∈ N such that dim((I∧Cm+1 D)/I) ≤ γnD dim(SD)
for every D ∈ �. On the other hand, I∧C D ⊂ Cm∧C C0 = Cm+1. By [4, Section

2.3.4], I∧CD = I∧Cm+1D. Then, dim((I∧CD)/I)≤ γnD dim(SD) for eachD ∈�.

Lemma 3.10 implies that C/I is finitely cogenerated.

(iii)⇒(i). We first check that every closed and cofinite maximal ideal is finitely

generated as a right ideal. LetM be such an ideal and D a simple subcoalgebra

of C such that M =D⊥(C∗). Arguing as in (ii)⇒(i), we obtain that C/D is finitely

cogenerated. Thus M is finitely generated.

Let J ∈ �C and let K be a two-sided ideal such that K ∈ �C and K ⊂ J. Let

P1, . . . ,Pn be maximal closed and cofinite two-sided ideals containing J (there

are only finitely many because J is cofinite). Set N =∩ni=1Pi, then Rad(C∗/K)=
N/K. Hence, there isn∈N such thatNn ⊆K. LetH = P1 ···Pn, thenHn ⊆Nn ⊆
K ⊂ J. The ideal H is closed and cofinite by hypothesis, and finitely generated

because the Pi’s are so. Therefore, J is finitely generated.

As an immediate consequence, we have the following corollary.

Corollary 3.12. Let C be a coalgebra such that C1 is right �-Noetherian.

The following assertions are equivalent:

(i) C has a right torsion rat functor;

(ii) �C is closed under products;

(iii) C is right �-Noetherian.

We analyze in some cases the hypothesis of C1 being right �-Noetherian.

Recall that a coalgebra C is called almost connected if C0 is finite dimensional.

Proposition 3.13. Let C be an almost connected coalgebra. The following

assertions are equivalent:

(i) C1 is right �-Noetherian;

(ii) C is locally finite;

(iii) Cn is finite dimensional for all n∈N.



EXTENSIONS OF RATIONAL MODULES 4369

Proof. (i)⇒(ii). If C1 is right �-Noetherian, then C1 is locally finite. By [4,

Theorem 2.4.5], C is locally finite.

(ii)⇒(iii). Since C is locally finite, Cn = C0∧C Cn−1 is finite dimensional.

(iii)⇒(i). It is clear since C∗1 is finite dimensional.

Corollary 3.14. Let C be an almost connected coalgebra. The following

assertions are equivalent:

(i) C has a right torsion rat functor;

(ii) �C is closed under products;

(iii) C is locally finite;

(iv) C is right �-Noetherian.

Proof. It is sufficient to prove that (iii)⇒(iv). Let I be a finite-dimensional

right coideal ofC . There isn∈N such that I ⊆ Cn. For anyD ∈�, I∧CD ⊆ Cn+1,

which is finite dimensional. Setting r = dim(Cn+1/I), we have that dim((I∧C
D)/I) ≤ rnD dim(SD) for all D ∈ �. From Lemma 3.10 and Proposition 3.8,

I⊥(C∗) is finitely generated.

Remark 3.15. (1) Corollary 3.14 is a generalization of [6, Corollary 21]

where C0 was assumed to be one dimensional. Notice that Corollary 3.14 is

equivalent to [10, Theorem 4.6] and [2, Theorem 2.10].

(2) The hypothesis of C being almost connected in Corollary 3.14 may be

replaced by C being a direct sum of almost connected coalgebras. This follows

from the fact that a direct sum of coalgebras is right �-Noetherian if and only

if each term is so, see [10, Corollary 4.9] and [2, Proposition 2.8]. This includes

the cocommutative case.

(3) Note that being locally finite does not depend on the right or left side.

Thus, the statements of Corollary 3.14 are equivalent to their left versions.

In the pointed case, the upper bound of Lemma 3.10 takes a more transpar-

ent form. Let C be a pointed coalgebra and G(C) its set of group-like elements.

For x,y ∈G(C), let Px,y(C) denote the space of (x,y)-primitive elements.

Proposition 3.16. Let C be a pointed coalgebra. Then C1 is right �-

Noetherian if and only if, for each x ∈G(C), the set {dim(Px,y(C)) :y ∈G(C)}
is bounded.

Proof. Assume that C1 is right �-Noetherian. Then C1 is locally finite.

Let x ∈ G(C) and M = (kx)⊥(C
∗
1 ). By hypothesis, M is finitely generated.

Proposition 3.8 yields that C1/kx is finitely cogenerated. For each y ∈ G(C),
the isotypic component of ky inC1/kx is (C1/kx)�Cky 
 ky(nx,y ) withnx,y =
dim(Px,y(C)). By hypothesis and Lemma 3.10, the set {nx,y : y ∈ G(C)} is

bounded.

Conversely, let D be a finite-dimensional subcoalgebra of C1. We will show

that C/D is finitely cogenerated as a right comodule. For any g,h ∈ G(C), let

P ′g,h(C) be a subspace of Pg,h(C) such that Pg,h(C)= k(g−h)⊕P ′g,h(C). By the
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Taft-Wilson lemma [7, Theorem 5.4.1], C1 = kG(C)⊕ (⊕g,h∈G(C)P ′g,h(C)). We

can write D = (⊕g∈Fkg)⊕(⊕g,h∈FP ′g,h(D)) with F being a finite subset of G(C).
For each g ∈ F , set Dg = kg⊕ (⊕h∈FP ′g,h(D)). Then, D = ⊕g∈FDg as right C-

comodules. In order to prove that D is finitely cogenerated, it suffices to prove

that Dg is so. The injective hull of Dg is E(Dg) = kg⊕(⊕h∈G(C)P ′g,h(C)). Now,

E(Dg)/Dg 
⊕h∈G(C)−F (kh)(mg,h) with mg,h = dim(P ′g,h(C)/P
′
g,h(D)). From the

hypothesis and Proposition 3.8, we deduce that Dg is finitely cogenerated.

Corollary 3.17. Let C be a pointed coalgebra satisfying that, for each x ∈
G(C), the set {dim(Px,y(C)) : y ∈ G(C)} is bounded. The following assertions

are equivalent:

(i) C has a right torsion rat functor;

(ii) �C is closed under products;

(iii) C is right �-Noetherian.

We finish this paper by constructing new examples of right �-Noetherian

coalgebras. Combining Example 3.7(ii) and Theorem 3.11, we have the follow-

ing corollary.

Corollary 3.18. Let C be a coalgebra. If Cn is left semiperfect for all n∈N,

then C is right �-Noetherian.

Example 3.19. For a quiver Γ , the path coalgebra kΓ is the k-vector space

generated by the paths in Γ with comultiplication ∆ and counit ε defined by

∆(γ)=
∑
αβ=γ

α⊗β, ε(γ)=



0, if |γ|> 0,

1, if |γ| = 0,
(3.3)

where α, β, and γ are paths, αβ is the concatenation of paths, and |·| denotes

the length of a path. Assume that, for every vertex v ∈ Γ and any n∈N, there

is a finite number of paths of length less than or equal to n ending at v . This

condition assures that (kΓ)n is left semiperfect for all n ∈ N. Then, the path

coalgebra kΓ is right �-Noetherian.
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