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Let H be a Hopf algebra. Ju and Cai (2000) introduced the notion of twisting of an
H-module coalgebra. In this paper, we study the relationship between twistings,
crossed coproducts, and Hopf-Galois coextensions. In particular, we show that a
twisting of an H-Galois coextension remains H-Galois if the twisting is invertible.
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1. Introduction. A fundamental result in Hopf-Galois theory is the normal

basis theorem, stating that, for a finitely generated cocommutative Hopf al-

gebra H over a commutative ring k, the set of isomorphism classes of Galois

H-objects that are isomorphic to H as an H-comodule is a group, and this

group is isomorphic to the second Sweedler cohomology group H2(H,k) (see

[14]). The Galois object corresponding to a 2-cocycle is then given by a crossed

product construction. The crossed product construction can be generalized to

arbitrary Hopf algebras and plays a fundamental role in the theory of exten-

sions of Hopf algebras (see [3, 11]). Also in this more general situation, it turns

out that there is a close relationship between crossed products on one side and

Hopf-Galois extensions and cleft extensions on the other side (cf. [3, 4, 11]). A

survey can be found in [13]. An alternative way to deform the multiplication on

anH-comodule algebraA has been proposed in [1], using the so-called twisting

of A, and it was shown that the crossed product construction can be viewed

as a special case of the twisting construction. The relation between twistings

and H-Galois extensions was studied in [2].

Now, there exists a coalgebra version of the normal basis theorem (see [6]).

In this situation, one tries to deform the comultiplication on a commutative

Hopf algebra H, using this time a Harrison cocycle instead of a Sweedler co-

cycle. Crossed coproducts, cleft coextensions, and Hopf-Galois coextensions

have been introduced and studied in [8, 10]. Ju and Cai [12] have introduced

the notion of twisting of anH-module coalgebra, which can be viewed as a dual

version of the twistings introduced in [1]. The aim of this paper is to study the

relationship between twistings, crossed coproducts, and Hopf-Galois coexten-

sions. Our main result is the fact that the twisting of a Hopf-Galois coextension

by an invertible twist map is again a Hopf-Galois coextension (and vice versa).
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Our paper is set up as follows. In Section 2.1, we recall the twistings intro-

duced in [12], and in Section 2.2 we recall the definition of a Harrison cocycle

and the crossed coproduct construction from [8, 10]. In Section 3, we introduce

an alternative version of 2-cocycles, called twisted 2-cocycles, and discuss the

relation with Harrison cocycles (Proposition 3.3). In Section 4, we introduce

an equivalence relation on the set of twistings of an H-module coalgebra and

we show that a twisting in an equivalence class is invertible if and only if all

the other twistings in this equivalence class are invertible (Theorem 4.4). Two

twistings are equivalent if and only if their corresponding crossed coproducts

are isomorphic (Proposition 2.1). In Section 5, the relationship between twist-

ings and Hopf-Galois coextensions is investigated.

For the general theory of Hopf algebras, we refer to the literature (see, e.g,

[9, 13, 15]).

2. Notation and preliminary results. We work over a field k. All maps are

assumed to be k-linear. For the comultiplication on a k-coalgebra C , we use

the Sweedler-Heyneman notation

∆C(c)= c1⊗c2 (2.1)

with the summation implicitly understood. We use a similar notation for a

(right) coaction of a coalgebra on a comodule:

ρ(m)=m0⊗m1 ∈M⊗C. (2.2)

Let A be a k-algebra, then Hom(C,A) is also an algebra, with convolution prod-

uct

(f ∗g)(c)= f (c1
)
g
(
c2
)
. (2.3)

We will denote by Reg(C,A) the set of convolution invertible elements in

Hom(C,A), and �C
A will be the category of modules with a right A-action and

a right C-coaction, such that the C-coaction is A-linear.

2.1. Twistings of a coalgebra. We recall some definitions and results from

[12]. Let H be a Hopf algebra over a field k, with bijective antipode S. The

composition inverse of the antipode will be denoted by S̄.

Recall that a right H-module coalgebra is a coalgebra C which is also a right

H-module such that

∆(c ·h)= c1 ·h1⊗c2 ·h2, εC(c ·h)= εC(c)εH(h) (2.4)

for all c ∈ C and h∈H.
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Consider the category �C
H , whose objects are right H-modules and right C-

comodules M such that the following compatibility relation is satisfied:

ρ(m·h)=m0 ·h1⊗m1 ·h2. (2.5)

Recall from [12] that we have the following associative multiplication on

Hom(C,H⊗C):

τ∗λ= (mH⊗ idC
)◦( idH⊗λ

)◦τ (2.6)

for all τ,λ∈Hom(C,H⊗C). The unit of this multiplication is the map σ : C →
H⊗C , σ(c)= 1⊗c.

Remark that we have an algebra isomorphism

α : Hom(C,H⊗C) �→H End(H⊗C)op, (2.7)

where α is defined as follows. Take τ : C → H⊗C , and write τ(c) = c−1⊗c0

(summation is understood). Then α(τ)= fτ :H⊗C →H⊗C is given by

fτ(h⊗c)= hτ(c)= hc−1⊗c0. (2.8)

Assume that τ satisfies the following normality conditions:

(
1⊗εC

)
τ(c)= ε(c)1H,

(
εH⊗1

)
τ(c)= c (2.9)

or

c−1εC
(
c0
)= εC(c)1H, εH

(
c−1
)
c0 = c. (2.10)

We can then define a new (in general noncoassociative) comultiplication ∆τ on

C as follows:

∆τ(c)= c1 ·c2,−1⊗c2,0 or ∆τ =
(
ψH⊗ id

)◦(id⊗τ)◦∆, (2.11)

where ψH : C ⊗H → C is the right H-action on C , and where we used the

Sweedler-type notation (id⊗τ)(∆c) = c1⊗c2,−1⊗c2,0. Let Cτ be equal to C as

a right H-module, with comultiplication ∆τ(c). A similar construction applies

to M ∈�C
H : Fτ(M)=Mτ as a right H-comodule, with

ρτ(m)=m0 ·m1,−1⊗m1,0, (2.12)

where τ is called a twisting if and only if Cτ is a rightH-module coalgebra, and

Mτ ∈�Cτ
H for all M ∈�C

H . It is shown in [12, Theorem 1.1] that τ : C →H⊗C ,
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satisfying (2.9), is a twisting if and only if for all h∈H and c ∈ C ,

c−1h1⊗c0 ·h2 = h1
(
c ·h2

)
−1⊗

(
c ·h2

)
0, (2.13)

c−1⊗c0,1 ·c0,2,−1⊗c0,2,0 = c1,−1c2,−1,1⊗c1,0 ·c2,−1,2⊗c2,0, (2.14)

where (2.13) is equivalent to

S
(
h1
)
c−1h2⊗c0 ·h3 = (c ·h)−1⊗(c ·h)0. (2.15)

If τ has an inverse λ, then the functor F is an equivalence of categories.

Left-hand twistings are defined in a similar way. Consider the vector space

isomorphism

Hom(C,C⊗H)� EndH
(
C⊗Hop,C⊗Hop). (2.16)

The composition on the right-hand side is transported into the following as-

sociative multiplication on Hom(C,C⊗H):

τ×λ= T ◦(T ◦λ∗T ◦τ). (2.17)

Here, T is the usual twist map. The unit σ ′ on Hom(C,C ⊗H) is given by

σ ′(c)= c⊗1. If λ∈Hom(C,C⊗H) satisfies the normalizing conditions

(
1⊗εH

)
λ(c)= c, (

εC⊗1
)
λ(c)= εC(c)1H, (2.18)

then we can twist the comultiplication on C as follows. Write λ(c) = c0⊗c1,

and define λ∆ by

λ∆(c)= c1,0⊗c2 ·c1,1. (2.19)

Let λC be equal to C as a right H-module, equipped with the comultiplication

λ∆. The C-coaction M ∈ C�H can also be twisted as follows:

λρ(m)=m−1,0⊗m0m−1,1, (2.20)

where λ is called a left-hand twisting if λC is an H-module coalgebra, and
λM ∈ λC�H for every M ∈ C�H . The map λ : C → C ⊗H satisfying (2.18) is a

left-hand twisting if and only if for all h∈H and c ∈ C ,

c0 ·h1⊗c1h2 =
(
c ·h1

)
0⊗h2

(
c ·h1

)
1, (2.21)

c0,1,0⊗c0,2 ·c0,1,1⊗c1 = c1,0⊗c2,0 ·c1,1,1⊗c2,1c1,1,2. (2.22)
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Equation (2.21) is equivalent to

c0 ·h1⊗ S̄
(
h3
)
c1h2 =

∑
(c ·h)0⊗(c ·h)1. (2.23)

For τ ∈Hom(C,H⊗C) with inverse λ, we write

τ(c)= c−1⊗c0, λ(c)= c(−1)⊗c(0). (2.24)

We then have

c−1c0,(−1)⊗c0,(0) = c(−1)c(0),−1⊗c(0),0 = 1⊗c. (2.25)

For γ ∈Hom(C,C⊗H) with inverse µ, we write

γ(c)= c0⊗c1, µ(c)= c(0)⊗c(1). (2.26)

Let �(C) and �(C) be the sets of twistings and left-hand twistings of C , respec-

tively, and U(�(C)) and U(�(C)) the sets of invertible twistings and left-hand

twistings, respectively.

Proposition 2.1. Take τ ∈U(�(C))with inverse λ. Define 	(τ) : C → C⊗H
by

	(τ)(c)= c0,(0) · S̄
(
c0,(−1)

)
S̄
(
c−1
)

1⊗ S̄
(
c−1
)

2. (2.27)

Take γ ∈U(�(C)), with inverse µ. Define r
(
γ) : C →H⊗C by

r(γ)(c)= S(c1
)

1⊗c0,(0) ·S
(
c0,(1)

)
S
(
c1
)

2. (2.28)

Then 	 :U(�(C))→U(�(C)) is a bijection with inverse r . Furthermore, 	(σ)=
σ ′ and r(σ ′)= σ .

Proof. It is shown in [12] that 	(τ)∈U(�(C)) with sn inverse given by

	(τ)′(c)= c0,(0) · S̄
(
c0,(−1)

)
1S̄
(
c−1
)

1⊗ S̄
(
S̄
(
c−1
)

3

)
S̄
(
c0,(−1)

)
2S̄
(
c−1
)

2. (2.29)

Set g = S̄(c0,(−1)), h= S̄(c−1). Then 	(τ)(c)= c0,(0) ·gh1⊗h2, so
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r
(
	(τ)

)
(c)= S(h2

)
1⊗
(
c0,(0) ·gh1

)
0,(0) · S̄

((
c0,(0) ·gh1

)
0,(−1)

)
1

·S̄((c0,(0) ·gh1
)
−1

)
1S
(
S̄
(
S̄
((
c0,(0) ·gh1

)
−1

)
3

)

·S̄((c0,(0) ·gh1
)

0,(−1)
)

2S̄
((
c0,(0) ·gh1

)
−1

)
2

)
S
(
h2
)

2

= S(h2
)

1⊗
(
c0,(0) ·gh1

)
0,(0)S̄

((
c0,(0) ·gh1

)
0,(−1)

)
1

·S̄((c0,(0) ·gh1
)
−1

)
1S
(
S̄
((
c0,(0) ·gh1

)
−1

)
2

)

·S(S̄((c0,(0) ·gh1
)

0,(−1)
)

2

)
S̄
((
c0,(0) ·gh1

)
−1

)
3S
(
h2
)

2

= S(h2
)

1⊗
(
c0,(0) ·gh1

)
0,(0)

·ε((c0,(0) ·gh1
)

0,(−1)
)
S̄
((
c0,(0) ·gh1

)
−1

)
S
(
h2
)

2

= S(h2
)

1⊗
(
c0,(0) ·gh1

)
0 · S̄

((
c0,(0) ·gh1

)
−1

)
S
(
h2
)

2

= S(h2
)

1⊗c0,(0),0 ·
(
gh1

)
3S̄
((
gh1

)
2

)
S̄
(
c0,(0),−1

)

·S̄(S(gh1
)

1

)
S
(
h2
)

2

= S(h3
)⊗c0,(0),0 · S̄

(
c0,(0),−1

)
gh1S

(
h2
)

= S(h)⊗c0,(0),0 · S̄
(
c0,(0),−1

)
g

= S(S̄(c−1
))⊗c0,(0),0 · S̄

(
c0,(−1)c0,(0),−1

)

= c−1⊗c0 = τ(c).

(2.30)

In [12], it is also shown that r(γ)∈U(�(C)), and it is straightforward to verify

that the ∗-inverse of r(γ) is given by

r(γ)′(c)= S(S(c1
)

1

)
S
(
c0,(1)

)
1S
(
c1
)

2⊗c0,(0) ·S
(
c0,(1)

)
2S
(
c1
)

3. (2.31)

Then a routine verification similar to the above one shows that

	
(
r(γ)

)
(c)= γ(c) (2.32)

for all c ∈ C . It is easy to show that 	(σ)= σ ′ and r(σ ′)= σ .

2.2. The crossed coproduct. We recall the following definitions from [8,

10].

Definition 2.2. Let C be a coalgebra and H a Hopf algebra. It is said that

H coacts weakly on C if there is a k-linear map ρ : C →H⊗C ; ρ(c)= c[−1]⊗c[0]
satisfying the following conditions for all c ∈ C :

c[−1]⊗c[0]1⊗c[0]2 = c1[−1]c2[−1]⊗c1[0]⊗c2[0],

εC
(
c[0]

)
c[−1] = ε(c)1H,

εH
(
c[−1]

)
c[0] = c.

(2.33)

Assume that H coacts weakly on C , and let α : C → H⊗H, α(c) = α1(c)⊗
α2(c), be a linear map. Let C >
α H be the coalgebra whose underlying vector
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space is C⊗H, with comultiplication and counit given by

∆α(c >
 h)=
(
c1 >
 c2[−1]α1

(
c3
)
h1
)⊗(c2[0] >
 α2

(
c3
)
h2
)
,

εα(c >
 h)= εC(c)εH(h).
(2.34)

It was pointed out in [10] that εα(c >
 h) satisfies the counit property if and

only if

(
εH⊗ id

)
α(c)= ( id⊗εH

)
α(c)= εC(c)1H (2.35)

and that ∆α is coassociative if and only if α satisfies

c1[−1]α1
(
c2
)⊗α1

(
c1[0]

)
α2
(
c2
)

1⊗α2
(
c1[0]

)
α2
(
c2
)

2

=α1
(
c1
)
α1
(
c2
)

1⊗α2
(
c1
)
α1
(
c2
)

2⊗α2
(
c2
)
,

(2.36)

c1[−1]α1
(
c2
)⊗c1[0][−1]α2

(
c2
)⊗c1[0][0]

=α1
(
c1
)
c2[−1]1⊗α2

(
c1
)
c2[−1]2⊗c2[0].

(2.37)

In [10], (2.36) is called the cocycle condition and (2.37) is called the twisted

comodule condition. Following [7], we callα, satisfying (2.35), (2.36), and (2.37),

a Harrison 2-cocycle.

Now, consider two weak H-coactions ρ,ρ′ : C →H⊗C , and write

ρ(c)= c[−1]⊗c[0], ρ′(c)= c〈−1〉⊗c〈0〉. (2.38)

Also consider two 2-cocycles α,α′ : C → H⊗H corresponding respectively to

ρ and ρ′, and write

α(c)=α1(c)⊗α2(c), α′(c)=α′1(c)⊗α′2(c). (2.39)

Then we can consider the crossed coproducts C >
α H and C >

′
α′ H. In the

next lemma, we discuss when these are isomorphic.

Lemma 2.3. Consider a convolution invertible map u : C →H satisfying the

conditions

c〈−1〉⊗c〈0〉 =u−1(c1
)
c2[−1]u

(
c3
)⊗c2[0], (2.40)

α′(c)=u−1(c1
)
c2[−1]α1

(
c3
)
u
(
c4
)

1⊗u−1(c2[0]
)
α2
(
c3
)
u
(
c4
)

2 (2.41)

for all c ∈ C . Then the map

φ : C >
′α′ H �→ C >
α H, φ(c >
′ h)= c1 >
u
(
c2
)
h (2.42)
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is a left C-colinear right H-linear coalgebra isomorphism. Every left C-colinear

right H-linear coalgebra isomorphism between C >
α H and C >

′
α′ H is of this

type.

Proof. The proof is a dual version of a similar statement for crossed prod-

ucts (see [13]).

It was shown in [12] that the crossed coproduct construction can be viewed

as a special case of the twisting construction from Section 2.1. LetH be a Hopf

algebra and C a rightH-module coalgebra, and view C⊗H as a rightH-module

coalgebra, with the right H-action being induced by the multiplication by H.

It was proved in [12] that there is a bijective correspondence between crossed

coproduct structures on C⊗H and twistings of C⊗H. We recall the description

of this bijection.

Consider a weak coaction ρ and a 2-cocycle α giving rise to the crossed

coproduct C >
α H, and write

ρ(c)= c[−1]⊗c[0], α(c)=α1(c)⊗α2(c). (2.43)

The corresponding twisting τ : C⊗H →H⊗C⊗H is defined by

τ(c⊗h)= S(h1
)
c1[−1]α1

(
c2
)
h2⊗c1[0]⊗α2

(
c2
)
h3. (2.44)

Conversely, if τ is a twisting of C ⊗H, then (C ⊗H)τ = C >
α H, with weak

coaction ρ and 2-cocycle α given by

ρ(c)= ( id⊗ id⊗εH
)
τ(c⊗1), (2.45)

α(c)= ( id⊗εC⊗ id
)
τ(c⊗1). (2.46)

3. Twisted 2-cocycles. Let H be a Hopf algebra with bijective antipode S
and let S̄ be the composition inverse of S. Take an H-module coalgebra C , and

let B = C/CH+.

Definition 3.1. A map α : C → H ⊗H, α(c) = α1(c)⊗α2(c) is called a

twisted 2-cocycle if the following conditions are satisfied for all h ∈ H and

c ∈ C :

(
idH⊗εH

)
α(c)= (εH⊗ idH

)
α(c)= εC(c)1H, (3.1)

α(c ·h)= S(h1
)
α1(c)h2⊗ S̄

(
h4
)
α2(c)h3, (3.2)

α1
(
c1
)
α1
(
c3
)

1⊗c2 ·α2
(
c1
)
α1
(
c3
)

2⊗α2
(
c3
)

=α1
(
c1
)⊗c2 ·α1

(
c3
)
α2
(
c1
)

1⊗α2
(
c3
)
α2
(
c1
)

2.
(3.3)

Our first result is the fact that the twisted 2-cocycles can be used to define

twistings on C .
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Proposition 3.2. With notation as above, if α : C → H⊗H is a twisted 2-

cocycle, then the map

τα : C �→H⊗C, τα(c)=α1
(
c1
)⊗c2 ·α2

(
c1
)
, (3.4)

is a twisting of C .

Proof. It follows easily from (3.1) that τα satisfies the normalizing condi-

tion (2.9). Next, we compute

(c ·h)−1⊗(c ·h)0 =α1
(
(c ·h)1

)⊗(c ·h)2 ·α2
((
c ·h2

)
1

)

=α1
(
c1 ·h1

)⊗c2 ·h2α2
(
c1 ·h1

)

= S(h1
)
α1
(
c1
)
h2⊗c2 ·h5S̄

(
h4
)
α2
(
c1
)
h3

= S(h1
)
α1
(
c1
)
h2⊗c2 ·α2

(
c1
)
h3

= S(h1
)
c−1h2⊗c0 ·h3,

(3.5)

and (2.13) follows easily. Finally, we compute the left- and right-hand sides of

(2.14):

c−1⊗c0,1 ·c0,2,−1⊗c0,2,0

= (1⊗∆τ
)
τα(c)=α1

(
c1
)⊗(c2 ·α2

(
c1
))

1 ·α1
(((
c2 ·α2

(
c1
))

2

)
1

)

⊗((c2 ·α2
(
c1
))

2

)
2 ·α2

(((
c2 ·α2

(
c1
))

2

)
1

)

=α1
(
c1
)⊗c2 ·α2

(
c1
)

1α1
(
c3 ·α2

(
c1
)

2

)

⊗(c4 ·α2
(
c1
)

3

)·α2
(
c3 ·α2

(
c1
)

2

)

=α1
(
c1
)⊗c2 ·α2

(
c1
)

1S
(
α2
(
c1
)

2

)
α1
(
c3
)
α2
(
c1
)

3

⊗c4 ·α2
(
c1
)

6S̄
(
α2
(
c1
)

5

)
α2
(
c3
)
α2
(
c1
)

4

=α1
(
c1
)⊗c2 ·α1

(
c3
)
α2
(
c1
)

1⊗c4 ·α2
(
c3
)
α2
(
c1
)

2,

c1,−1c2,−1,1⊗c1,0 ·c2,−1,2⊗c2,0

=
∑
α1
(
c11
)
α1
(
c21
)

1⊗c12 ·α2
(
c11
)·α1

(
c21
)

2⊗c22 ·α2
(
c21
)

=α1
(
c1
)
α1
(
c3
)

1⊗c2 ·α2
(
c1
)
α1
(
c3
)

2⊗c4 ·α2
(
c3
)

=α1
(
c1
)⊗c2 ·α1

(
c3
)
α2
(
c1
)

1⊗c4 ·α2
(
c3
)
α2
(
c1
)

2.

(3.6)

Thus (2.14) follows, and τα is a twisting.

There is also a relation between twisted 2-cocycles and Harrison 2-cocycles.

Let C be a rightH-module coalgebra. Consider the trivial weak coaction ρ(c)=
1⊗ c and α : C → H ⊗H. Then the cocycle condition (2.36) and the twisted
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comodule condition (2.37) of Definition 2.2 take the following form:

α1
(
c2
)⊗α1

(
c1
)
α2
(
c2
)

1⊗α2
(
c1
)
α2
(
c2
)

2

=α1
(
c1
)
α1
(
c2
)

1⊗α2
(
c1
)
α1
(
c2
)

2⊗α2
(
c2
)
,

(3.7)

α1
(
c2
)⊗α2

(
c2
)⊗c1 =α1

(
c1
)⊗α2

(
c1
)⊗c2. (3.8)

The set of Harrison 2-cocyles corresponding to the trivial weak coaction is

denoted by Z2
Harr(H,C). Thus, Z2

Harr(H,C) consists of maps satisfying (2.35),

(3.7), and (3.8). The set of twisted 2-cocycles αt : C⊗H →H⊗H in the sense of

Definition 3.1 will be denoted by Z2
tw(H,C⊗H).

Proposition 3.3. Let C be a rightH-module coalgebra. There exists a biject

in between Z2
Harr(H,C) and Z2

tw(H,C⊗H).
Proof. Take αt ∈ Z2

tw(H,C⊗H) and write

αt(c⊗h)=
∑
αt1(c⊗h)⊗αt2(c⊗h). (3.9)

For all c ∈ C and h∈H, we have

αt1
(
c1⊗h1

)
αt1
(
c2⊗h2

)
1⊗αt2

(
c1⊗h1

)
αt1
(
c2⊗h2

)
2⊗αt2

(
c2⊗h2

)

=αt1
(
c1⊗h1

)⊗αt1
(
c2⊗h2

)
αt2
(
c1⊗h1

)
1⊗αt2

(
c2⊗h2

)
αt2
(
c1⊗h1

)
2.

(3.10)

Now, define α : C →H⊗H by α(c)=αt(c⊗1). It is easy to see that α satisfies

(2.35) and (3.8). Using (3.10), we compute

α1
(
c2
)⊗α1

(
c1
)
α2
(
c2
)

1⊗α2
(
c1
)
α2
(
c2
)

2

=α1
(
c1
)⊗α1

(
c2
)
α2
(
c1
)

1⊗α2
(
c2
)
α2
(
c1
)

2

=αt1
(
c1⊗1

)⊗αt1
(
c2⊗1

)
αt2
(
c1⊗1)1⊗αt2

(
c2⊗1

)
αt2
(
c1⊗1

)
2

=αt1
(
c1⊗1

)
αt1
(
c2⊗1

)
1⊗αt2

(
c1⊗1

)
αt1
(
c2⊗1

)
2⊗αt2

(
c2⊗1

)

=α1
(
c1
)
α1
(
c2
)

1⊗α2
(
c1
)
α1
(
c2
)

2⊗α2
(
c2
)
,

(3.11)

and it follows that α also satisfies (3.7).

Conversely, let α∈ Z2
Harr(H,C), and define αt : C⊗H →H⊗H by

αt(c⊗h)= S(h1
)
α1(c)h2⊗ S̄

(
h4
)
α2(c)h3. (3.12)
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We can easily show that αt satisfies conditions (3.1) and (3.2) of Definition 3.1.

A straightforward computation shows that (3.3) is also satisfied:

αt1
(
c1⊗h1

)
αt1
(
c3⊗h3

)
1⊗c2⊗h2αt2

(
c1⊗h1

)
αt1
(
c3⊗h3

)
2⊗αt2

(
c3⊗h3

)

= Sh1α1
(
c1
)
h2S

(
h7
)
α1
(
c3
)

1h8

⊗c2⊗h5S̄
(
h4
)
α2
(
c1
)
h3S

(
h6
)
α1
(
c3
)

2h9⊗ S̄
(
h11

)
α2
(
c3
)
h10

= S(h1
)
α1
(
c1
)
α1
(
c3
)

1h2⊗c2⊗α2
(
c1
)
α1
(
c3
)

2h3⊗ S̄
(
h5
)
α2
(
c3
)
h4

= S(h1
)
α1
(
c3
)
h2⊗c2⊗α1

(
c1
)
α2
(
c3
)

1h3⊗ S̄
(
h5
)
α2
(
c1
)
α2
(
c3
)

2h4

= S(h1
)
α1
(
c1
)
h2⊗c2⊗α1

(
c3
)
α2
(
c1
)

1h3⊗ S̄
(
h5
)
α2
(
c3
)
α2
(
c1
)

2h4

= S(h1
)
α1
(
c1
)
h2⊗c2⊗h7S

(
h8
)
α1
(
c3
)
h9S̄

(
h6
)
α2
(
c1
)

1h3

⊗ S̄(h11
)
α2
(
c3
)
h10S̄

(
h5
)
α2
(
c1
)

2h4

=αt1
(
c1⊗h1

)⊗c2⊗h2αt1
(
c3⊗h3

)
αt2
(
c1⊗h1

)
1⊗αt2

(
c3⊗h3

)
αt2
(
c1⊗h1

)
2.

(3.13)

So it follows thatαt is a twisted 2-cocycle. We leave it to the reader to show that

the maps between Z2
Harr(H,C) and Z2

tw(H,C⊗H) defined above are the inverses

of each other.

4. Equivalence of twistings. In this section, we will define an equivalence

relation on the set of twistings of an H-module coalgebra C . If a twisting is

invertible, then all other twistings in the same equivalence class are also in-

vertible.

Proposition 4.1. Take τ,λ ∈ �(C) and use notation (2.24). Consider v ∈
Hom(C,H) satisfying the following identities, for all h∈H, c ∈ C :

εH ◦v = εC, v(c ·h)= S(h1
)
v(c)h2, (4.1)

c1,(−1)v
(
c2
)

1⊗c1,(0) ·v
(
c2
)

2 = v
(
c1
)
c2,−1⊗c2,0,1 ·v

(
c2,0,2

)
. (4.2)

Then ψ : Cτ → Cλ, ψ(c) = c1 · v(c2), is a left B-colinear and right H-linear

coalgebra map inducing the identity map on B. If v ∈ Reg(C,H), then ψ is an

isomorphism.

Proof. Using the second identity in (4.1) and B = C/CH+, we can easily

prove that ψ is left B-colinear and right H-linear. Using the first identity in

(4.1), we obtain thatψ induces a well-defined map B→ B, which is the identity.

In order to prove that ψ is a coalgebra map, we need to check that

ψ
(
c1 ·c2,−1

)⊗ψ(c2,0
)=ψ(c)1ψ(c)2,(−1)⊗ψ(c)2,(0). (4.3)
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Again, we compute the left- and right-hand sides and see that they are equal:

ψ(c)1ψ(c)2,(−1)⊗ψ(c)2,(0)
= (c1 ·v

(
c2
))

1

(
c1 ·v

(
c2
))

2,(−1)⊗
(
c1 ·v

(
c2
))

2,(0)

= c1 ·v
(
c3
)

1

(
c2 ·v

(
c3
)

2

)
(−1)⊗

(
c2 ·v

(
c3
)

2

)
(0)

= c1 ·v
(
c3
)

1S
(
v
(
c3
)

2

)
c2,(−1)v

(
c3
)

3⊗c2,(0) ·v
(
c3
)

4

= c1 ·c2,(−1)v
(
c3
)

1⊗c2,(0) ·v
(
c3
)

2

= c1 ·v
(
c2
)
c3,−1⊗c3,0,1 ·v

(
c3,0,2

)
,

ψ
(
c1 ·c2,−1

)⊗ψ(c2,0
)

= (c1 ·c2,−1
)

1 ·v
((
c1 ·c2,−1

)
2

)⊗(c2,0
)

1 ·v
((
c2,0

)
2

)

= c1 ·
(
c3,−1

)
1v
(
c2 ·

(
c3,−1

)
2

)⊗(c3,0
)

1 ·v
((
c3,0

)
2

)

= c1 ·c3,−1,1S
(
c3,−1,2

)
v
(
c2
)
c3,−1,3⊗c3,0,1 ·v

(
c3,0,2

)

= c1 ·v
(
c2
)
c3,−1⊗c3,0,1 ·v

(
c3,0,2

)
.

(4.4)

If v ∈ Reg(C,H), then its inversew also satisfies (4.1), andϕ : Cλ→ Cτ defined

by

ϕ(c)= c1 ·w
(
c2
)

(4.5)

is the inverse of ψ.

Definition 4.2. It is said that τ,λ ∈ �(C) are equivalent if there exists

v ∈ Reg(C,H) satisfying the conditions of Proposition 4.1. This is denoted by

τ ∼ λ.

Lemma 4.3. The relation ∼ is an equivalence relation on �(C).

Proof. Clearly, τ ∼ τ through v(c)= ε(c)1H .

Next, assume that τ ∼ λ, and take v ∈ Reg(C,H) satisfying (4.1) and (4.2).

Equation (4.2) is equivalent to

c(−1)⊗c(0) = v
(
c1
)
c2,−1v−1(c3

)
1⊗c2,0,1 ·v

(
c2,0,2

)
v−1(c3

)
2. (4.6)

The inverse u of v satisfies (4.1). It also satisfies (4.2) since

u
(
c1
)
c2,(−1)⊗c2,(0)1 ·u

(
c2,(0),2

)

=u(c1
)
v
(
c2
)
c3,−1v−1(c4

)
1⊗c3,0,1 ·v

(
c3,0,3

)
1v

−1(c4
)

2

·S(v−1(c4
)

3

)
S
(
v
(
c3,0,3

)
2

)
u
(
c3,0,2

)
v
(
c3,0,3

)
3v

−1(c4
)

4

= c1,−1v−1(c2
)

1⊗c1,0,1 ·u
(
c1,0,2

)
v
(
c1,0,3

)
v−1(c2

)
2

= c1,−1u
(
c2
)

1⊗c1,0,1 ·u
(
c2
)

2,

(4.7)

and it follows that λ∼ τ .
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Now, assume that τ ∼ λ and λ∼ γ, and take the corresponding maps v,u∈
Reg(C,H). Set w =u∗v , and write

τ(c)= c−1⊗c0, λ(c)= c(−1)⊗c(0), γ(c)= c[−1]⊗c[0]. (4.8)

It is easily shown that w satisfies (4.1), v satisfies (4.6), and u satisfies

c[−1]⊗c[0] =u
(
c1
)
c2,(−1)u−1(c3

)
1⊗c2,(0),1 ·u

(
c2,(0),2

)
u−1(c3

)
2. (4.9)

We compute

c[−1]⊗c[0] =u
(
c1
)
v
(
c2
)
c3,−1v−1(c4

)
1u

−1(c5
)

1⊗c3,0,1

·v(c3,0,3
)

1v
−1(c4

)
2S
(
v−1(c4

)
3

)
S
(
v
(
c3,0,3

)
2

)

·u(c3,0,2
)
v
(
c3,0,3

)
3v

−1(c4
)

4u
−1(c5

)
2

=u(c1
)
v
(
c2
)
c3,−1v−1(c4

)
1u

−1(c5
)

1

⊗c3,0,1 ·u
(
c3,0,2

)
v
(
c3,0,3

)
v−1(c4

)
2u

−1(c5
)

2

= (u∗v)(c1
)
c2,−1(u∗v)−1(c3

)
1

⊗c2,0,1 ·(u∗v)
(
c2,0,2

)
(u∗v)−1(c3

)
2,

(4.10)

and this proves that τ ∼ γ.

Theorem 4.4. Take τ ∼ λ∈�(C). If τ is invertible, then λ is also invertible.

Proof. Take v ∈ Reg(C,H) satisfying the conditions in Proposition 4.1 and

let ψ : Cτ → Cλ be the coalgebra isomorphism given by

ψ(c)= c1 ·v
(
c2
)
. (4.11)

Let τ−1 be the inverse of τ , and write

τ−1(c)= c〈−1〉⊗c〈0〉, τ(c)= c−1⊗c0, λ(c)= c(−1)⊗c(0). (4.12)

Define µ : C →H⊗C by

µ(c)= c[−1]⊗c[0] =ψ−1(c)〈−1〉v−1(ψ−1(c)〈0〉1
)
v
(
ψ−1(c)〈0〉3

)
1

⊗ψ−1(c)〈0〉2 ·v
(
ψ−1(c)〈0〉3

)
2.

(4.13)

Using the temporary notation ψ−1(c)〈−1〉 = a and ψ−1(c)〈0〉 = b, it is not hard

to prove that µ is a left inverse of λ. Indeed,
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(µ∗λ)(c)= (m⊗ id)(id⊗λ)µ(c)
= av−1(b1

)
v
(
b3
)

1

(
b2 ·v

(
b3
)

2

)
(−1)⊗

(
b2 ·v

(
b3
))
(0)

= av−1(b1
)
v
(
b3
)

1S
(
v
(
b3
)

2

)
b2,(−1)v

(
b3
)

3⊗b2,(0) ·v
(
b3
)

4

= av−1(b1
)
b2,(−1)v

(
b3
)

1⊗b2,(0) ·v
(
b3
)

2

= av−1(b1
)
v
(
b2
)
b3,−1⊗b3,0,1 ·v

(
b3,0,2

)

= ab−1⊗b0,1 ·v
(
b0,2

)= 1⊗ψ−1(c)1 ·v
(
ψ−1(c)2

)

= 1⊗ψ(ψ−1(c)
)= 1⊗c = σ(c).

(4.14)

The proof of the fact that µ is also a right inverse of λ is much more technical.

From the fact that v is invertible, and using (4.2), we obtain

λ(c)= c(−1)⊗c(0) = v
(
c1
)
c2,−1v−1(c3

)
1⊗c2,0,1 ·v

(
c2,0,2

)
v−1(c3

)
2. (4.15)

Now, set ψ−1(c)= c1 ·v−1(c2). We compute

(λ∗µ)(c)= (m⊗ id)(id⊗µ)λ(c)
= v(c1

)
c2,−1v−1(c3

)
1

(
c2,0,1 ·v

(
c2,0,2

)
v−1(c3

)
2

)
[−1]

⊗(c2,0,1 ·v
(
c2,0,2

)
v−1(c3

)
2

)
[0]

= v(c1
)
c2,−1v−1(c3

)
1S
(
v−1(c3

)
2

)
S
(
v
(
c2,0,2

)
1

)(
c2,0,1

)
[−1]

·v(c2,0,2
)

2v
−1(c3

)
3⊗
(
c2,0,1

)
[0] ·v

(
c2,0,2

)
3v

−1(c3
)

4

= v(c1
)
c2,−1S

(
v
(
c2,0,2

)
1

)(
c2,0,1

)
[−1]v

(
c2,0,2

)
2v

−1(c3
)

1

⊗(c2,0,1
)
[0] ·v

(
c2,0,2

)
3v

−1(c3
)

2

= v(c1
)
c2,−1S

(
v
(
c2,0,2

)
1

)
ψ−1(c2,0,1

)
〈−1〉v

−1(ψ−1(c2,0,1
)
〈0〉.1

)

·v(ψ−1(c2,0,1
)
〈0〉,3

)
1v
(
c2,0,2

)
2v

−1(c3
)

1⊗ψ−1(c2,0,1
)
〈0〉,2

·v(ψ−1(c2,0,1
)
〈0〉,3

)
2v
(
c2,0,2

)
3v

−1(c3
)

2

= v(c1
)
c2,−1S

(
v
(
c2,0,3

)
1

)(
c2,0,1 ·v−1(c2,0,2

))
〈−1〉

·v−1((c2,0,1 ·v−1(c2,0,2
))
〈0〉1
)
v
((
c2,0,1 ·v−1(c2,0,2

))
〈0〉3
)

1

·v(c2,0,3
)

2v
−1(c3

)
1⊗
(
c2,0,1 ·v−1(c2,0,2

))
〈0〉2

·v((c2,0,1 ·v−1(c2,0,2
))
〈0〉3
)

2v
(
c2,0,3

)
3v

−1(c3
)

2

= v(c1
)
c2,−1S

(
v
(
c2,0,3

)
1

)
S
(
v−1(c2,0,2

)
1

)
c2,0,1,〈−1〉v−1(c2,0,2

)
2

·v−1((c2,0,1,〈0〉 ·v−1(c2,0,2
)

3

)
1

)
v
((
c2,0,1,〈0〉 ·v−1(c2,0,2

)
3

)
3

)
1

·v(c2,0,3
)

2v
−1(c3

)
1⊗
(
c2,0,1,〈0〉 ·v−1(c2,0,2

)
3

)
2

·v((c2,0,1,〈0〉 ·v−1(c2,0,2
)

3

)
3

)
2v
(
c2,0,3

)
3v

−1(c3
)

2
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= v(c1
)
c2,−1S

(
v−1(c2,0,2

)
1v
(
c2,0,3

)
1

)
c2,0,1,〈−1〉v−1(c2,0,2

)
2

·v−1(c2,0,1,〈0〉,1 ·v−1(c2,0,2
)

3

)
v
(
c2,0,1,〈0〉,3 ·v−1(c2,0,2

)
5

)
1v
(
c2,0,3

)
2

·v−1(c3
)

1⊗c2,0,1,〈0〉,2 ·v−1(c2,0,2
)

4

·v(c2,0,1,〈0〉,3 ·v−1(c2,0,2
)

5

)
2v
(
c2,0,3

)
3v

−1(c3
)

2

= v(c1
)
c2,−1S

(
v−1(c2,0,2

)
1v
(
c2,0,3

)
1

)
c2,0,1,〈−1〉v−1(c2,0,2

)
2

·S(v−1(c2,0,2
)

3

)
v−1(c2,0,1,〈0〉,1

)
v−1(c2,0,2

)
4S
(
v−1(c2,0,2

)
6

)
1

·v(c2,0,1,〈0〉,3
)

1

(
v−1(c2,0,2

)
7

)
1v
(
c2,0,3

)
2v

−1(c3
)

1

⊗c2,0,1,〈0〉,2 ·v−1(c2,0,2
)

5S
(
v−1(c2,0,2

)
6

)
2

·v(c2,0,1,〈0〉,3
)

2

(
v−1(c2,0,2

)
7

)
2v
(
c2,0,3

)
3v

−1(c3
)

2

= v(c1
)
c2,−1S

(
v−1(c2,0,2

)
1v
(
c2,0,3)1

)
c2,0,1,〈−1〉v−1(c2,0,2

)
2S
(
v−1(c2,0,2

)
3

)

·v−1(c2,0,1,〈0〉,1
)
v−1(c2,0,2

)
4S
(
v−1(c2,0,2

)
7

)
v
(
c2,0,1,〈0〉,3

)
1

·v−1(c2,0,2
)

8v
(
c2,0,3

)
2v

−1(c3
)

1⊗c2,0,1,〈0〉,2 ·v−1(c2,0,2
)

5

·S(v−1(c2,0,2
)

6

)
v
(
c2,0,1,〈0〉,3

)
2v

−1(c2,0,2
)

9v
(
c2,0,3

)
3v

−1(c3
)

2

= v(c1
)
c2,−1S

(
v−1(c2,0,2

)
1v
(
c2,0,3

)
1

)
c2,0,1,〈−1〉v−1(c2,0,1,〈0〉,1

)

·v(c2,0,1,〈0〉,3
)

1v
−1(c2,0,2

)
2v
(
c2,0,3

)
2v

−1(c3
)

1

⊗c2,0,1,〈0〉,2 ·v
(
c2,0,1,〈0〉,3

)
2v

−1(c2,0,2
)

3v
(
c2,0,3

)
3v

−1(c3
)

2

= v(c1
)
c2,−1c2,0,〈−1〉v−1(c2,0,〈0〉,1

)
v
(
c2,0,〈0〉,3

)
1v

−1(c3
)

1

⊗c2,0,〈0〉,2 ·v
(
c2,0,〈0〉,3

)
2v

−1(c3
)

2

= v(c1
)
v−1(c2,1

)
v
(
c2,3

)
1v

−1(c3
)

1⊗c2,2 ·v
(
c2,3

)
2v

−1(c3
)

2

= v(c1
)
v−1(c2

)
v
(
c4
)

1v
−1(c5

)
1⊗c3 ·v

(
c4
)

2v
−1(c5

)
2

= 1⊗c = σ(c),
(4.16)

and it follows that λ is convolution invertible.

Theorem 4.5. Let C be a right H-comodule algebra and consider τ,λ ∈
�(C⊗H). Then τ and λ are equivalent in the sense of Definition 4.2 if and only

if there is a left C-colinear and right H-linear coalgebra isomorphism between

the crossed coproducts C >
α H, ρ and C >
′α′ H, ρ′ corresponding to τ and λ.

Proof. Consider (2.38). If τ ∼ λ, then there exists v ∈ Reg(C⊗H,H) satis-

fying (4.1) and (4.2). Define

u : C �→H, u(c)= v−1(c⊗1). (4.17)
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If we can show that u satisfies (2.40) and (2.41), then one implication is proved

by Lemma 2.3. It follows from (4.2) that

(
c1⊗1

)
(−1)v

(
c2⊗1

)
1⊗
(
c1⊗1

)
(0) ·v

(
c2⊗1

)
2

= v(c1⊗1
)(
c2⊗1

)
−1⊗

(
c2⊗1

)
0,1 ·v

((
c2⊗1

)
0,2
)
.

(4.18)

Applying 1⊗1⊗ε to both sides, we find

(
c1⊗1

)
(−1)v

(
c2⊗1

)⊗(1⊗ε)(c1⊗1
)
(0)

= v(c1⊗1
)(
c2⊗1

)
−1⊗(1⊗ε)

(
c2⊗1

)
0,

(4.19)

and using (2.45), we obtain

c〈−1〉⊗c〈0〉 =u−1(c1
)
c2[−1]u

(
c3
)⊗c2[0]. (4.20)

So u satisfies (2.40).

Applying 1⊗ε⊗1 to both sides of (4.18), we find

α′(c)= v(c1⊗1
)(
c2⊗1

)
−1v

−1(c3⊗1
)

1

⊗(ε⊗1)
((
c2⊗1

)
0,1 ·v

((
c2⊗1

)
0,2
)
v−1(c3⊗1

)
2

)
.

(4.21)

It follows from (2.44) that

(c⊗1)0 = c1[0]⊗α2
(
c2
)
,

(ε⊗1)
((
c2⊗1

)
0,1 ·v

((
c2⊗1

)
0,2
)
v−1(c3⊗1

)
2

)

= (ε⊗1)
(
c2,[0],1⊗α2

(
c3
)

1v
(
c2,[0],2⊗α2

(
c3
)

2

)
v−1(c4⊗1

)
2

)

=α2
(
c3
)

1v
(
c2,[0]⊗α2

(
c3
)

2

)
v−1(c4⊗1

)
2

= v(c2,[0]⊗1
)
α2
(
c3
)
v−1(c4⊗1

)
2

= v((1⊗ε)(c2⊗1
)

0⊗1
)
(ε⊗1)

(
c3⊗1

)
0v

−1(c4⊗1
)

2.

(4.22)

So,

α′(c)= v(c1⊗1
)(
c2⊗1

)
−1

(
c3⊗1

)
−1v

−1(c4⊗1
)

1

⊗v((1⊗ε)(c2⊗1
)

0⊗1
)
(ε⊗1)

(
c3⊗1

)
0v

−1(c4⊗1
)

2

=u−1(c1
)
c2[−1]α1

(
c3
)
u
(
c4
)

1⊗u−1(c2[0]
)
α2
(
c3
)
u
(
c4
)

2,

(4.23)

and (2.41) follows.
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Conversely, assume that the two crossed coproducts are isomorphic. By

Lemma 2.3, there exists u∈ Reg(C,H) satisfying (2.40) and (2.41). Define

v : C⊗H �→H, v(c⊗h)= S(h1
)
u−1(c)h2. (4.24)

Then

εHv(c⊗h)= ε
(
S
(
h1
)
u−1(c)h2

)= ε(c)ε(h),
v
(
(c⊗h)·g)= v(c⊗hg)= S(hg)1u−1(c)(hg)2

= S(g1
)
S
(
h1
)
u−1(c)h2g2 = S

(
g1
)
v(c⊗h)g2.

(4.25)

So,

λ(c⊗h)= (c⊗h)1⊗(c⊗h)0
= S(h1

)
c1,〈−1〉α′1

(
c2
)
h2⊗c1,〈0〉 ⊗α′2

(
c2
)
h3

= S(h1
)
u−1(c1

)
c2,[−1]u

(
c3
)
u−1(c4

)
c5,[−1]α1

(
c6
)
u
(
c7
)

1h2

⊗c2,[0]⊗u−1(c5,[0]
)
α2
(
c6
)
u
(
c7
)

2h3

= S(h1
)
u−1(c1

)
c2,[−1]α1

(
c3
)
u
(
c4
)

1h2⊗c2,[0],1

⊗u−1(c2,[0],2
)
α2
(
c3
)
u
(
c4
)

2h3

= S(h1
)
u−1(c1

)
h2S

(
h3
)
c2,[−1]α1

(
c3
)
h4S

(
h7
)
u
(
c4
)

1h8

⊗c2,[0],1⊗u−1(c2,[0],2
)
α2
(
c3
)
h5S

(
h6
)
u
(
c4
)

2h9

= S(h1
)
u−1(c1

)
h2S

(
h3
)
c2,[−1]α1

(
c3
)
h4S

(
h9
)
u
(
c4
)

1h10⊗c2,[0],1

⊗α2
(
c3
)

1h5S
(
h6
)
S
(
α2
(
c3
)

2

)
u−1(c2,[0],2

)
α2
(
c3
)

3h7S
(
h8
)
u
(
c4
)

2h11

= v(c1⊗h1
)(
c2⊗h2

)
−1v

−1(c3⊗h3
)

1

⊗(c2⊗h2
)

0,1 ·v
((
c2⊗h2

)
0,2
)
v−1(c3⊗h3

)
2.

(4.26)

This shows that τ ∼ λ.

5. Twisting Hopf-Galois coextensions. Let H be a Hopf algebra with bi-

jective antipode S, and C a right H-module coalgebra. As before, we use the

following notation:

B = C/I, I = {c(h−ε(h)) | h∈H, c ∈ C}. (5.1)

For τ ∈�(C), we have that Cτ/Iτ = C/I = B.

Now, assume that C/B is an H-Galois coextension (see [5]). This means that

the canonical map

β : C⊗H �→ C�BC, β(c⊗h)= c1⊗c2 ·h, (5.2)
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is a bijection. Recall that, in this situation, C�BC is the cotensor product

C�BC =
{
ΣiCi⊗di ∈ C⊗C | Σici1⊗π

(
ci2
)⊗di = ΣiCi⊗π

(
di1
)⊗di2

}
, (5.3)

where π : C → B is the natural epimorphism.

Lemma 5.1. With notation as above, consider the map

β′ : C⊗H �→ C�BC, β′(c⊗h)= c1 ·h⊗c2. (5.4)

If the antipode S is bijective, then β is bijective (resp., injective, resp., surjective)

if and only if β′ is bijective (resp., injective, resp., surjective).

Proof. The map

φ : C⊗H �→ C⊗H, φ(c⊗h)= c ·h1⊗S
(
h2
)

(5.5)

is a bijection with inverse

φ−1(c⊗h)= c ·h2⊗ S̄h1. (5.6)

Then the statement follows from the fact that β′ = β◦φ.

Theorem 5.2. Take τ ∈ U(�(C)). Then Cτ/B is an H-Galois coextension if

and only if C/B is an H-Galois coextension.

Proof. Let λ be the inverse of τ . As before, we use the notation (2.24). Let

βτ be the canonical map corresponding to the coextension Cτ/B, that is,

βτ(c⊗h)= c1 ·c2,−1h⊗c2,0. (5.7)

Consider the following diagram:

C⊗H β

f

C�BC

g

C⊗H βτ
C�BC,

(5.8)

where

f(c⊗h)= c0⊗ S̄
(
c−1
)
h, g(c⊗d)= c0 · S̄

(
c−1
)⊗d, (5.9)

f and g are bijections, with inverses given by

f−1(c⊗h)= c(0)⊗ S̄
(
c(−1)

)
h, g−1(c⊗d)= c(0) · S̄

(
c(−1)

)⊗d. (5.10)
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We can also compute

βτf(c⊗h)= βτ(c0⊗ S̄
(
c−1
)
h
)

= c0,1 ·c0,2,−1S̄
(
c−1
)
h⊗c0,2,0

= c1,0 ·c2,−1,2S̄
(
c1,−1c2,−1,1

)
h⊗c2,0

= c1,0 ·c2,−1,2S̄
(
c2,−1,1

)
S̄
(
c1,−1

)
h⊗c2,0

= c1,0 · S̄
(
c1,−1

)
h⊗c2

= c1,0 ·h3S̄
(
h2
)
S̄
(
c1,−1

)
h1⊗c2

= c1,0 ·h3S̄
(
S
(
h1
)
c1,−1h2

)⊗c2

= (c1 ·h
)

0 · S̄
((
c1 ·h

)
−1

)⊗c2

= g(c1 ·h⊗c2
)= gβ(c⊗h).

(5.11)

This shows that (5.8) is commutative and it follows that β is bijective if and

only if βτ is bijective.

Theorem 5.3. Let C/B be an H-Galois coextension and take τ,λ ∈ �(C).
Every left B-colinear and right H-linear coalgebra map

ψ : Cτ �→ Cλ (5.12)

is of the form ψ(c)= c1 ·v(c2), where v ∈Hom(C,H) satisfies conditions (4.1)

and (4.2) of Proposition 4.1. If ψ is an isomorphism, then v ∈ Reg(C,H).

Proof. We use the notation (2.24). As in [5], we consider the map

τ̄ = (ε⊗1)β−1 : C�BC �→H. (5.13)

We introduce the notation c♦d = τ̄(c⊗d). Then we have the following prop-

erties:

εH(c♦d)= εC(c)εC(d), (5.14)

(c♦d)h= c♦(d·h), (5.15)

(c ·h)♦d= S(h)(c♦d), (5.16)

c1 ·
(
c2♦d

)= ε(c)d. (5.17)

The map

v : C �→H, v(c)= c1♦ψ
(
c2
)
, (5.18)

satisfies the property

c1 ·v
(
c2
)= c1 ·

(
c2♦ψ

(
c3
))=ψ(c). (5.19)
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Since ψ is a coalgebra,

εHv(c)= εH
(
c1♦ψ

(
c2
))= ε(ψ(c))= ε(c), (5.20)

and it follows that εH ◦v = εC .

It follows from (5.16) and (5.17) that

v(c ·h)= (c ·h)1♦ψ
(
(c ·h)2

)= c1 ·h1♦ψ
(
c2 ·h2

)

= S(h1
)(
c1♦ψ

(
c2
))
h2 = S

(
h1
)
v(c)h2.

(5.21)

Since ψ is a coalgebra map, we have that

ψ
(
c1 ·c2,−1

)⊗ψ(c2,0
)=ψ(c)1ψ(c)2,(−1)⊗ψ(c)2,(0),

c1 ·v
(
c2
)
c3,−1⊗c3,0,1 ·v

(
c3,0,2

)

= (c1 ·v
(
c2
))

1

(
c1 ·v

(
c2
))

2,(−1)⊗
(
c1 ·v

(
c2
))

2,(0)

= c1 ·v
(
c3
)

1

(
c2 ·v

(
c3
)

2

)
(−1)⊗

(
c2 ·v

(
c3
)

2

)
(0)

= c1 ·c2,(−1)v
(
c3
)

1⊗c2,(0) ·v
(
c3
)

2,

(5.22)

which is equivalent to

c1⊗c2 ·v
(
c3
)
c4,−1⊗c4,0,1 ·v

(
c4,0,2

)

= c1⊗c2 ·c3,(−1)v
(
c4
)

1⊗c3,(0) ·v
(
c4
)

2.
(5.23)

After we apply β−1 to both sides, we obtain

c1⊗v
(
c2
)
c3,−1⊗c3,0,1 ·v

(
c3,0,2

)= c1⊗c2,(−1)v
(
c3
)

1⊗c2,(0) ·v
(
c3
)

2,

v
(
c1
)
c2,−1⊗c2,0,1 ·v

(
c2,0,2

)= c1,(−1)v
(
c2
)

1⊗c1,(0) ·v
(
c2
)

2.
(5.24)

If ψ is an isomorphism, then ψ−1 : Cλ → Cτ is a left B-colinear and right H-

linear coalgebra map. Then we have a map w : C →H satisfying (4.1) and (4.2)

such that

ψ−1(c)= c1 ·w
(
c2
)
. (5.25)

For all c ∈ C , we have that

c = c1 ·v
(
c2
)
w
(
c3
)= c1 ·w

(
c2
)
v
(
c3
)
. (5.26)

Proceeding as in the proof of (5.24), we find that v is convolution invertible.
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