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We consider the uniqueness of the inverse problem for a semilinear elliptic dif-
ferential equation with Dirichlet condition. The necessary and sufficient condition
of a unique solution is obtained. We improved the results obtained by Isakov and
Sylvester (1994) for the same problem.
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1. Introduction. Isakov and Sylvester considered in [3] the problem of

uniquely determining a in the following semilinear elliptic Dirichlet problem:

−∆u+a(x,u)= 0, x ∈Ω, (1.1)

u|∂Ω = g ∈W 2−1/p,p(∂Ω), (1.2)

whereΩ ⊂Rn (n≥ 3) is a bounded domain and its boundary ∂Ω∈ C2,α. Denote

u(x,g) as the solution of (1.1) and (1.2). Under the assumptions

as(x,s)≥ 0, a(x,s),as(x,s),ass(x,s)∈ L∞
(
Ω×[s,s]), (1.3)

they proved the following theorem.

Theorem 1.1. Denote the mappingΛa : g→∂u/∂µ|∂Ω. Ifa1(x,0)=a2(x,0)=
0 andΛa1 =Λa2 , thena1(x,s)= a2(x,s) on E, where E = {(x,s) : min(u1∗,u2∗)
< s < max(u1∗,u2∗), x ∈ Ω}, ui∗ = supg∈W2−1/p,p(∂Ω) u(x,g), and ui∗ =
infg∈W2−1/p,p(∂Ω) u(x,g), i= 1,2.

Later, Nakamura, in [4], attempted to improve the above result by claiming

that the same results can be obtained only by assuming the following condi-

tions on a:

a(x,s)∈ L∞(Ω̄×R), as ≥ 0, a1(x,0)= a2(x,0). (1.4)

The result of [4] does not hold because the key Lemma 2.1 in [4] applied in its

proof is incorrect.
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In this paper, we consider a general strong elliptic equation

−
n∑

i,j=1

cij∂iju+a(x,u)= 0, (1.5)

where cij are constants and
∑n
i,j=1 cijξiξj ≥ c0 > 0 for any (ξ1,ξ2, . . . ,ξn)∈Rn.

The following two theorems are our main results.

Theorem 1.2. Suppose that a1(x,s) and a2(x,s) satisfy the conditions

a1,a2,a1s ,a2s ∈ L∞
(
Ω̄×R)∩C0,α(Ω×R), a1s ,a2s ≥ 0. (1.6)

If Λa1 = Λa2 , then a1(x,s) = a2(x,s) on Ω×R if and only if there exists a

constant θ0 such that u1(x,θ0)=u2(x,θ0), where u1(x,θ0) and u2(x,θ0) are

both a solution of (1.1) and (1.2) with boundary data θ0 and

Λa = ∂u∂µ
∣∣∣∣
∂Ω
=

n∑
i,j=1

cij
∂u
∂xi

cos
(
n,xi

)∣∣∣∣
∂Ω
. (1.7)

The following theorem is a consequence of Theorem 1.2 and it improves

the result in [3].

Theorem 1.3. Suppose that conditions (1.6) are satisfied. If Λa1 = Λa2 for

a1,a2 ∈ E = {a(x,s) ∈ C1(Ω×R), there exists an s ∈ R such that a(x,s) = 0

for all x}, then a1(x,s)= a2(x,s) on Ω×R.

Remark 1.4. In our result, we obtain a necessary and sufficient condition

for the uniqueness of a. Moreover, the condition in Theorem 1.2 is weaker than

that in [3].

Remark 1.5. It is significant to consider a general elliptic equation (1.5)

although the equation can be transferred to a Laplace equation (1.1) through

some transform. The reason is that, to determine the term a, we rely on a

Dirichlet → Neumann mapping (defined in Section 2) totally, which may be

defined for the general elliptic equation, but the transferred version may or

may not be defined for the resulting Laplace equation.

2. The global uniqueness of the inverse problem. Let Ω be a bounded

domain in Rn with C2,α-boundary ∂Ω.

First we state an existence result.

Lemma 2.1. Suppose that a(x,s),as(x,s)∈ L∞ and as(x,s)≥ 0. There exists

a unique solution, u∈W 2,p , of the following Dirichlet problem:

−
n∑

i,j=1

cij∂iju+a(x,u)= 0, x ∈Ω,

u|∂Ω = g ∈W 2−1/p,p(∂Ω).

(2.1)
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Proof. We first consider (2.1), withφ(x)∈ C2,α(Ω̄) as the boundary condi-

tion. The existence of a solution u of the problem is well known (cf. [1]). Then

we take a sequence of functions: φn ∈ C2,α(Ω̄) in such a way that φn →φ in

W 2,p and φ|Ω = g ∈ W 2−1/p,p(∂Ω). For each boundary term φn, there exists

a solution un ∈ C2,α(Ω̄). By establishing a priori estimates and applying em-

bedding theorem and maximum principle, we can show that un is a Cauchy

sequence. Therefore, a subsequence ofun will converge to a functionu inW 2,p

and it can be shown that this limit, u, is the unique solution of (2.1).

Given g ∈W 2−1/p,p(∂Ω), with the corresponding solution from Lemma 2.1,

we define the Dirichlet → Neumann mapping (W 2−1/p,p(∂Ω)→W 1−1/p,p(∂Ω)):

Λa : g �→ ∂u
∂µ

∣∣∣∣
∂Ω
=

n∑
i,j=1

cij
∂u
∂xi

cos
(
n,xi

)∣∣∣∣
∂Ω
. (2.2)

Following the notations in [3], for each g ∈W 2−1/p,p(∂Ω), we denote

a∗(x,g)= ∂a
∂u
(
x,u(x,g)

)
. (2.3)

For

−
n∑

ij=1

cij∂ijv+a∗(x,g)v = 0, (2.4)

we denote the Dirichlet → Neumann mapping as Λa∗(x,g).

Lemma 2.2. Suppose that a1, a2 satisfy conditions (1.6) and Λa1 =Λa2 . Then,

for each g ∈W 2−1/p,p(∂Ω),

Λa∗1 (x,g) =Λa∗2 (x,g). (2.5)

Proof. By definition,

Λa(g+τg∗)= ∂u(x,g+τg∗)∂µ

∣∣∣∣
∂Ω
,

Λa(g)= ∂u(x,g)∂µ

∣∣∣∣
∂Ω
.

(2.6)

For g∗∈W 2−1/p,p(∂Ω),

Λa(g+τg∗)−Λa(g)
τ

= ∂
∂µ
u(x,g+τg∗)−u(x,g)

τ

∣∣∣∣
∂Ω
. (2.7)
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Since u(x,g+τg∗) and u(x,g) are, respectively, solutions of the Dirichlet

problems

−
n∑

i,j=1

cij∂iju+a
(
x,u(x,g+τg∗))= 0, x ∈Ω,

u(x,g+τg∗)∣∣∂Ω = g+τg∗∈W 2−1/p,p(∂Ω);

−
n∑

i,j=1

cij∂iju+a
(
x,u(x,g)

)= 0, x ∈Ω,

u(x,g)|∂Ω = g ∈W 2−1/p,p(∂Ω),

(2.8)

the difference v(τ)= (u(x,g+τg∗)−u(x,g))/τ satisfies the equation

−
n∑

i,j=1

cij∂ijv+v(τ)∂a∂s
(
x,u(x,g)

)

=−v(τ)
∫ 1

0

(
∂a
∂s
(
x,σu(x,g+τg∗)−(1−σ)u(x,g))−∂a

∂s
(
x,u(x,g)

))
dσ.

(2.9)

The maximum principle implies that

∥∥v(τ)∥∥L∞(Ω) ≤max
x∈∂Ω

∣∣g∗(x)∣∣ ∀τ ∈R. (2.10)

Applying the Lp-estimate theorem for the solution of elliptic equation, we then

obtain that∥∥u(x,g+τg∗)−u(x,g)∥∥W2,p(Ω) ≤ c|τ|‖g∗‖W2−1/p,p(∂Ω) �→ 0 as τ �→ 0.
(2.11)

Embedding theorem shows that

∥∥u(x,g+τg∗)−u(x,g)∥∥C(Ω) �→ 0 as τ �→ 0. (2.12)

From the assumption that as ∈ L∞(Ω̄×R)∩C0,α(Ω×R) and (2.9), we see that
∥∥∥∥∥∥−

n∑
i,j=1

cij∂ijv+v(τ)∂a∂s
(
x,u(x,g)

)
∥∥∥∥∥∥
LP (Ω)

�→ 0 as τ �→ 0. (2.13)

Now we can show that v(τ)→ v(0) in W 2,P (Ω). In fact,

n∑
i,j=1

cij∂ij
(
v(τ)−v(0))

= (v(τ)−v(0))∂a
∂s
(
x,u(x,g)

)− ∂a
∂s
(
x,u(x,g)

)

−v(τ)
∫ 1

0

(
∂a
∂s
(
x,σu(x,g+τg∗)−(1−σ)u(x,g))

)
dσ,

(
v(τ)−v(0))∣∣∂Ω = 0.

(2.14)
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Therefore,
∥∥v(τ)−v(0)∥∥
≤ C‖g∗‖W2−1/p,p(∂Ω) max

x∈Ω,σ∈[0,1]

∣∣∣∣∂a∂s
(
x,σu(x,g+τg∗)

−(1−σ)u(x,g))− ∂a
∂s
(
x,u(x,g)

)∣∣∣∣.
(2.15)

The fact that as ∈ C0,α(Ω×R) implies that v(τ)→ v(0) in W 2,P (Ω), that is,

u(x,g+τg∗)−u(x,g)
τ

�→ v(0) in W 2,P (Ω). (2.16)

Applying the trace theorem, we obtain that

∂v(τ)
∂µ

∣∣∣∣
∂Ω
�→ ∂v(0)

∂µ

∣∣∣∣
∂Ω
=Λa∗(x,g)g∗ (2.17)

or

lim
τ→0

Λa(x,g+τg∗)−Λa(x,g)
τ

=Λa∗(x,g). (2.18)

The assumption that Λa1 =Λa2 implies (2.5).

Lemma 2.3 [2]. Consider a linear equation of order m with constant coeffi-

cients

(
Pj(−i∂)+cj

)
uj = 0. (2.19)

Let Σ0 be a nonempty open set in Rn. Suppose that, for any ξ(0)∈ Σ0 and any

constant R, there exists a solution ξ(j) of the following algebraic equation:

ξ(1)+ξ(2)= ξ(0), Pj
(
ξ(j)

)= 0,
∣∣ξ(j)∣∣>R. (2.20)

Also suppose that there exists a constant C such that, for all ζ ∈Rn,

1∣∣ξ(j)∣∣ ≤ CP̃j
(
ζ+ξ(j)), (2.21)

where P̃ (ζ)= (∑|α|≤m |∂αζ P(ζ)|2)1/2. If f ∈ L1(Ω) and for all L2 solution, uj , it

holds that
∫
Ω
fu1u2dx = 0, (2.22)

then f = 0.

In our case, we take

P(∂u)=−
n∑

i,j=1

aij∂iju+a(x)u= 0, (2.23)
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where
∑n
i,j=1 cijξiξj ≥ c0|ξ| for any ξ ∈Rn. It can be shown algebraically that,

for the differential operator defined in (2.23), all the conditions in Lemma 2.3

are satisfied.

Now, we apply the result of Lemma 2.3 to prove the following lemma.

Lemma 2.4. Under the assumptions of Lemma 2.2, for any g ∈W 2−1/p,p(∂Ω)
and any x ∈Ω, it holds that

a∗1 (x,g)= a∗2 (x,g). (2.24)

Proof. From Lemma 2.2, for any g∗ ∈W 2−1/p,p(∂Ω),

Λa∗1 (x,g)g
∗ =Λa∗2 (x,g)g∗. (2.25)

That is, if v1(x,g∗) and v2(x,g∗) satisfy, respectively, the equations

−
n∑

ij=1

cij∂ijv1(x,g∗)+a∗1 (x,g)v1(x,g∗)= 0, (2.26)

v1(x,g∗)
∣∣
∂Ω = g∗ ; (2.27)

−
n∑

ij=1

cij∂ijv2
(
x,g∗)+a∗2 (x,g)v2(x,g∗)= 0, (2.28)

v2(x,g∗)
∣∣
∂Ω = g∗, (2.29)

then

∂v1(x,g∗)
∂µ

∣∣∣∣
∂Ω
= ∂v2(x,g∗)

∂µ

∣∣∣∣
∂Ω
. (2.30)

We can easily prove the conclusion of the lemma by multiplying (2.26) by v2

and (2.28) by v1, integrating the difference of the two equations over Ω, and

applying Lemma 2.3.

Lemma 2.5. If there is a constant θ0 such that u1(x,θ0) = u2(x,θ0), then

Λa1 =Λa2 implies that a1(x,u1(x,θ0))= a2(x,u2(x,θ0)).

Proof. Applying Green’s formula, we obtain, for any v ∈ C0(Ω̄)∩C2(Ω),

∫
Ω

n∑
i,j=1

aij∂iv∂ju1dx−
∫
∂Ω

n∑
i,j=1

aij∂ju1v cos
(
n,xi

)
ds+

∫
Ω
a1
(
x,u1

)
vdx

=
∫
Ω

n∑
i,j=1

aij∂iv∂ju1dx−
∫
∂Ω
v
∂u1

∂µ
ds+

∫
Ω
a1
(
x,u1

)
vdx

= 0.
(2.31)
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Similarly, for u2(x,θ0), we have

∫
Ω

n∑
i,j=1

aij∂iv∂ju2dx−
∫
∂Ω
v
∂u2

∂µ
ds+

∫
Ω
a2
(
x,u2

)
vdx = 0. (2.32)

Therefore,
∫
Ω

[
a1
(
x,u1

)−a2
(
x,u2

)]
vdx = 0, (2.33)

which then implies that a1(x,u1(x,θ0))= a2(x,u2(x,θ0)).

Lemma 2.6. Suppose thatΛa1 =Λa2 . There exists a number θ∗ > 0 such that,

when |θ−θ0|< θ∗,

u1(x,θ)=u2(x,θ). (2.34)

Proof. Let v =u2(x,θ)−u1(x,θ). Then v satisfies equations

−
n∑

i,j=1

cij∂ijv+v
∫ 1

0

∂a
∂s
(
x,σu2+(1−σ)u1

)= a1
(
x,u1

)−a2
(
x,u2

)
, x ∈Ω,

v|∂Ω = 0.
(2.35)

It results from the maximum principle that

‖v‖L∞(Ω) ≤ C
∥∥a1

(
x,u1

)−a2
(
x,u2

)∥∥
LP (Ω). (2.36)

Since (∂a1/∂s)(x,u1)= (∂a2/∂s)(x,u2),
∣∣∣∣∂a1

∂s
(
x,u1

)− ∂a2

∂s
(
x,u1

)∣∣∣∣=
∣∣∣∣∂a2

∂s
(
x,u2

)− ∂a2

∂s
(
x,u1

)∣∣∣∣≤ C∣∣u1−u2

∣∣α.
(2.37)

From Lemma 2.4, we know that, for θ > θ0,
∥∥a1

(
x,u1

)−a2
(
x,u1

)∥∥

=
∣∣∣∣∣
∫ θ
θ0

(
∂a1

∂s
(
x,u1(x,τ)

)− ∂a2

∂s
(
x,u1(x,τ)

))∂u1

∂τ
dτ

∣∣∣∣∣
≤ C∣∣θ−θ0

∣∣ sup
θ0≤τ≤θ,x∈Ω

∣∣u1(x,τ)−u2(x,τ)
∣∣α.

(2.38)

Substituting it in (2.36) yields

∥∥u1(x,θ)−u2(x,θ)
∥∥
L∞(Ω) ≤ C

∣∣θ−θ0

∣∣ sup
θ0≤τ≤θ,x∈Ω

∣∣u1(x,τ)−u2(x,τ)
∣∣α.
(2.39)

Therefore, there exists θ∗ such that, when |θ−θ0|< θ∗,

u1(x,θ)=u2(x,θ). (2.40)
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Lemma 2.7. Assume that a1, a2 satisfy all the conditions in Lemma 2.2 and

that Λa1 =Λa2 . Then u1(x,θ)=u2(x,θ) for all θ ∈R.

Proof. Again, let v = u2(x,θ)−u1(x,θ). From the proof of Lemma 2.6,

we obtain that

∣∣∣∣∂a1

∂s
(
x,u1

)− ∂a2

∂s
(
x,u1

)∣∣∣∣≤ C∣∣u1−u2

∣∣α. (2.41)

Thus,

∂a1

∂s
(
x,u1(x,θ)

)− ∂a2

∂s
(
x,u1(x,θ)

)= 0 ∀∣∣θ−θ0

∣∣≤ θ∗. (2.42)

Then we have
∥∥a1

(
x,u1

)−a2
(
x,u1

)∥∥

=
∣∣∣∣∣
∫ θ
θ0

(
∂a1

∂s
(
x,u1(x,τ)

)− ∂a2

∂s
(
x,u1(x,τ)

))∂u1

∂τ
dτ

∣∣∣∣∣
=
∣∣∣∣∣
∫ θ
θ0+θ∗

(
∂a1

∂s
(
x,u1(x,τ)

)− ∂a2

∂s
(
x,u1(x,τ)

))∂u1

∂τ
dτ

∣∣∣∣∣
≤ C∣∣θ−θ0−θ∗

∣∣ sup
θ0+θ∗≤τ≤θ,x∈Ω

∣∣u1(x,τ)−u2(x,τ)
∣∣α.

(2.43)

Therefore,

sup
x∈Ω

∣∣a1
(
x,u1

)−a2
(
x,u1

)∣∣
≤ C∣∣θ−θ0−θ∗

∣∣ sup
θ0+θ∗≤τ≤θ,x∈Ω

∣∣u1(x,τ)−u2(x,τ)
∣∣α, (2.44)

which implies that there exists h1 > 0 such that, when θ0+θ∗ < θ ≤ θ0+θ∗+
h1, a1(x,u1)−a2(x,u1) = 0. Similarly, there exists h2 > 0 such that, when

θ0+θ∗−h2 < θ ≤ θ0+θ∗, a1(x,u1)−a2(x,u1)= 0. Note that

∥∥u1(x,θ)=u2(x,θ)
∥∥
L∞(Ω) ≤ C

∥∥a1
(
x,u1

)−a2
(
x,u2

)∥∥
LP (Ω). (2.45)

Therefore, there exists a common h such that, when |θ−θ0−θ∗|<h,

u1(x,θ)=u2(x,θ). (2.46)

Repeating the above process, we can extend the interval each time by the length

of h. Eventually, we have u1(x,θ)=u2(x,θ) for all θ ∈R.

Now we state and prove the first main result of this paper.

Theorem 2.8. If a1, a2 satisfy all the conditions in Lemma 2.2 and Λa1 =
Λa2 , then a1(x,s)= a2(x,s) if and only if there exists θ0 such that u1(x,θ0)=
u2(x,θ0).
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Proof. Applying Lemmas 2.4 and 2.7, we have, for all v ∈ C0(Ω̄)∩C2(Ω),
∫
Ω

[
a1
(
x,u1(x,θ)

)−a2
(
x,u1(x,θ)

)]
vdx = 0. (2.47)

Therefore, for all θ ∈R,

a1
(
x,u1(x,θ)

)= a2
(
x,u1(x,θ)

)
. (2.48)

It can be shown that

lim
θ→±∞

u1(x,θ)=±∞. (2.49)

Since u1(x,θ) depends on θ continuously, when θ changes from −∞ to ∞,

u1(x,θ) changes from −∞ to ∞. The result of this theorem then follows.

The result in [3] is a special case of Theorem 2.8. We put it as the following

corollary.

Corollary 2.9. Suppose that a1, a2 satisfy all the conditions in Lemma 2.2

and that Λa1 =Λa2 . If a1(x,0)= a2(x,0)= 0, then a1(x,s)= a2(x,s).

Proof. Condition a2(x,0)=a2(x,0)=0 implies that u1(x,0)=u2(x,0) =
0. According to Theorem 2.8, a1(x,s)= a2(x,s).

Next, we give another necessary and sufficient condition for the uniqueness

of a.

Corollary 2.10. Assume thata1,a2 satisfy all the conditions in Lemma 2.2.

Then a1(x,s)= a2(x,s), for all s ∈R and x ∈Ω, if and only if there exists a θ0

such that a1(x,u1(x,θ0))= a2(x,u2(x,θ0)).

Proof. Assume that u1, u2 satisfy, respectively, the problems

−
n∑

i,j=1

cij∂iju1+a
(
x,u1

(
x,θ0

))= 0,

u1
(
x,θ0

)∣∣
∂Ω = θ0 ∈W 2−1/p,p(∂Ω);

(2.50)

−
n∑

i,j=1

cij∂iju2+a
(
x,u2

(
x,θ0

))= 0,

u2
(
x,θ0

)∣∣
∂Ω = θ0 ∈W 2−1/p,p(∂Ω).

(2.51)

It is clear that, when a1(x,u1(x,θ0))= a2(x,u2(x,θ0)), the difference u1−u2

satisfies the problem

−
n∑

i,j=1

cij∂ij
(
u1−u2

)= 0, x ∈Ω,
(
u1−u2

)∣∣
∂Ω = 0,

(2.52)
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which implies that u1(x,θ0) = u2(x,θ0). Theorem 2.8 then assures that

a1(x,s)= a2(x,s). The inverse result follows clearly from Theorem 2.8.

The following corollary can also be easily proven.

Corollary 2.11. Suppose thata1,a2 satisfy all the conditions in Lemma 2.2

and there exists s0 such thata1(x,s0)=a2(x,s0)=0. IfΛa1=Λa2 , thena1(x,s)=
a2(x,s) for all s ∈R, x ∈Ω.

Denote E = {a(x,t)∈ C1(Ω̄×R) : there exists an s ∈R such that a(x,s) =
0 for all x}. The following theorem improves the result in [3].

Theorem 2.12. Let a1,a2 ∈ E. If a1, a2 satisfy all the conditions in Lemma

2.2 and Λa1 =Λa2 , then a1(x,s)= a2(x,s) for all s ∈R, x ∈Ω.

Proof. Suppose that a1(x,s1) = 0 and a2(x,s2) = 0. We will show that

Λa1 = Λa2 implies s1 = s2. Then the theorem follows from Corollary 2.11. In

fact, since u1 = s1 satisfies

−
n∑

i,j=1

cij∂iju1+a1
(
x,s1

)= 0, u1

∣∣
∂Ω = s1, (2.53)

we have Λa1s1 =Λa2s1 = 0. That is, u2 satisfies

−
n∑

i,j=1

cij∂iju2+a2
(
x,u2

)= 0, u2

∣∣
∂Ω = s1. (2.54)

Therefore, u1−u2 satisfies

−
n∑

i,j=1

cij∂ij
(
u1−u2

)+(u1−u2
)∫ 1

0

∂a2

∂s
(
x,σu2+(1−σ)s2

)= 0, (2.55)

(
u2−s2

)∣∣
∂Ω = s1−s2,

∂
(
u1−u2

)
∂µ

∣∣∣∣
∂Ω
= 0. (2.56)

Multiplying both sides of (2.55) by (u2−s2) and integrating over Ω yields u2−
s2 = 0. Therefore, s1 = s2. Corollary 2.11 and the fact that a2(x,s1) = 0 and

a1(x,s1)= 0 assure that a1(x,s)= a2(x,s) for all s ∈R, x ∈Ω.
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