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In a previous paper, we determined all those topological nearrings �n whose ad-
ditive groups are the n-dimensional Euclidean groups, n> 1, and which contain n
one-dimensional linear subspaces {Ji}ni=1 which are also right ideals of the near-

ring with the property that for each w ∈ �n, there exist wi ∈ Ji, 1 ≤ i ≤ n, such
that w = w1 +w2 + ··· +wn and vw = vwn for each v ∈ �n. In this paper,
we determine the properties of these nearrings, their ideals, and when two of
these nearrings are isomorphic, and we investigate the multiplicative semigroups
of these nearrings.
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1. Introduction. The nearrings considered here are right nearrings. For in-

formation about abstract nearrings, one may consult [1, 4, 5]. Ann-dimensional

Euclidean nearring is any topological nearring whose additive group is the n-

dimensional Euclidean group. Linear right ideal nearrings were introduced in

[3]. These are n-dimensional (n≥ 2) Euclidean nearrings which contain n dis-

tinct right ideals {Ji}ni=1, each of which is a one-dimensional linear subspace

of Rn such that, for each w ∈ Rn, there exist wi ∈ Ji, 1 ≤ i ≤ n, such that

w =w1+w2+···+wn and vw = vwn for all v ∈Rn. In the main theorem of

[3], we determined, to within isomorphism, all linear right ideal nearrings. In

Section 2 of this paper, we determine all the ideals of these nearrings and in

Section 3 we determine when two of these nearrings are isomorphic. Finally,

in Sections 4, 5, 6, and 7, we investigate the multiplicative semigroups of these

nearrings.

2. The ideals of linear right ideal nearrings. We begin by recalling the main

theorem from [3].

Theorem 2.1. An n-dimensional (n ≥ 2) Euclidean nearring �n is a linear

right ideal nearring if and only if �n is isomorphic to one of the four types of

nearrings whose multiplications follow:

(vw)i = 0 ∀v,w ∈�n or (vw)i = vi ∀v,w ∈�n for 1≤ i≤n, (2.1)

(vw)i = vi
∣∣wn∣∣ri for i≠n, (vw)n = vnwn where ri > 0 for 1≤ i < n,

(2.2)
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(vw)i =


viw

ri
n for wn ≥ 0,

−vi
∣∣wn∣∣ri for wn < 0,

(2.3)

for i≠n, (vw)n = vnwn where ri > 0,

(vw)i =


vi
(
awn

)ri for wn ≤ 0,

vi
(
bwn

)ri for wn > 0,
(2.4)

for i≠n,

(vw)n =


avnwn for wn ≤ 0,

bvnwn for wn > 0,
(2.5)

where ri > 0, a≤ 0, b ≥ 0, and a2+b2 ≠ 0.

An n-dimensional Euclidean nearring whose multiplication is given by (2.1),

(2.2), (2.3), (2.4) will be referred to as a Type I, Type II, Type III, Type IV nearring,

respectively.

Theorem 2.2. Let � be a Type I nearring. Denote by N the collection (which

may be empty) of all positive integers i such that (vw)i = 0 for all v,w ∈ �

and define an endomorphism of the group (Rn,+) by (ϕ(v))i = 0 for i ∈ N
and (ϕ(v))i = vi for i �∈ N. The right ideals of � are precisely the additive

subgroups J of (Rn,+) with the property that ϕ[J]⊆ J and the left ideals of �

are precisely the additive subgroups J of (Rn,+). Consequently, the two-sided

ideals of � are precisely the additive subgroups J of (Rn,+) with the property

that ϕ[J]⊆ J.

Proof. Let J be any subgroup of (Rn,+). Let u,v ∈� and w ∈ J.

Case 1 ((uv)i = 0 for all u,v ∈�). Then

(
u(v+w)−uv)i =

(
u(v+w))i−(uv)i = 0. (2.6)

Case 2 ((uv)i =ui for all u,v ∈�). Then

(
u(v+w)−uv)i =

(
u(v+w))i−(uv)i =ui−ui = 0. (2.7)

It follows from (2.6) and (2.7) that (u(v+w)−uv)i = 0 for 1≤ i≤n. Thus,

u(v+w)−uv = 0∈ J and we conclude that J is a left ideal of �.

It follows immediately that vw = ϕ(v) for all v,w ∈ � and this readily

implies that an additive subgroup J of � is a right ideal if and only ifϕ[J]⊆ J.

This concludes the proof.

Example 2.3. Let � be a Type I nearring. It follows easily that Ji = {v ∈� :

vj = 0 for j ≠ i} is a right ideal (and hence, a two-sided ideal of �) but there are

many more right ideals in addition to these. Denote by �4 the four-dimensional

Type I nearring whose multiplication is given by vw = (v1,0,0,v4) for all
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v,w ∈�4. In this case, the additive endomorphism ϕ of Theorem 2.2 is given

by ϕ(v) = (v1,0,0,v4). Let J = {(x,x,x,x) : x ∈ R}. In view of Theorem 2.2,

J is a left ideal of �4 but it is not a right ideal since ϕ[J] �⊆ J. This time, let

J = {v ∈ �4 : v1 = v4, v2 = v3}. For any v ∈ J, we have v1 = v4 which means

that ϕ(v) = (v1,0,0,v4) = (v1,0,0,v1) ∈ J. Thus, J is a two-sided ideal of

�4. Denote by �2 the two-dimensional Type I nearring whose multiplication is

given by vw = (v1,0). It happens that �4/J is isomorphic to �2. To see this,

just note that ψ(v) = (v1−v4,v2−v3) is a homomorphism from �4 onto �2

whose kernel is J.

Definition 2.4. For any Euclidean nearring �n, let M = {v ∈�n : vn = 0}.
Theorem 2.5. Let �n be either a Type II, a Type III, or a Type IV nearring. A

subset J of �n is a proper left ideal of �n if and only if J is an additive subgroup

of M .

Proof. Suppose J is an additive subgroup of M . In order to show that J
is a left ideal of �n, we must verify that u(v+w)−uv ∈ J for all u,v ∈ �n
and all w ∈ J. Since w ∈ J ⊆M , we have wn = 0 so that (v+w)n = vn and it

follows that

(
u(v+w)−uv)i =

(
u(v+w))i−(uv)i = 0 for 1≤ i < n (2.8)

and similarly

(
u(v+w)−uv)n =

(
u(v+w))n−(uv)n = 0. (2.9)

Consequently, u(v+w)−uv = 0∈ J in view of (2.8) and (2.9).

Now suppose that J is a proper left ideal of �n. For this portion of the proof,

we give the details only in the case of Type IV nearrings since the remaining

cases are similar and even somewhat simpler in the case of Type II nearrings.

Evidently, J is a proper subgroup of �n but suppose that J �⊆M . This means

that wn ≠ 0 for some w ∈ J. Now, u(v+w)−uv ∈ J for all u,v ∈�n and the

vector w under consideration. Take v = 0 and conclude that

uw ∈ J ∀u∈�n. (2.10)

Let x = (x1,x2, . . . ,xn) be an arbitrary element of �n. The multiplication here is

given by (2.4) where not both a and b can be zero. There is no loss in generality

in assuming that a ≠ 0 and since −w,w ∈ J we may assume that wn < 0. For

1 ≤ i < n, define ui ∈ �n by uij = 0 for j ≠ i and uii = xi/(awn)ri . It follows

from (2.10) that

uiw ∈ J, where
(
uiw

)
j = 0 for j ≠ i,

(
uiw

)
i = xi for 1≤ i < n. (2.11)
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This time, define unj = 0 for j ≠n and unn = xn/awn and conclude that

unw ∈ J, where
(
uiw

)
j = 0 for j ≠n,

(
unw

)
n = xn. (2.12)

It follows from (2.11) and (2.12) that x = u1w +u2w + ··· +unw ∈ J. But

this is a contradiction since J is a proper left ideal of �n. Consequently, we

conclude that J ⊆M and the proof is complete.

Corollary 2.6. Let �n be either a Type II, a Type III, or a Type IV nearring.

Then M is the unique maximal ideal of �n. If �n is either a Type II or a Type

III nearring, then �n/M is isomorphic to the field of real numbers and if �n is

a Type IV nearring, then �n/M is isomorphic to the nearring (R,+,∗) where

(R,+) is the additive group of real numbers and the multiplication is given by

x∗y =


axy for y ≤ 0,

bxy for y > 0.
(2.13)

Proof. The ideal M is a left ideal of �n in view of Theorem 2.5 and it

readily follows that M�n ⊆ M so that M is also a right ideal of �n. It also

follows from Theorem 2.5 thatM is maximal. If �n is either a Type II or a Type

III nearring, then the mapping ϕ, defined by ϕ(v) = vn, is easily shown to

be a homomorphism from �n onto the real field whose kernel is M . If �n is

a Type IV nearring, one verifies that the mapping ϕ, defined as before, is a

homomorphism from �n onto the nearring (R,+,∗) whose multiplication is

given by (2.13). Since the kernel of ϕ is M , the proof is complete.

Theorem 2.7. Let �n be either a Type II, a Type III, or a Type IV nearring

and suppose that ri = r for 1≤ i < n. Let v ∈�n and let

Jv =
{(
cv1,cv2, . . . ,cvn−1,dvn

)}
, (2.14)

where c =∑mk=1 ekck, ck ≥ 0, ek =±1 for 1≤ k≤m, and d=∑mk=1 ekc
(1\r)
k . Then

Jv is the smallest right ideal of �n which contains the element v .

Proof. Take c = c1 = d =m = e1 = 1 and conclude that v ∈ Jv . Let x,y ∈
Jv . Then x = (cv1,cv2, . . . ,cvn−1,dvn) andy = (sv1,sv2, . . . ,svn−1, tvn)where

c =
m∑
k=1

eckck, d=
m∑
k=1

eckc
(1/r)
k , s =

j∑
k=1

esksk, t =
j∑
k=1

esks
(1/r)
k .

(2.15)

Define e∗k = eck and c∗k = ck for 1≤ k≤m and define e∗k =−esk−m and c∗k = sk−m
for m+1≤ k≤m+j. Then

c−s =
m+j∑
k=1

e∗k c
∗
k , d−t =

m+j∑
k=1

e∗k
(
c∗k
)(1/r), (2.16)
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and it follows from (2.16) that

x−y = ((c−s)v1,(c−s)v2, . . . ,(c−s)vn−1,(d−t)vn
)∈ Jv. (2.17)

Thus Jv is an additive subgroup of (Rn,+). For the remaining portion of the

proof, we give the details only in the case where �n is a Type IV nearring since

the remaining cases are quite similar. Let u = (cv1,cv2, . . . ,cvn−1,dvn) ∈ Jv
where c = ∑mk=1 ekck and d = ∑mk=1 ekc

(1/r)
k and let w ∈ �n. Suppose wn ≤ 0.

According to (2.4), (uw)i = cvi(awn)r for 1≤ i≤n−1 and (uw)n = dawnvn.

Let c∗k = (awn)r ck, c∗ =
∑m
k=1 ekc

∗
k , and d∗ =∑mk=1 ek(c

∗
k )(1/r). Then

(uw)i = cvi
(
awn

)r = vi
m∑
k=1

ek
(
awn

)r ck

= vi
m∑
k=1

ekc∗k = c∗vi for 1≤ i < n,

(uw)n = dawnvn = awnvn
m∑
k=1

ekc
(1/r)
k

= vn
m∑
k=1

ek
((
awn

)r ck)(1/r) = vn
m∑
k=1

ekc∗k = d∗vn.

(2.18)

Consequently,uw = (c∗v1,c∗v2, . . . ,c∗vn−1,d∗vn)∈ Jv . One verifies, in a sim-

ilar manner, that vw ∈ Jv wheneverwn > 0. Thus Jv is a right ideal of �n. Next,

let J be any right ideal of �n which contains v . Choose anyw ∈�n withwn ≥ 0.

According to (2.4), (vw)i = vi(bwn)r for 1 ≤ i ≤ n−1 and (vw)n = bvnwn.

Let c = (bwn)r . Then bwn = c(1/r) and we conclude that

vw = (cv1,cv2, . . . ,cvn−1,c(1/r)
)∈ J ∀c ≥ 0. (2.19)

Since finite sums and differences of elements of the form (2.19) must belong

to J, we conclude that if c =∑mk=1 ekck and d=∑mk=1 ekc
(1/r)
k where ck ≥ 0 and

ek =±1 for 1≤ k≤m, then (cv1,cv2, . . . ,cvn−1,dvn)∈ J. Thus Jv ⊆ J and Jv
is, indeed, the smallest right ideal of �n which contains the element v .

If we take vn = 0 in the previous theorem, we immediately get the following

corollary.

Corollary 2.8. Let �n be either a Type II, a Type III, or a Type IV nearring

and suppose that ri = r for 1≤ i < n. Let v ∈�n and suppose that vn = 0. Then

Jv = {cv : c ∈R} is the smallest right ideal of �n which contains the element v .
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Theorem 2.9. Let �n be either a Type II, a Type III, or a Type IV nearring.

Then each proper ideal of �n is a linear subspace of M . Moreover, the proper

ideals of �n are precisely the linear subspaces of M if and only if there exists a

positive number r such that r = ri for 1≤ i < n.

Proof. Once again, we give the details only in the case where �n is a

Type IV nearring. Suppose r = ri for 1 ≤ i < n and J is a proper ideal of �n.

Then J ⊆M according to Theorem 2.5. Choose a maximal linearly independent

subset {vi}mi=1 of vectors from J. Then Jvi ⊆ J for 1 ≤ i ≤m by Corollary 2.8

and it follows easily that the vector space V which is generated by the vec-

tors {vi}mi=1 is contained in J. On the other hand, for any w ∈ J, we have

w = a1v1+a2v2+···+amvm since {vi}mi=1 is a maximal linearly indepen-

dent collection of vectors from J and we see that w ∈ V . That is, J is a linear

subspace V of M .

Now suppose r = ri for 1≤ i < n. We already know that each proper ideal of

�n is a linear subspace of M . Let L be any linear subspace of M which is a left

ideal of �n according to Theorem 2.5. Let v ∈ L andw ∈�n. There is no loss of

generality in assuming thatwn ≤ 0. Then, according to (2.4), (vw)i = (awn)rvi
and (vw)n = avnwn = 0 since vn = 0. Consequently, vw = (awn)rv ∈ L so

that L is also a right ideal. We have now shown that if r = ri for 1≤ i < n, then

the proper ideals of �n are precisely the linear subspaces of M .

Suppose, conversely, that the proper ideals of �n are precisely the linear

subspaces of M . Let 1≤ i,j < n and let J = {v ∈M : vi = vj and vk = 0 for k≠
i,j}. Let v be the vector such that vi = vj = 1 and vk = 0 for k≠ i,j. Not both

a and b can be zero and there is no loss of generality if we suppose b ≠ 0. Let

w be any vector in �n such that bwn > 1. Now, v ∈ J and since J is an ideal of

�n, we must have vw ∈ J. Thus, we have (bwn)ri = (vw)i = (vw)j = (bwn)rj
which readily implies that ri = rj .

Theorem 2.10. Let �n be either a Type II, a Type III, or a Type IV nearring.

Let J be a proper ideal of �n and let N(J) consist of all i, 1 ≤ i < n, such that

vi ≠ 0 for some v ∈ J and suppose that ri ≠ rj for all distinct i,j ∈N(J). Then

J = {v ∈M : vi = 0 for i �∈N(J)}.

Proof. In this case we give the details only in the case where �n is a Type

II nearring since, again, the remaining cases are similar. If N(J) = ∅, then

J = {0} = {v ∈ M : vi = 0 for i �∈ N(J)}. We next consider the case where

N(J) ≠ ∅. Choose any i ∈ N(J). According to the hypothesis, there exists a

v ∈ J with vi ≠ 0. We want to show that there exists a w ∈ J with wi ≠ 0

and wj = 0 for j ≠ i. Suppose vj ≠ 0 where j ≠ i. Let u be the vector in �n
such that ui = 0 for 1 ≤ i < n and un = e(ln2)/rj . Then vu− 2v ∈ J. Note

that (vu−2v)j = 0 while (vu−2v)i = (e(ri ln2)/rj −2)vi ≠ 0 since ri ≠ rj . We

have now shown that, for each i∈N(J), there exists a vector wi ∈ J such that

wii ≠ 0 while wij = 0 for j ≠ i. There is no loss of generality if we suppose
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that wii > 0. Let a ≥ 0 and let u be the vector such that uj = 0 for j ≠ n and

un = (a/wii )1/ri . Then wiu ∈ J. Note that (wiu)i = a while (wiu)j = 0 for

j ≠ i. That is, {v ∈�n : vi ≥ 0 and vj = 0 for j ≠ i} ⊆ J. Since the negative of a

vector in J also belongs to J, we conclude that

Vi =
{
v ∈�n : vj = 0 for j ≠ i

}⊆ J. (2.20)

Evidently, J ⊆ {v ∈M : vi = 0 for i �∈ N(J)}. Suppose vi = 0 for i �∈ N(J). We

want to show that v ∈ J. For each i ∈ N(J), there exists a wi ∈ Vi ⊆ J such

that wii = vi and wji = 0 for i ≠ j. Thus, v =∑i∈N(J)wi ∈ J in view of (2.20).

Consequently, J = {v ∈ M : vi = 0 for i �∈ N(J)} and the proof is complete.

Our next result is an easy consequence of the previous theorem.

Corollary 2.11. Let �n be either a Type II, a Type III, or a Type IV nearring

where ri ≠ rj for i≠ j. Let K ⊆ {1,2, . . . ,n}, let n∈ K, and let J(K)= {v ∈�n :

vi = 0 for all i ∈ K}. Then each J(K) is a proper ideal of �n and every proper

ideal of �n is of this form. Consequently, �n has exactly 2n−1 proper ideals.

Corollary 2.12. Let n ≥ 3 and let �n be either a Type II, a Type III, or a

Type IV nearring where ri ≠ rj for i ≠ j. Then each quotient ring of �n by a

proper ideal of �n different fromM is a Type II, a Type III, or a Type IV nearring,

respectively.

Proof. We give the details only in the case of Type II nearrings as the re-

maining cases are similar. Let �n be a Type II nearring. According to Corollary

2.11, each proper ideal of �n is of the form J(K) where K = {i1, i2, . . . , im},
im =n. Moreover |K| ≥ 2 since J(K)≠M . Define a multiplication ∗ on Rm by

(v∗w)j = vj
∣∣wm∣∣rij for 1≤ j <m,

(v∗w)m = vmwm.
(2.21)

Evidently, (Rm,+,∗) is a Type II nearring wherem≥ 2. Define a mapϕ from �n
to (Rm,+,∗) by ϕ(v)= (vi1 ,vi2 , . . . ,vim). The map ϕ is evidently an additive

epimorphism. For any v,w ∈�n and any j <m, we have

(
ϕ(vw)

)
j = (vw)ij = vij

∣∣wn∣∣rij ,(
ϕ(v)∗ϕ(w))j =

(
ϕ(v)

)
j
∣∣(ϕ(w))m

∣∣rij = vij
∣∣wim

∣∣rij = vij
∣∣wn∣∣rij

(2.22)

since n = im. It follows from (2.22) that (ϕ(vw))j = (ϕ(v)∗ϕ(w))j for 1 ≤
j <m.
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In addition to this, we have

(
ϕ(vw)

)
m = (vw)im = (vw)n = vnwn,(

ϕ(v)∗ϕ(w))m =
(
ϕ(v)

)
m
(
ϕ(w)

)
m = vimwim = vnwn.

(2.23)

Thus, (ϕ(vw))m = (ϕ(v)∗ϕ(w))m as well and we conclude that ϕ(vw) =
ϕ(v)∗ϕ(w) for all v,w ∈ �n. That is, ϕ is an epimorphism from �n onto

(Rm,+,∗). Since the kernel of ϕ is J(K), the proof is complete.

3. Isomorphisms between linear right ideal nearrings. By a nonassocia-

tive Euclidean nearring we mean any triple (Rn,+,·) where (Rn,+) is the n-

dimensional Euclidean group, multiplication is continuous and right distribu-

tive over addition but may or may not be associative. We first prove a result

about isomorphisms for two nonassociative Euclidean nearrings.

Theorem 3.1. Let {fi}ni=1 be n distinct, nonconstant, continuous self-maps

of R. Similarly, let {gi}ni=1 be n distinct, nonconstant, continuous self-maps of

R and define two binary operations ∗ and ◦ on Rn by (v ∗w)i = vifi(wn)
and (v ◦w)i = vigi(wn) for 1 ≤ i ≤ n. Then both (Rn,+,∗) and (Rn,+,◦) are

nonassociative Euclidean nearrings. Moreover, they are isomorphic if and only

if there exist a permutation p of {1,2, . . . ,n} such that p(n)=n and a nonzero

real number c such that gi(cx)= fp(i)(x) for 1≤ i≤n and all x ∈R.

Proof. Suppose first that there exist a permutation p of {1,2, . . . ,n} such

that p(n) = n and a nonzero real number c such that gi(cx) = fp(i)(x) for

all x ∈ R. Define a self-map ϕ of Rn by (ϕ(v))i = vp(i) for 1 ≤ i < n and

(ϕ(v))n = cvn. Then ϕ is a linear automorphism which implies that it is an

additive automorphism of Rn. For 1≤ i < n, we have

(
ϕ(v∗w))i = (v∗w)p(i) = vp(i)fp(i)

(
wn
)
,(

ϕ(v)◦ϕ(w))i =
(
ϕ(v)

)
igi
((
ϕ(w)

)
n
)= vp(i)gi(cwn)= vp(i)fp(i)(wn).

(3.1)

Thus (ϕ(v∗w))i = (ϕ(v)◦ϕ(w))i for 1≤ i < n.

Furthermore, we have

(
ϕ(v∗w))n = c(v∗w)n = cvnfn

(
wn
)

(3.2)

and since p(n)=n, we also have

(
ϕ(v)◦ϕ(w))n =

(
ϕ(v)

)
ngn

((
ϕ(w)

)
n
)= cvngn(cwn)

= cvnfp(n)
(
wn
)= cvnfn(wn). (3.3)

It follows from (3.2) and (3.3) that (ϕ(v∗w))n=(ϕ(v)◦ϕ(w))n. Consequently,
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(ϕ(v∗w))i = (ϕ(v)◦ϕ(w))i for 1≤ i≤n. That is, ϕ(v∗w)=ϕ(v)◦ϕ(w)
and we conclude that ϕ is an isomorphism from (Rn,+,∗) onto (Rn,+,◦).

Suppose, conversely, that (Rn,+,∗) and (Rn,+,◦) are isomorphic and that

ϕ is an isomorphism from (Rn,+,∗) onto (Rn,+,◦). Since ϕ is an additive

automorphism, it is a linear automorphism which means that there exists an

n×n nonsingular matrix

A=




a11 a12 ··· a1n

a21 a22 ··· a2n
...

...
. . .

...

an1 an2 ··· ann




(3.4)

such that

ϕ(v)=




a11 a12 ··· a1n

a21 a22 ··· a2n
...

...
. . .

...

an1 an2 ··· ann







v1

v2

...

vn



=




∑n
j=1a1jvj∑n
j=1a2jvj

...∑n
j=1anjvj



. (3.5)

Recall that (v∗w)i = vifi(wn) and (v ◦w)i = vigi(wn). It follows from this

and (3.5) that

(
ϕ(v∗w))i =

n∑
j=1

aij(v∗w)j =
n∑
j=1

aijvjfj
(
wn
)
. (3.6)

Similarly,

(
ϕ(v)◦ϕ(w))i =

(
ϕ(v)

)
igi
((
ϕ(w)

)
n
)=


 n∑
j=1

aijvj


gi


 n∑
j=1

anjwj


,

(3.7)

and it follows from (3.6) and (3.7) that

n∑
j=1

aijvjfj
(
wn
)=


 n∑
j=1

aijvj


gi


 n∑
j=1

anjwj


 (3.8)

for 1≤ i≤n. Now fix i. Since the matrix A is nonsingular, there exists a j such

that aij ≠ 0. Let vk = 0 for k≠ j and vj = 1/aij in (3.8) and conclude that

fj
(
wn
)= gi


 n∑
k=1

ankwk


. (3.9)

Suppose air ≠ 0. The technique used previously yields the fact that

fr
(
wn
)= gi


 n∑
k=1

ankwk


, (3.10)
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and since wn can be any real number, it follows from (3.9) and (3.10) that

fr = fj . This means that r = j since the functions {fi}ni=1 are all distinct.

We therefore conclude that for each i, there exists exactly one j such that

aij ≠ 0 and we define a self-map p of {1,2, . . . ,n} by p(i) = j where i and j
are the subscripts in (3.9). Again, we appeal to the fact that A is nonsingular

to conclude that ank ≠ 0 for some k. Suppose k ≠ n. Let wj = 0 for j ≠ k
and from (3.9) conclude that gi(ankwk) = fj(0) for all wk ∈ R. But this is a

contradiction since each gi is nonconstant. Consequently, k=n, ann ≠ 0, and

we appeal again to (3.9) to conclude that

fp(i)
(
wn
)= gi(annwn) for 1≤ i≤n, ∀wn ∈R. (3.11)

Since the functions {gi}ni=1 are distinct, it follows from (3.11) that the function

p is injective and, consequently, is a permutation of {1,2, . . . ,n}. It remains for

us to show that p(n) = n. Since there is exactly one j such that anj ≠ 0 and

ann ≠ 0, it follows from (3.5) that

(
ϕ(v)

)
n = annvn ∀v ∈Rn. (3.12)

It follows from (3.5) and (3.12) that

(
ϕ(v∗w))n = annvnfn

(
wn
)

(3.13)

and it follows from (3.5), (3.11), and (3.12) that
(
ϕ(v)◦ϕ(w))n =

(
ϕ(v)

)
ng
((
ϕ(w)

)
n
)= annvngn(annwn)

= annvnfp(n)
(
wn
)
.

(3.14)

It follows from (3.13) and (3.14) that fn = fp(n) and since the functions {fi}ni=1

are all distinct, we conclude that p(n) = n. Take c in the statement of the

theorem to be ann and it follows from (3.11) that the proof is complete.

We will see in Section 7 that if two linear right ideal nearrings are isomorphic,

then they must be of the same type.

For a Euclidean nearring �n, let I(�n) = {i : (vw)i = 0 for all v,w ∈ �n}.
The cardinality of a set A will be denoted by |A|. The constant function which

maps all of R into the real number a will be denoted by 〈a〉 and the range of

a function f will be denoted by Ranf .

Theorem 3.2. Two n-dimensional Type I nearrings �n1 = (Rn,+,∗) and

�n2 = (Rn,+,◦) are isomorphic if and only if |I(�n1)| = |I(�n2)| and either

n∈ I(�n1)∩I(�n2) or n �∈ I(�n1)∪I(�n2).

Proof. Let N = {1,2, . . . ,n}. For each i ∈ I(�n1) define the constant self-

map fi of R by fi = 〈0〉 and for each i∈N\I(�n1) define fi = 〈1〉. Similarly, for

each i∈ I(�n2), define gi = 〈0〉 and for each i∈N\I(�n2) define gi = 〈1〉. Note

that (v∗w)i = vifi(wn) and (v ◦w)i = vigi(wn) for 1 ≤ i ≤ n. Therefore it
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follows from Theorem 3.1 that �n1 and �n2 are isomorphic if and only if there

exist a permutation p of {1,2, . . . ,n} such that p(n) = n and a nonzero real

number c such that gi(cx) = fp(i)(x) for all x ∈ R. It readily follows that the

latter holds if and only if |I(�n1)| = |I(�n2)| and either n∈ I(�n1)∩I(�n2) or

n �∈ I(�n1)∪I(�n2).

Definition 3.3. A Type II, III, or IV nearring �n is said to be distinguished

if ri ≠ rj whenever i≠ j.

Theorem 3.4. Let �∗ = (Rn,+,∗) and �◦ = (Rn,+,◦) be two distinguished

Type II nearrings where (v∗w)i = vi|wn|ri for 1≤ i < n and (v∗w)n = vnwn
and where (v◦w)i = vi|wn|si for 1≤ i < n and (v∗w)n = vnwn. Then �∗ and

�◦ are isomorphic if and only if there exist a permutation p of {1,2, . . . ,n−1}
such that si = rp(i) for 1≤ i≤n−1.

Proof. Suppose first that there exist a permutation p of {1,2, . . . ,n− 1}
such that si = rp(i) for 1 ≤ i ≤ n−1. Define a self-map ϕ of Rn by (ϕ(v))i =
vp(i) for 1≤ i < n and (ϕ(v))n = vn. For 1≤ i < n, we have

(
ϕ(v∗w))i = (v∗w)p(i) = vp(i)

∣∣wn∣∣rp(i) = vp(i)∣∣wn∣∣si ,(
ϕ(v)◦ϕ(w))i =

(
ϕ(v)

)
i
∣∣(ϕ(w))n

∣∣si = vp(i)∣∣wn∣∣si . (3.15)

Since

(
ϕ(v∗w))n = (v∗w)n = vnwn =

(
ϕ(v)

)
n
(
ϕ(w)

)
n =

(
ϕ(v)◦ϕ(w))n,

(3.16)

it follows from (3.15) and (3.16) that ϕ is a multiplicative isomorphism from

�∗ onto �◦. This proves that �∗ is isomorphic to �◦ since it is evident that ϕ
is also an additive automorphism.

Suppose, conversely, that �∗ and �◦ are isomorphic. Define continuous self-

maps of R by fi(x) = |x|ri and gi(x) = |x|si for 1 ≤ i < n and fn(x) = x =
gn(x). It readily follows that (v∗w)i = vifi(wn) and (v ◦w)i = vigi(wn) for

1≤ i≤n. According to Theorem 3.1, there exist a permutationp of {1,2, . . . ,n}
such that p(n) = n and a nonzero real number c such that gi(cx) = fp(i)(x)
for 1≤ i≤n. For 1≤ i < n, we have

|c|si |x|si = |cx|si = gi(cx)= fp(i)(x)= |x|rp(i) (3.17)

which implies that |c|si = |x|rp(i)−si . Since x can be any real number, this, in

turn, implies that si = rp(i) and the proof is complete.

The proof of the following result is quite similar to the preceding proof and,

for that reason, will be omitted.
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Theorem 3.5. Let �∗ = (Rn,+,∗) and �◦ = (Rn,+,◦) be two distinguished

Type III nearrings where

(v∗w)i =


vi
(
wn
)ri for wn ≥ 0,

−vi
∣∣wn∣∣ri for wn < 0,

(3.18)

for i≠n, (v∗w)n = vnwn where ri > 0,

(v ◦w)i =


vi
(
wn
)si for wn ≥ 0,

−vi
∣∣wn∣∣si for wn < 0,

(3.19)

for i≠n, (v ◦w)n = vnwn where si > 0.

Then �∗ and �◦ are isomorphic if and only if there exist a permutation p of

{1,2, . . . ,n−1} such that si = rp(i) for 1≤ i≤n−1.

Theorem 3.6. Let �∗ = (Rn,+,∗) and �◦ = (Rn,+,◦) be two distinguished

Type IV nearrings where

(v∗w)i =


vi
(
a1wn

)ri for wn ≤ 0,

vi
(
b1wn

)ri for wn > 0,
(3.20)

for i≠n,

(v∗w)n =


a1vnwn for wn ≤ 0,

b1vnwn for wn > 0,
(3.21)

where ri > 0, a1 ≤ 0, b1 ≥ 0, and a2
1+b2

1 ≠ 0

(v ◦w)i =


vi
(
a2wn

)si for wn ≤ 0,

vi
(
b2wn

)si for wn > 0,
(3.22)

for i≠n,

(v ◦w)n =


a2vnwn for wn ≤ 0,

b2vnwn for wn > 0,
(3.23)

where si > 0, a2 ≤ 0, b2 ≥ 0, and a2
2+b2

2 ≠ 0.

Then �∗ and �◦ are isomorphic if and only if there exists a positive number c
such that a1 = ca2 and b1 = cb2 or a negative number c such that a1 = cb2 and

b1 = ca2 and there exist a permutation p of {1,2, . . . ,n−1} such that si = rp(i)
for 1≤ i≤n−1.
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Proof. Suppose that there exists a negative number c such that a1 = cb2

and b1 = ca2 and there exist a permutation p of {1,2, . . . ,n−1} such that si =
rp(i) for 1≤ i≤n−1. Define a linear automorphismϕ ofRn by (ϕ(v))i = vp(i)
for 1≤ i < n and (ϕ(v))n = cvn. For wn ≤ 0 and for 1≤ i < n, we have

(
ϕ(v∗w))i = (v∗w)p(i) = vp(i)

(
a1wn

)rp(i) = vp(i)(a1wn
)si ,

(
ϕ(v)◦ϕ(w))i =

(
ϕ(v)

)
i
(
cb2wn

)si = vp(i)(a1wn
)si . (3.24)

In addition to this, we have

(
ϕ(v∗w))n = c(v∗w)n = ca1vnwn = b2cvncwn =

(
ϕ(v)◦ϕ(w))n.

(3.25)

It follows from (3.24) and (3.25) thatϕ(v∗w)=ϕ(v)◦ϕ(w) whenever wn ≤
0. One verifies, in a similar manner, that ϕ(v∗w) =ϕ(v)◦ϕ(w) whenever

wn > 0 and we conclude thatϕ is an isomorphism from �∗ onto �◦ whenever

there exists a negative number c such that a1 = cb2 and b1 = ca2 and there

exist a permutation p of {1,2, . . . ,n−1} such that si = rp(i) for 1 ≤ i ≤ n−1.

The remaining case is similar to the preceding one so we omit the details.

Now suppose that �∗ and �◦ are isomorphic. For 1≤ i < n define continuous

self-maps fi and gi of R by

fi(x)=


(
a1x

)ri for x ≤ 0,(
b1x

)ri for x > 0,
gi(x)=



(
a2x

)si for x ≤ 0,(
b2x

)si for x > 0
(3.26)

and define continuous self-maps fn and gn by

fn(x)=


a1x for x ≤ 0,

b1x for x > 0,
gn(x)=



a2x for x ≤ 0,

b2x for x > 0.
(3.27)

It readily follows that (v ∗w)i = vifi(wn) and (v ◦w)i = vigi(wn) for 1 ≤
i ≤ n. Consequently, Theorem 3.1 assures that there exist a permutation p
of {1,2, . . . ,n} such that p(n) = n and a nonzero real number c such that

gi(cx) = fp(i)(x) for 1 ≤ i ≤ n and for all x ∈ R. We consider the case where

c < 0. For x < 0, we have cb2x = gn(cx) = fn(x) = a1x and it follows that

a1 = cb2. In a similar manner, one chooses x > 0 and shows that b1 = ca2. For

all x < 0, we have fp(i)(x) = (a1x)rp(i) and gi(cx) = (cb2x)si = (a1x)si , and

since gi(cx) = fp(i)(x), it follows that si = rp(i) for 1 ≤ i < n. The case where

c > 0 is similar so we omit the details.

4. The multiplicative semigroups of Type I nearrings. For any semigroup

S, we denote by S1 the semigroup S with an identity adjoined when S has no

identity. We take S1 = S when S does have an identity. For a detailed discussion

of Green’s relations and related concepts, one may consult [2, Chapter 2]. We



4098 K. D. MAGILL JR.

now recall the definitions of Green’s five equivalence relations �, �, �, �,

and � for any semigroup S. Two elements v and w of a semigroup S are �-

equivalent if S1v = S1w. They are �-equivalent if vS1 =wS1 and �-equivalent

if S1vS1 = S1wS1. The � and � relations are defined by � = �∩� and � =
�◦� which is also an equivalence relation since �◦� = �◦�. Types I, II, III,

and IV semigroups will be the multiplicative semigroups of Types I, II, III, and

IV nearrings, respectively. For a Type I semigroup S, we let I(S)= {i : (vw)i =
0 for all v,w ∈Rn}.

Theorem 4.1. Let S be a Type I semigroup and let v,w ∈ S. Then v�w if

and only if v =w or vi = 0=wi for all i∈ I(S).
Proof. Suppose vi = 0=wi for all i∈ I(S). For i∈ I(S), we have (vw)i =

0 = vi and for i �∈ I(S), we have (vw)i = vi. Thus, v = vw. One shows, in a

similar manner, that w =wv and we conclude that v�w. Now suppose that

v�w and v ≠ w. Then v = uw for some u, and for each i ∈ I(S), we have

vi = (uw)i = 0. Similarly, we have wi = 0 for each i ∈ I(S) and the proof is

complete.

Theorem 4.2. Let S be a Type I semigroup and let v,w ∈ S. Then v�w if

and only if v =w.

Proof. Suppose v�w. Then v = wx and w = vy for x,y ∈ S1. If either

x = 1 or y = 1, then v =w. Consider the case where x ≠ 1≠y . Then x,y ∈ S.

For i∈ I(S), we have vi = (wx)i = 0 and wi = (vy)i = 0. For i �∈ I(S), we have

vi = (wx)i =wi. Consequently, v =w in this case also.

Since � = �∩� and � = �◦�, the following result is an immediate conse-

quence of Theorems 4.1 and 4.2.

Theorem 4.3. Let S be a Type I semigroup. Then �=� and �=�.

Theorem 4.4. Let S be a Type I semigroup and let v,w ∈ S. Then v�w if

and only if v =w or vi = 0=wi for all i∈ I(S). In other words, �=�.

Proof. Suppose that either v =w or vi = 0=wi for all i∈ I(S). Then v�w
by Theorem 4.1 which implies v�w. Next, suppose that v�w and consider the

case where v ≠ w. Then v = uwr for u,r ∈ S1. Since v ≠ w, we must have

either u≠ 1 or r ≠ 1. In either event, we have vi = (uwr)i = 0 for all i∈ I(S).
In a similar manner, one shows that wi = 0 for all i ∈ I(S) and the proof is
complete.

It is well known that the maximal subgroups of a semigroup are precisely

the �-classes which contain idempotents. It follows from Theorems 4.2 and

4.3 that all subgroups of a Type I semigroup consist of a single element.

5. The multiplicative semigroups of Type II nearrings

Theorem 5.1. Let S be a Type II semigroup and let v,w ∈ S. Then v�w if

and only if v =w or vn ≠ 0≠wn.



SOME PROPERTIES OF LINEAR RIGHT IDEAL NEARRINGS 4099

Proof. Suppose vn ≠ 0 ≠ wn. Define un = vn/wn and ui = vi/|wn|ri for

1 ≤ i < n. One easily verifies that v = uw. One shows, in a similar manner,

that w =uv for some u∈ S and we conclude that v�w.

Now suppose that v�w and that v ≠ w. Then v = uw for some u ∈ S.

Suppose wn = 0. Then vn = (uw)n = unwn = 0 and vi = ui|wn|ri = 0 for

1 ≤ i < n. Thus, vi = 0 for all i. One shows, in a similar manner, that wi = 0

for all i but this means that v =w which is a contradiction. Thus, we conclude

that wn ≠ 0. In the same manner, one shows that vn ≠ 0 and the proof is

complete.

It will be convenient to denote the element of Rn, whose all coordinates are

0, by the symbol 0.

Theorem 5.2. Let S be a Type II semigroup and let v,w ∈ S. Then v�w if

and only if there exists a real number c ≠ 0 such that vn = cwn and vi = |c|riwi
for 1≤ i < n.

Proof. Suppose there exists a real number c ≠ 0 such that vn = cwn and

vi = |c|riwi for 1 ≤ i < n. Let xi be arbitrary for 1 ≤ i < n and let xn = c.
Then

vi =
∣∣xn∣∣riwi = (wx)i for 1≤ i < n,

vn =wnc =wnxn = (wx)n
(5.1)

which means that v =wx. Nowwi = |1/c|r1vi for 1≤ i < n andwn = (1/c)vn.

Let yi be arbitrary for 1 ≤ i < n and let yn = 1/c. It follows that w = vy and

we conclude that v�w.

Now suppose v�w. If v =w, take c = 1. Now consider the case where v ≠w.

Then v =wx for some x ∈ S. Thus, vn =wnxn and vi = (wx)i =wi|xn|ri for

1 ≤ i < n. Suppose xn = 0. Then v = 0 and since w = vy for some y ∈ S, it

follows that w = 0. But this contradicts the fact that v ≠w. Thus, wn ≠ 0 and

we take c =wn.

The next result is an immediate consequence of Theorems 5.1 and 5.2 since

�=�∩�.

Theorem 5.3. Let S be a Type II semigroup, then v�w if and only if either

v = w or vn ≠ 0 ≠ wn and there exists a nonzero real number c such that

vn = cwn and vi = |c|riwi for 1≤ i < n.

As we mentioned before, the maximal subgroups of any semigroup are pre-

cisely the �-classes which contain idempotents, so our next task is to find the

idempotent elements of a Type II semigroup.

Theorem 5.4. An element v of a Type II semigroup is idempotent if and

only if v = 0 or vn = 1.
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Proof. It is immediate that 0 is idempotent and if vn = 1, we have (vv)n =
vnvn = 1= vn and (vv)i = vi|vn|ri = vi for 1≤ i < n so that v is idempotent

as well.

Suppose, conversely, that v is idempotent. Then vn = (vv)n = v2
n. Then

vn = 0 or vn = 1. Suppose vn = 0. Then vi = (vv)i = vi|vn|ri = 0 for 1≤ i < n
and we conclude that v = 0.

We will denote the �-class of S containing the idempotent e by �e and we

will denote by RM the multiplicative group of nonzero real numbers.

Theorem 5.5. Let S be a Type II semigroup. Then �0 = {0} and if e is a

nonzero idempotent of S, then �e = {v ∈ S : vn ≠ 0 and vi = |vn|riei for 1 ≤
i < n}. Moreover, �e is isomorphic to RM whenever e≠ 0.

Proof. The first two assertions are immediate consequences of Theorems

5.2, 5.3, and 5.4 and it remains for us to show that �e is isomorphic to RM
for nonzero e. Note that vn ≠ 0 for all v ∈�e. Define a surjection ϕ from �e

onto RM by ϕ(v) = vn. Then ϕ(vw) = (vw)n = vnwn =ϕ(v)ϕ(w) and we

conclude thatϕ is an epimorphism. Furthermore, ifϕ(v)= 1, then vn = 1 and

vi = ei|vn|ri = ei|1|ri = ei for 1≤ i < n. Thus, v = e and ϕ is an isomorphism

from �e onto RM .

Corollary 5.6. Let S be a Type II semigroup. Then S is the union of its

nonzero maximal subgroups, each of which is isomorphic to RM , together with

a subsemigroup Z which has the property that vw = 0 for each v ∈ S and each

w ∈ Z . Moreover, the identity of each nonzero maximal subgroup of S is a right

identity for all of S.

Proof. Let Z = {w ∈ S : wn = 0}. It is immediate that vw = 0 for each

v ∈ S andw ∈ Z . Suppose v �∈ Z . Then vn ≠ 0. Define en = 1 and ei = vi/|vn|ri .
Then e is idempotent by Theorem 5.4 and v ∈�e, which is isomorphic to RM
by Theorem 5.5. If e is the identity of a nonzero maximal subgroup of S, then

en = 1 by Theorem 5.4 and it readily follows that ve= v for all v ∈ S.

Lemma 5.7. Let v,w ∈ S, a Type II semigroup, and suppose that v ≠ 0. Then

v ∈ SwS if and only if wn ≠ 0.

Proof. Suppose that v ∈ SwS. Then v = xwy where x,y ∈ S. Then vn =
xnwnyn and vi = xi|wnyn|ri for 1≤ i < n. Since v ≠ 0, it follows thatwnyn ≠
0 and hencewn ≠ 0. Suppose, conversely, thatwn ≠ 0. Let yn = 1 and let yi be

arbitrary for 1≤ i < n. Define xn = vn/wn and let xi = vi/|wn|ri for 1≤ i < n.

Then vn = xnwnyn and vi = xi|wnyn|ri for 1 ≤ i < n. Thus, v = xwy and

the proof is complete.

Lemma 5.8. Let v,w ∈ S, a Type II semigroup, and suppose that v ≠ 0. Then

v ∈ wS if and only if there exists a nonzero c ∈ R such that vn = cwn and

vi = |c|riwi for 1≤ i < n.
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Proof. Suppose there exists a nonzero c ∈R such that vn = cwn and vi =
|c|ri for 1≤ i < n. Defineyn = c and letyi be arbitrary for 1≤ i < n. Then vn =
cwn =wnyn and vi = |c|riwi =wi|yn|ri = (wy)i for 1≤ i < n. Consequently,

v = wy ∈ wS. Suppose, conversely, that v ∈ wS. Then v = wy for some

y ∈ S. Then vn = wnyn and vi = wi|yn|ri for 1 ≤ i < n. Now yn ≠ 0 since

v ≠ 0 so we take c =yn.

Theorem 5.9. Let v,w ∈ S, a Type II semigroup. If v = 0, then v ∈ S1wS1.

If v ≠ 0, then v ∈ S1wS1 if and only if wn ≠ 0 or there exists a nonzero c ∈ R
such that vn = cwn and vi = |c|riwi for 1≤ i < n.

Proof. Suppose v ≠ 0. If wn ≠ 0, then v ∈ SwS ⊆ S1wS1 by Lemma 5.7

and if there exists a nonzero number c such that vn = cwn and vi = |c|ri
for 1 ≤ i < n, then v ∈wS ⊆ S1wS1 by Lemma 5.8. Suppose, conversely, that

v ∈ S1wS1. Since S has a right identity (any elementw wherewn = 1), S1wS1 =
S1wS and it follows that v = xwy where x ∈ S1 and y ∈ S. If x = 1, then

v ∈wS and it follows from Lemma 5.8 that there exists a nonzero c ∈R such

that vn = cwn and vi = |c|riwi for 1 ≤ i < n. If x ≠ 1, then v = xwy ∈ SwS
and it follows from Lemma 5.7 that wn ≠ 0.

Theorem 5.10. Let S be a Type II semigroup and let v,w ∈ S. Then v�w if

and only if v =w or one of the following two conditions is satisfied:

(i) vn ≠ 0≠wn or

(ii) there exists a nonzero real number c such that vn = cwn, vi = |c|riwi
for 1≤ i < n.

Proof. Suppose (i) holds. Then v�w by Theorem 5.1 which means v�w.

Suppose (ii) holds. Then v ∈wS ⊆wS1 by Lemma 5.8. Let b = 1/c. Then b ≠ 0,

wn = bvn, and wi = |b|rivi for 1 ≤ i < n and it follows from Lemma 5.8 that

w ∈ vS ⊆ vS1. Consequently, v�w and we conclude that v�w in this case as

well.

Suppose, conversely, that v�w and suppose also that v ≠ w. Then either

v ≠ 0 or w ≠ 0 and there is no loss of generality in assuming that v ≠ 0.

We observed in the proof of Theorem 5.9 that S1uS1 = S1uS for all u ∈ S.

Consequently, S1vS = S1wS. Since v ∈ S1wS, we have v = xwy where x ∈ S1

and y ∈ S.

Case 1 (x ∈ S). Then v ∈ SwS and wn ≠ 0 by Lemma 5.7. Since w ∈ S1vS,

eitherw = rvs orw = vs where r ,s ∈ S. Thenwn = rnvnsn in the former case

and wn = vnsn in the latter. In either event, vn ≠ 0 since wn ≠ 0 and we have

vn ≠ 0≠wn. That is, (i) holds.

Case 2 (x �∈ S). Then x = 1 and v =wy ∈wS and (ii) holds in this case in

view of Lemma 5.8.

6. The multiplicative semigroups of Type III nearrings

Theorem 6.1. Let S be a Type III semigroup and let v,w ∈ S. Then v�w if

and only if v =w or vn ≠ 0≠wn.
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Proof. Suppose vn ≠ 0 ≠ wn and consider first the case where wn > 0.

Define un = vn/wn and ui = vi/wrin . Then v = uw. Now consider the case

wherewn < 0. Again, defineun = vn/wn but this time, define ui =−vi/|wn|ri .
Again, we have v = uw. In much the same way, one shows that w = uv for

some u∈ S and we conclude that v�w.

Now suppose v�w and suppose further that v ≠w. It follows that v = xw
and w = yv for appropriate x,y ∈ S. Suppose vn = 0. Then wn = ynvn = 0

and wi = yivrin = 0 for 1 ≤ i < n which means that w = 0. But we also have

vi = xiwrin which means that v = 0. But this is a contradiction since v ≠ w.

Thus vn ≠ 0 and, similarly, wn ≠ 0.

Theorem 6.2. Let S be a Type III semigroup and let v,w ∈ S. Then v�w if

and only if either v =w or there exists a real number c > 0 such that

vn = cwn, vi = criwi for 1≤ i < n (6.1)

or there exists a real number c < 0 such that

vn = cwn, vi =−|c|riwi for 1≤ i < 0. (6.2)

Proof. Suppose there exists a positive real number c such that (6.1) is

satisfied. Take xi to be arbitrary for 1≤ i < n and let xn = c. It readily follows

that v =wx. Now let yi be arbitrary for 1≤ i < n and let yn = 1/c. It follows

just easily that w = vy and we conclude that v�w. One shows, in the same

manner, that v�w when (6.2) is satisfied.

Now suppose v�w and suppose further that v ≠ w. Then v = wx and

w = vy for some x,y ∈ S. Suppose xn = 0. Then it follows from (2.3) that

v = 0 and this, together with (2.3), implies that we also have w = 0. But this

contradicts the fact that v ≠w. Thus xn ≠ 0. Take c = xn. If c > 0, it follows

from (2.3) that vn = cwn and vi = (wx)i = criwi for 1≤ i < n. Consequently,

(6.1) is satisfied. It follows in much the same way that if c < 0, then (6.2) is

satisfied.

Since �=�∩�, the following result is an immediate consequence of Theo-

rems 6.1 and 6.2.

Theorem 6.3. Let S be a Type III semigroup and let v,w ∈ S. Then v�w
if and only if v =w or vn ≠ 0 ≠wn and one of the following two conditions is

satisfied:

(i) there exists a c > 0 such that vn = cwn, vi = criwi for 1≤ i < n, or

(ii) there exists a c < 0 such that vn = cwn, vi =−|c|riwi for 1≤ i < n.

Theorem 6.4. An element v of a Type III semigroup is idempotent if and

only if v = 0 or vn = 1.

Proof. It follows immediately from (2.3) that v is idempotent if either v =
0 or vn = 1. Suppose, conversely, that v is idempotent. Then vn = v2

n which
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means that either vn = 0 or vn = 1. If vn = 0, it follows immediately from (2.3)

and the fact that v is idempotent that v = 0.

As before �e is the �-class containing the idempotent e.

Theorem 6.5. Let S be a Type III semigroup and let e be an idempotent of

S. Then �e = {0} if e = 0. If e is a nonzero idempotent of S, then �e consists of

all v ∈ S such that vn > 0 and vi = vrin ei for 1 ≤ i < n together with all v ∈ S
such that vn < 0 and vi = −|vn|riei for 1 ≤ i < n. Moreover, if e ≠ 0, Then �e

is isomorphic to RM , the multiplicative group of nonzero real numbers.

Proof. It follows immediately from Theorem 6.3 that �e = {0} if e = 0.

Suppose e ≠ 0. Then en = 1 by Theorem 6.4. Suppose vn > 0 and vi = vrin for

1≤ i < n. Take c =wn and it follows from Theorem 6.3(i) that v�e. Suppose,

conversely, that v�e. Then vn ≠ 0 by Theorem 6.3. Suppose vn > 0. Take

vn = c. Then vn = c = cen and by (2.3), (ev)i = eivrii = criei for 1 ≤ i < n.

Thus Theorem 6.3(i) is satisfied. It follows in a similar manner that if v�e and

vn < 0, then Theorem 6.3(ii) is satisfied. Define a surjectionϕ from �e ontoRM
by ϕ(v)= vn. It is immediate that ϕ is a homomorphism. Suppose ϕ(v)= 1.

Then vi = ei for all i. That is, v = e and we conclude thatϕ is an isomorphism

from �e onto RM .

Our next result is the analogue of Corollary 5.6.

Corollary 6.6. Let S be a Type III semigroup. Then S is the union of its

nonzero maximal subgroups, each of which is isomorphic to RM , together with

a subsemigroup Z which has the property that vw = 0 for each v ∈ S and each

w ∈ Z . Moreover, the identity of each nonzero maximal subgroup of S is a right

identity for all of S.

Proof. Let Z = {v ∈ S : vn = 0}. Suppose v �∈ Z . Then vn ≠ 0. Define

en = 1. If vn > 0, define ei = vi/vrin and it follows from Theorem 6.3(i) that

v ∈ �e. If vn < 0, define ei = −vi/|vn|ri and it follows from Theorem 6.3(ii)

that v ∈ �e. Thus, we conclude that S is the union of its nonzero maximal

subgroups, each of which is isomorphic toRM , together with the subsemigroup

Z . It is immediate that vw = 0 for each v ∈ S and each w ∈ Z and that each

identity of a nonzero maximal subgroup of S is a right identity for all of S.

Lemma 6.7. Let S be a Type III semigroup. Let v,w ∈ S and suppose that

v ≠ 0. Then v ∈ SwS if and only if wn ≠ 0.

Proof. Suppose v ∈ SwS. Then v = xwy for some x,y ∈ S. Then vn =
xnwnyn and vi = xi(wnyn)ri for 1≤ i < n whenever wnyn ≥ 0. Then wn ≠ 0

since v ≠ 0. Of course, wn ≠ 0 in the remaining case where wnyn < 0.

Suppose, conversely, that wn ≠ 0. If wn > 0, Take yn = 1 and if wn < 0,

take yn = −1. Take yi to be arbitrary for 1 ≤ i < n, xn = vn/|wn|, and xi =
vi/|wn|ri for 1≤ i < n. It follows that v = xwy .
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Lemma 6.8. Let S be a Type III semigroup, let v,w ∈ S and suppose v ≠ 0.

Then v ∈wS if and only if there exists a positive number c such that vn = cwn
and

vi = criwi for 1≤ i < n (6.3)

or a negative number c such that vn = cwn and

vi =−|c|riwi for 1≤ i < n. (6.4)

Proof. Suppose there exists a positive number c such that vi = criwi for

1≤ i < n. Define yn = c and yi = vi/cri for 1≤ i < n. Then v =wy ∈wS. Now

suppose there exists a negative number c such thatvn = cwn andvi =−|c|riwi
for 1≤ i < n. Again, let yn = c but this time let yi =−vi/|c|ri for 1≤ i < n. In

this case also we have v =wy ∈wS.

Now suppose v ≠ 0 and v ∈ wS. Then v = wy for some y ∈ S. Suppose

yn = 0. Then vn = wnyn = 0 and vi = wi(yn)ri = 0 for 1 ≤ i < n. But this

contradicts the fact that v ≠ 0. Thus, yn ≠ 0. Take c = yn. Condition (6.3) is

satisfied if c > 0 and condition (6.4) is satisfied if c < 0.

Theorem 6.9. Let S be a Type III nearring and let v,w ∈ S. Then v�w if

and only if v =w or one of the following three conditions is satisfied:

(i) vn ≠ 0≠wn,

(ii) there exists a positive number c such that vn = cwn, vi = criwi for

1≤ i < n, or

(iii) there exists a negative number c such that vn = cwn, vi =−|c|riwi for

1≤ i < n.

Proof. If (i) holds, then v�w by Theorem 6.1 and thus, we have v�w as

well. Suppose (ii) holds. Then v ∈wS by Lemma 6.8. Take b = 1/c. Then wn =
bvn andwi = brivi and it follows from Lemma 6.8 thatw ∈ vS. Consequently,

v�w which implies v�w. It follows in much the same manner that v�w if (iii)

is satisfied.

Now suppose that v�w and suppose further that v ≠w. Then either v ≠ 0

or w ≠ 0 and there is no loss of generality if we assume that v ≠ 0. Again, we

use the fact that S1wS1 = S1wS to conclude that v ∈ S1wS. Thus v = xwy
where y ∈ S.

Case 1 (x ∈ S). Then v ∈ SwS which means wn ≠ 0 by Lemma 6.7. Since

w ∈ S1vS, we have either w = xvy or w = vy where x,y ∈ S. In the former

case, wn = xnvnyn and in the latter case, wn = vnyn. In either case, vn ≠ 0

since wn ≠ 0 and we conclude that (i) is satisfied.

Case 2 (x �∈ S). then x = 1 and v = wy ∈ wS and it follows immediately

from Lemma 6.8 that (ii) holds or (iii) holds. This completes the proof.

7. The multiplicative semigroups of Type IV nearrings. In the case of Type

IV nearrings, a2+b2 ≠ 0 so we have three cases to consider: (1) a= 0, (2) b = 0,
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and (3) a≠ 0≠ b. Of course, whenever a= 0, b ≠ 0 and the multiplication (2.4)

becomes

(vw)i =



0 for wn ≤ 0,

vi
(
bwn

)ri for wn > 0,
(7.1)

for i≠n,

(vw)n =



0 for wn ≤ 0,

bvnwn for wn > 0,
(7.2)

where ri > 0 and b > 0. Similarly, when b = 0, then a≠ 0 and the multiplication

(2.4) becomes

(vw)i =


vi
(
awn

)ri for wn < 0,

0 for wn ≥ 0,
(7.3)

for i≠n,

(vw)n =


avnwn for wn < 0,

0 for wn ≥ 0,
(7.4)

where ri > 0 and a< 0.

In particular, vw = 0 whenever a = 0 and wn ≤ 0 and vw = 0 whenever

b = 0 and wn ≥ 0.

Theorem 7.1. Let S be a Type IV semigroup and let v,w ∈ S. If a= 0, then

v�w if and only if v =w or vn,wn > 0. If b = 0, then v�w if and only if v =w
or vn,wn < 0 and if a≠ 0≠ b, then v�w if and only if v =w or vn ≠ 0≠wn.

Proof. We consider first the case where a= 0. Suppose v�w and suppose

further thatv ≠w. Then, eitherv ≠ 0 orw ≠ 0 and there is no loss of generality

if we assume v ≠ 0. We have v = xw and w = yv for x,y ∈ S. Since v ≠ 0, it

follows from (7.1) that wn > 0. Then w ≠ 0 and since w =yv , it follows from

(7.1) that vn > 0. Suppose, conversely, that vn,wn > 0. Define xn = vn/bwn
and xi = vi/(bwn)ri for 1 ≤ i < n. Then v = xw ∈ S1w. In a similar manner,

one produces a y ∈ S such that w =yv and we conclude that v�w. The case

where b = 0 is similar so no details will be given.

Now consider the case where a≠ 0≠ b. Suppose v�w and suppose further

that v ≠w. Then, either v ≠ 0 orw ≠ 0 and, again, there is no loss of generality

if we assume v ≠ 0. Here also we have v = xw for some x ∈ S and since

v ≠ 0, we must have wn ≠ 0. Thus w ≠ 0 and since w = yv for some y ∈ S,

we conclude that vn ≠ 0. Suppose, conversely, that vn ≠ 0 ≠ wn. If wn > 0,

define xn = vn/bwn and xi = vi/(bwn)ri for 1≤ i < n. If wn < 0, define xn =
vn/awn and xi = vi/(awn)ri for 1≤ i < n. In either event, v = xw ∈ S1w. In
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a similar manner, one shows that w ∈ S1v which means v�w and the proof

is complete.

Let N(v)= {i : vi ≠ 0} for v ∈Rn.

Theorem 7.2. Let S be a Type IV semigroup and let v,w ∈ S. Then v�w if

and only if v =w or N(v)=N(w), and viwi ≥ 0 for 1≤ i≤n and either

vn = 0=wn,
(
vi
wi

)1/ri
=
( vj
wj

)1/rj
∀i,j ∈N(v)\{n} (7.5)

or

vn ≠ 0≠wn,
(
vi
wi

)1/ri
= vn
wn

∀i∈N(v)\{n}. (7.6)

Proof. Consider first the case where a≠ 0≠ b. Suppose N(v)=N(w) and

viwi ≥ 0 for 1 ≤ i ≤ n and suppose (7.5) holds. If N(v) =∅, then v = 0 =w
so we need only to consider the case where N(v) ≠∅. Choose any k ∈ N(v)
and define xn = (1/b)(vk/wk)1/rk . Let xi be arbitrary for 1 ≤ i < n. It follows

from (7.5) that

(
vi
wi

)1/ri
=
(
vk
wk

)1/rk
= bxn (7.7)

for all i ∈ N(v). It follows readily from (7.7) that vi = wi(bxn)ri for all i ∈
N(v). Since vi = 0 = wi for i �∈ N(v), we conclude that vi = wi(bxn)ri for

1 ≤ i < n and, of course, vn = 0 = bvnwn. This implies that v = wx. In a

similar manner, one produces a y ∈ S such thatw = vy and we conclude that

v�w. Now suppose that (7.6) holds. Then vn/bwn > 0. Define xn = vn/bwn
and take xi for 1≤ i < n to be arbitrary. It then follows from (7.6) that

vi
wi

=
(
vn
wn

)ri
= (bxn)ri (7.8)

for all i∈N(v). Then vn = bwn, vi =wi(bxn)ri for i∈N(v) in view of (7.8).

Since vi = 0= bwixi for i �∈N(v), it readily follows that v =wx. One shows,

in a similar manner, that w = vy for some y ∈ S and we conclude that v�w.

Suppose, conversely, that v�w and suppose further that v ≠w. Then either

v ≠ 0 or w ≠ 0 and there is no loss of generality if we assume that v ≠ 0. Now

v = wx for some x ∈ S and since v ≠ 0, we must have xn ≠ 0. Consider

the case where xn < 0. Then vn = awnxn. Since axn > 0, it readily follows

that vnwn ≥ 0 and vn = 0 if and only if wn = 0. Suppose vn = 0 =wn. Since

vi = wi(axn)ri for 1 ≤ i < n and it readily follows that vi = 0 if and only if

wi = 0, thus, N(v)=N(w) and for all i∈N(v)=N(w), we have

(
vi
wi

)1/ri
= axn (7.9)
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and it follows that (7.5) is satisfied in this case. It follows in much the same

manner that (7.5) is satisfied whenever vn = 0=wn and xn > 0. It remains to

consider the case where vn ≠ 0≠wn. We again have v =wx and xn ≠ 0 since

v ≠ 0 and we consider two subcases.

Subcase 1 (xn < 0). Then vn = awnxn and

vi = (wx)i =wi
(
axn

)ri =wi
(
vn
wn

)ri
for 1≤ i < n. (7.10)

It follows from (7.10) that (7.6) is satisfied in this case.

Subcase 2 (xn > 0). We have vn = bwnxn and

vi = (wx)i =wi
(
bxn

)ri =wi
(
vn
wn

)ri
for 1≤ i < n (7.11)

and it follows that (7.6) is satisfied in this case also.

The case where a = 0 and the case where b = 0 both differ somewhat from

the previous case but since they are similar, we give the details in the latter

case only. So we consider the case where b = 0. Suppose that N(v) = N(w),
viwi ≥ 0 for 1≤ i < n and suppose further that (7.5) holds. Again, ifN(v)=∅,

we have v = 0=w so we need only to consider the case where N(v)≠∅ and

we choose any k∈N(v). Then vkwk > 0. We define xn = (1/a)(vk/wk)1/rk and

we take xi to be arbitrary for 1≤ i < n. In view of (7.5), for any i∈N(v)\{n},
we have

(
vi
wi

)1/ri
=
(
vk
wk

)1/rk
= axn. (7.12)

It follows from (7.12) that vi =wi(axn)ri for all i∈N(v)\{n} and since vn =
0 = awnxn and vi = 0 =wi(axn)ri for i < n and i �∈ N(v), we conclude that

v =wx. In the same manner, one can produce a y ∈ S such that w = vy and

we conclude that v�w whenever (7.5) is satisfied.

Suppose (7.6) is satisfied. Then vnwn > 0 and this time we define xn =
vn/awn and we take xi to be arbitrary for 1 ≤ i < n. Note that xn < 0. Evi-

dently, vn/wn = axn and it follows from (7.6) that

(
vi
wi

)1/ri
= vn
wn

= axn ∀i∈N(v)\{n}. (7.13)

It follows from (7.13) that vi =wi(axi)ri for i∈N(v)\{n}. Since vn = awnxn
and vi = 0 = wi(axn)ri for i �∈ N(v), we conclude that v = wx. Similarly,

w = vy for some y ∈ S and we conclude that v�w.

Suppose, conversely, that v�w and suppose further that v ≠w. Then, not

both v and w can be 0 and there is no loss of generality if we assume v ≠ 0.

It also follows from our assumption that v ≠ w that v = wx and w = vy
for appropriate x,y ∈ S. Then xn < 0 since v ≠ 0. Since vn = awnxn and

vi = wi(axn)ri for 1 ≤ i < n, we see that vi = 0 if and only if wi = 0 for
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1≤ i≤n. Thus, N(v)=N(w). It follows from the latter assertion that w ≠ 0.

Since axn > 0, we conclude that viwi ≥ 0 for 1≤ i≤n. Suppose vn = 0. Then

wn = 0 as well and since vi =wi(axn)ri for 1≤ i < n, we conclude that

(
vi
wi

)1/ri
= axn ∀i∈N(v)\{n}, (7.14)

and it follows from (7.14) that (7.5) holds in this case. Now suppose vn ≠ 0.

Then wn ≠ 0 since N(v)=N(w). In this case, we have vn = awnxn and since

vi =wi(xn)ri for 1≤ i < n, we conclude that

(
vi
wi

)1/ri
= axn = vnwn ∀i∈N(v)\{n}. (7.15)

Thus, (7.6) holds in this case.

Our next result is an immediate consequence of Theorems 7.1 and 7.2.

Theorem 7.3. Suppose S is a Type IV semigroup. Suppose a= 0 and suppose

v,w ∈ S. Then v�w if and only if v =w or vn,wn > 0,N(v)=N(w), viwi ≥ 0

for 1≤ i < n and

(
vi
wi

)1/ri
= vn
wn

∀i∈N(v)\{n}. (7.16)

Theorem 7.4. Suppose S is a Type IV semigroup and suppose a = 0. Then

v ∈ S is a nonzero idempotent of S if and only if vn = 1/b.

Proof. If vn = 1/b, then (vv)n = bvnvn = vn and (vv)i = vi(bvn)ri = vi
for 1≤ i < n and we see that v is a nonzero idempotent. Suppose, conversely,

that v is a nonzero idempotent. If vn ≤ 0, it follows from (7.1) that v2 = 0

which contradicts the fact that v is idempotent. Thus vn > 0 and from (7.1)

we conclude that vn = (vv)n = bv2
n which implies that vn = 1/b.

In what follows, we will denote by R+M the multiplicative group of positive

real numbers.

Theorem 7.5. Let e be a nonzero idempotent of a Type IV semigroup where

a = 0. Then v ∈�e if and only if vn > 0, N(v) = N(e), viei ≥ 0 for 1 ≤ i < n,

and
(
vi
ei

)1/ri
= bvn ∀i∈N(v)\{n}. (7.17)

Furthermore, �e is isomorphic to R+M for each nonzero idempotent e and S is

the union of its nonzero maximal subgroups, each of which is isomorphic to R+M ,

together with a subsemigroup T with the property that vw = 0 for all v ∈ S
and w ∈ T . Finally, each nonzero idempotent of S is a right identity for S.

Proof. The fact that �e consists of all v ∈ S such that vn > 0,N(v)=N(e),
viei ≥ 0 for 1 ≤ i ≤ n and satisfies (7.17) is an immediate consequence of
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Theorems 7.3 and 7.4. Define a surjection ϕ from �e onto R+M by ϕ(v) =
bvn. Then ϕ(vw)= b(vw)n = b2vnwn =ϕ(v)ϕ(w) and we see that ϕ is an

epimorphism. Suppose ϕ(v)= 1. Then, we must have vn = 1/b which means

vn = en and it follows from (7.17) that vi = ei for 1 ≤ i < n as well. Thus

v = e and we conclude that ϕ is an isomorphism from �e onto R+M . Note that

for any nonzero idempotent e and any v ∈ S we have (ve)n = bvnen = vn
and (ve)i = vi(ben)ri = vi for 1 ≤ i < n so that e is a right identity for S.

Finally, let T = {v ∈ S : vn ≤ 0}, it follows from (7.1) that vw = 0 for all

v ∈ S and w ∈ T . Now suppose v ∈ S\T . Then vn > 0. Define en = 1/b and

ei = vi/(bvn)ri . Then it follows that e is a nonzero idempotent and it follows

from our previous considerations that v ∈�e. Consequently, we conclude that

S is the union of its nonzero maximal subgroups, each of which is isomorphic

to R+M , together with the subsemigroup T and the proof is now complete.

Our next result is an immediate consequence of Theorems 7.1 and 7.2.

Theorem 7.6. Suppose S is a Type IV semigroup. Suppose b = 0 and v,w ∈
S. Then v�w if and only if v =w or vn,wn < 0, N(v) = N(w), viwi ≥ 0 for

1≤ i≤n, and
(
vi
wi

)1/ri
= vn
wn

∀i∈N(v)\{n}. (7.18)

The proofs of our next two results are quite similar to those of Theorems

7.4 and 7.5, respectively, and, for that reason, will not be given.

Theorem 7.7. Suppose S is a Type IV semigroup and b = 0. Then v ∈ S is a

nonzero idempotent of S if and only if vn = 1/a.

Theorem 7.8. Let e be a nonzero idempotent of a Type IV semigroup where

b = 0. Then v ∈�e if and only if vn < 0, N(v) = N(e), viei ≥ 0 for 1 ≤ i ≤ n,

and vi = ei(avn)ri for all i ∈ N(v)\{n}. Furthermore, �e is isomorphic to

R+M for each nonzero idempotent e and S is the union of its nonzero maximal

subgroups, each of which is isomorphic to R+M , together with a subsemigroup T
with the property that vw = 0 for all v ∈ S and w ∈ T . Finally, each nonzero

idempotent of S is a right identity for S.

The proof of our next result is straightforward and will also be omitted.

Theorem 7.9. Suppose S is a Type IV semigroup with a≠ 0≠ b. Then v ∈ S
is a nonzero idempotent if and only if either vn = 1/a or vn = 1/b.

The next result follows immediately from Theorems 7.1 and 7.2.

Theorem 7.10. Suppose S is a Type IV semigroup with a ≠ 0 ≠ b and let

v,w ∈ S. Then v�w if and only if v = w or vn ≠ 0 ≠ wn, N(v) = N(w),
viwi ≥ 0 for 1≤ i≤n, and

(
vi
wi

)1/ri
= vn
wn

∀i∈N(v)\{n}. (7.19)
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Theorem 7.11. Let e be a nonzero idempotent of a Type IV semigroup where

a≠ 0≠ b. If en = 1/a, then v ∈�e if and only if vn < 0, N(v)=N(e), viei ≥ 0

for 1≤ i≤n, and vi = ei(avn)ri for all i∈N(v)\{n}. If en = 1/b, then v ∈�e

if and only if vn > 0, N(v) = N(e), viei ≥ 0 for 1 ≤ i ≤ n, and vi = ei(bvn)ri
for all i ∈ N(v)\{n}. Furthermore, �e is isomorphic to R+M for each nonzero

idempotent e and S is the union of its nonzero maximal subgroups, each of

which is isomorphic to R+M , together with a subsemigroup T with the property

that vw = 0 for all v ∈ S and w ∈ T . Finally, each nonzero idempotent of S is

a right identity for S.

Proof. The proof of this result is quite similar to the proof of Theorem 7.5

so we will omit most of the details. A few remarks, however, are appropriate. If

en = 1/a, the map ϕ defined by ϕ(v)= avn is an isomorphism from �e onto

R+M and if en = 1/b, then the mapϕ defined byϕ(v)= bvn is an isomorphism

from �e onto R+M . Finally, let T = {v ∈ S : vn = 0}. Then vw = 0 for all v ∈ S
and w ∈ T and S is the union of T , together with all the nonzero maximal

subgroups of S.

We are now in a position to prove a result mentioned in Section 3.

Theorem 7.12. If two linear right ideal nearrings are isomorphic, then they

must be of the same type.

Proof. We observed, following the proof of Theorem 4.4, that the maximal

subgroups of a Type I semigroup are all singletons. Theorem 5.5 assures that

the nonzero maximal subgroups of a Type II semigroup are all isomorphic to

RM and Theorem 6.5 assures that the nonzero maximal subgroups of a Type

III semigroup are all isomorphic to RM . Theorem 7.11 tells us that the nonzero

maximal subgroups of a Type IV semigroup are all isomorphic to R+M . Since

a group of order one, RM , and R+M are all mutually nonisomorphic, the only

possibility for a nearring of one type to be isomorphic to a nearring of another

type is for a Type II nearring to be isomorphic to a Type III nearring. Let �2

and �3 be a Type II and a Type III nearrings, respectively. Letw be any element

of �3 such thatwn =−1. One easily verifies that vw =−v for all v ∈�3. That

is, vw is the additive inverse of v for all v ∈ �3. It is easily verified that �2

contains no such element w. Consequently, �2 and �3 cannot be isomorphic.

Theorem 7.13. In a Type IV semigroup, �=�∪�.

Proof. The proofs of the three cases, a = 0, b = 0, and a ≠ 0 ≠ b are all

quite similar so we give the details in the case a= 0 only. Evidently, �∪�⊆�

so we must verify that �⊆�∪�. Suppose v�w. Then v�u andu�w for some

u∈ S. If v =u, then (v,w)∈�. If v ≠u, then vn,un > 0 by Theorem 7.1 and

since N(u) = N(w) and uiwi ≥ 0 for 1 ≤ i ≤ n, it follows from Theorem 7.2

that wn > 0. Thus, vn,wn > 0 and now it follows from Theorem 7.1 that

(v,w)∈�.
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Theorem 7.14. Let S be a Type IV semigroup and suppose v,w ∈ S with

v ≠ 0. If a = 0, then v ∈ SwS if and only if wn > 0. If b = 0, then v ∈ SwS if

and only if wn < 0, and if a≠ 0≠ b, then v ∈ SwS if and only if wn ≠ 0.

Proof. The proofs of the three cases are similar. We give the details in

the latter case. Suppose v ∈ SwS. Then v = xwy for appropriate x,y ∈ S.

Suppose (wy)n = 0. Then vn = axn(wy)n = 0 and vi = xi(a(wy)n)ri = 0 for

1 ≤ i ≤ n. This, of course, contradicts the fact that v ≠ 0. Thus, we conclude

that (wy)n ≠ 0. Now (wy)n = awnyn if yn < 0 and (wy)n = bwnyn if yn >
0. In either event, we must have wn ≠ 0 since (wy)n ≠ 0.

Suppose, conversely, thatwn ≠ 0. Takeyn = 1 and takeyi to be arbitrary for

1≤ i < n. Ifwn < 0, define xn = vn/abwn and xi = vi/(abwn)ri for 1≤ i < n.

If wn > 0, define xn = vn/b2wn and xi = vi/(b2wn)ri for 1 ≤ i < n. In either

event, v = xwy ∈ SwS.

Theorem 7.15. Let S be a Type IV semigroup, suppose v,w ∈ S and suppose

further that v ≠ 0. Then v ∈ wS if and only if N(v) = N(w), viwi ≥ 0 for

1≤ i≤n, and there exists a positive real number c such that

vn = cwn,
(
vi
wi

)1/ri
= c ∀i∈N(v)\{n}. (7.20)

Proof. As in previous results, there are three cases to consider: a = 0,

b = 0, and a ≠ 0 ≠ b. We give the details only in the latter case. Suppose

v ∈wS. Then v =wy for some y ∈ S. Now, yn ≠ 0 since v ≠ 0.

Case 1 (yn < 0). Let c = ayn. Then c > 0 and it follows from (2.4) that vn =
(wy)n = awnyn = cwn and vi = (wy)i = wi(ayn)ri = wicri for 1 ≤ i < n.

Thus, vi ≠ 0 if and only if wi ≠ 0 for 1 ≤ i ≤ n since cri ≠ 0 for 1 ≤ i < n
and we conclude that N(v)=N(w). Moreover, since c > 0, it also follows that

viwi ≥ 0 for 1 ≤ i ≤ n. Finally, it readily follows that (vi/wi)1/ri = c for all

i∈N(v)\{n}.
Case 2 (yn > 0). Let c = byn > 0. Then c > 0 and it follows from (2.4)

that vn = (wy)n = bwnyn = cwn and vi = (wy)i = wi(byn)ri = wibri for

1 ≤ i < n. Thus vi ≠ 0 if and only if wi ≠ 0 for 1 ≤ i ≤ n since cri ≠ 0 for

1 ≤ i < n and we conclude that N(v) = N(w). Moreover, since c > 0, it also

follows that viwi ≥ 0 for 1≤ i≤n. Again, it readily follows that (vi/wi)1/ri = c
for all i∈N(v)\{n}.

Suppose, conversely, that N(v) = N(w), viwi ≥ 0 for 1 ≤ i ≤ n, and there

exists a positive real number c such that (7.20) is satisfied. Define yn = c/b
and take yi to be arbitrary for 1≤ i < n. Then yn > 0 and vn = cwn = bwnyn.

In addition, we have vi =wicri =wi(byn)ri for i ∈ N(v)\{n}. Since vi = 0 =
wi(bxn)rn for i �∈ N(v)\{n}, we conclude that vi = wicri = wi(byn)rn for

1≤ i < n. Thus, v =wy ∈wS.

Theorem 7.16. Let S be a Type IV semigroup witha≠ 0≠ b and letv,w ∈ S.

Then v�w if and only if v =w or vn ≠ 0≠wn or N(v)=N(w)≠∅, viwi ≥ 0
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for 1≤ i < n, and there exists a positive real number c such that

vn = cwn,
(
vi
wi

)1/ri
= c ∀i∈N(v)\{n}. (7.21)

Proof. Suppose v ≠ w and v�w. Since S has right identities, it follows

that S1uS1 = S1uS for all u ∈ S. Thus S1vS = S1wS and thus, v ∈ S1wS
which means that v = xwy where x ∈ S1 and y ∈ S.

Case 1 (x ≠ 1). Then x ∈ S and v ∈ SwS. It follows from Theorem 7.14

that wn ≠ 0. Now w ∈ S1vS. If w ∈ vS, it follows from Theorem 7.15 that

vn = cwn ≠ 0. If w ∈ SvS, it follows from Theorem 7.14 that vn ≠ 0 ≠wn. In

any event, we have vn ≠ 0≠wn in the case where x ≠ 1.

Case 2 (x = 1). It follows from Theorem 7.15 that N(v) = N(w), viwi ≥ 0

for 1 ≤ i ≤ n, and there exists a positive real number c such that vn = cwn
and (vi/wi)1/ri = c for all i∈N(v)\{n}.

Now suppose v ≠ w. If vn ≠ 0 ≠ wn, it follows from Theorem 7.16 that

SvS = SwS which implies that v�w. Now consider the case where N(v) =
N(w), viwi ≥ 0 for 1 ≤ i ≤ n, and there exists a positive real number c
such that vn = cwn and (vi/wi)1/ri = c for all i ∈ N(v)\{n}. It follows from

Theorem 7.15 thatv ∈wS. Sincewn = (1/c)vn and (wi/vi)1/ri = 1/c for all i∈
N(v)\{n}, we conclude that w ∈ vS. Thus, v�w and the theorem is proved.

The proofs of our two closing results are similar to the proof of the previous

theorem and, for that reason, will be omitted.

Theorem 7.17. Let S be a Type IV semigroup with a = 0 and let v,w ∈ S.

Then v�w if and only if v =w or vn,wn > 0 or N(v) = N(w) ≠∅, viwi ≥ 0

for 1≤ i < n, and there exists a positive real number c such that

vn = cwn,
(
vi
wi

)1/ri
= c ∀i∈N(v)\{n}. (7.22)

Theorem 7.18. Let S be a Type IV semigroup with b = 0 and let v,w ∈ S.

Then v�w if and only if v =w or vn,wn < 0 or N(v) = N(w) ≠∅, viwi ≥ 0

for 1≤ i < n, and there exists a positive real number c such that

vn = cwn,
(
vi
wi

)1/ri
= c ∀i∈N(v)\{n}. (7.23)
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