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We estimate the error term in the Ingham Tauberian theorem. This estimation
of the error term is accomplished by considering an elementary proof of a weak
form of Wiener’s general Tauberian theorem and by using a zero-free region for
the Riemann zeta function.
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1. Introduction. As an important application of his general Tauberian theo-

rem (GTT), in 1932, Wiener [6] gave a new proof of the prime number theorem

(PNT). In 1945, Ingham [2] applied Wiener’s GTT to formulate a new Tauberian

theorem (now bearing his name) and deduced the PNT as a special case. In

1964, Levinson [3] rediscovered Ingham’s Tauberian theorem with a different

proof. On the other hand, in 1973, Levinson [4] did show that a weak formu-

lation of Wiener’s GTT is enough for the proof of the PNT. In 1981, Balog [1]

formulated Ingham’s Tauberian theorem with an estimate for the error term.

In this paper, we use Levinson’s approach to Ingham’s theorem, as well as

Levinson’s approach to Wiener’s GTT, to prove the following effective version

of Ingham’s Tauberian theorem.

Theorem 1.1. Let F : R→ R be a nondecreasing right-continuous function,

that is, F(x+) = F(x). Suppose that F(x) = 0 when x < 1. Let α be a fixed

positive number. Assume that

T(x) :=
∫ x

1−

[
x
y

]
dF(y)= x logx+Ax+O

(
x

logαx

)
, (1.1)

as x→∞, for some constant A∈R. Let β <α/3. Then (as x→∞)

F(x)= x+O
(

x
logβx

)
. (1.2)

Balog [1] proves that (1.1) implies (1.2) with α = 2 and β < 1/4. If the error

term in (1.1) is assumed to be only o(x), then the proof of Ingham’s theorem

would require the full strength of Wiener’s GTT.
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2. Proof of Theorem 1.1. For the proof of the theorem, we follow Levinson

[3, 4] and Ingham [2]. In particular, we have adopted the method in Levinson

[4] so that we can obtain an estimate for the error term in the above theorem.

If k∈L1(R) and g∈L∞(R), then we write k∗g(x)=∫+∞−∞ k(x−y)g(y)dy .

We notice that if q,k ∈ L1(R) and g ∈ L∞(R), then (q∗k)∗g = q∗(k∗g).
This follows from Fubini’s theorem.

Lemma 2.1. If F(x) is as in (1.1), then F(x)=O(x).
Proof. Let T(x) be as in (1.1). Since [2y]− 2[y] = 0 or 1 and F(x) is

nondecreasing, then

T(x)−2T
(
x
2

)
≥
∫ x
x/2

[
x
y

]
dF(y)= F(x)−F

(
x
2

)
. (2.1)

On the other hand,

T(x)−2T
(
x
2

)
= x logx−2

x
2

log
x
2
+O(x)=O(x). (2.2)

Let M > 0 be such that F(x)−F(x/2)≤ xM . Then we have

F(x)=
∞∑
j=0

F
(
x
2j

)
−F

(
x

2j+1

)
≤

∞∑
j=0

x
M
2j
= 2Mx. (2.3)

Lemma 2.2. Let F(x) be as in the statement of Theorem 1.1. For every x ∈R,

let

g(x)= F
(
ex
)

ex
∈ L∞(R). (2.4)

Then there exists a function k∈ L1(R) satisfying

k∗g(x)=
∫ +∞
−∞
k(x−y)g(y)dy = 1+O

(
1
xα

)
(2.5)

and also

K(u) :=
∫ +∞
−∞
k(x)e−iuxdx = 2iuζ(1+iu)

(1+iu)(2+iu) , (2.6)

where ζ(1+iu) is the Riemann zeta function. Therefore, K(u) �= 0 for all u∈R
and in particular K(0)= 1.

Proof. Let k0(x)= [x]−x+1/2 when x ≥ 1 and let k0(x)= 0 when x < 1.

Then

x logx+Ax+O
(

x
logαx

)
=
∫ x

1−
k0

(
x
y

)
dF(y)+

∫ x
1−
x
y
dF(y)− 1

2
F(x)

=
∫ x

1−
k0

(
x
y

)
dF(x)+h(x),

(2.7)
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where, integrating by parts, h(x) := x ∫ x1 (F(y)/y2)dy+(1/2)F(x). Hence we

have

h(x)= x logx+Ax−
∫ x

1−
k0

(
x
y

)
dF(y)+O

(
x

logαx

)
. (2.8)

From the definition of h(x), one can show by taking derivatives that

1
2
x2
∫ x

1

F(y)
y2

dy =
∫ x

1
h(y)dy. (2.9)

Thus we can write

F(x)= 2h(x)−2x
∫ x

1

F(y)
y2

dy = 2h(x)− 4
x

∫ x
1
h(y)dy. (2.10)

From (2.8) and (2.10), we obtain

F(x)= 2x logx+2Ax−2
∫ x

1−
k0

(
x
y

)
dF(y)

− 4
x

{
1
2
x2 logx− 1−2A

4
x2−

∫ x
1

∫ y
1−
k0

(
y
t

)
dF(t)dy

}
+O

(
x

logαx

)
.

(2.11)

Therefore,

F(x)= x−2
∫ x

1−
k0

(
x
y

)
dF(y)+ 4

x

∫ x
1−

∫ x
t
k0

(
y
t

)
dydF(t)+O

(
x

logαx

)

= x−2
∫ x

1
k0

(
x
y

)
dF(y)+ 4

x

∫ x
1−
t
∫ x/t

1
k0(y)dydF(t)+O

(
x

logαx

)
.

(2.12)

If we let k1(x) = 1+ 2k0(x)− (4/x)
∫ x
1 k0(y)dy when x ≥ 1 and k1(x) = 0

otherwise, then we can write

∫ x
1−
k1

(
x
y

)
dF(y)= x+O

(
x

logαx

)
. (2.13)

In this equation, we make the substitution x� t, then we multiply by 1/t, and

finally we integrate from t = 1 to t = x. We get

∫ x
1−

1
t

∫ t
1
k1

(
t
y

)
dF(y)dt =

∫ x
1−

∫ x
y
k1

(
t
y

)
dt
t
dF(y)=

∫ x
1−

∫ x/y
1

k1(t)
t

dtdF(y).

(2.14)

If we integrate the last expression by parts, then formula (2.13) becomes

∫ x
1

F(y)
y

k1

(
x
y

)
dy = x+O

(
x

logαx

)
. (2.15)
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Since F(y) = 0 for y < 1 and k1(x) = 0 for x < 1, then we can make the

substitutions x� ex and y � ey to obtain

∫ +∞
−∞
F
(
ey
)
k1
(
ex−y

)
dy = ex+O

(
ex

xα

)
. (2.16)

Now we write

k(x)= k1
(
ex
)

ex
. (2.17)

Since k0(x) and k1(x) are bounded, then k ∈ L1(R). The first assertion in

Lemma 2.2 follows from (2.16). Now we prove the second assertion. Since

k1(x)= 0 when x < 1, then

K(u)=
∫∞

0

k1
(
ex
)

ex
e−iuxdx =

∫∞
1

k1(x)
xs+1

dx, (2.18)

where s = 1+ iu. Recall that k1(x) = 1+2k0(x)− (4/x)
∫ x
1 k0(y)dy and that

k0(x)= [x]−x+1/2. It is a well-known fact that

∫∞
1

k0(x)
xs+1

dx = ζ(s)
s

− 1
s(s−1)

− 1
2s
. (2.19)

Thus, changing the order of integrals, one shows that

∫∞
1

1
xs+1

· 1
x

∫ x
1
k0(y)dydx = ζ(s)

s(s+1)
− 1

2s(s−1)
. (2.20)

Adding
∫∞
1 (1/xs+1)dx = 1/s to two times (2.19) minus four times (2.20), we

obtain

K(u)= 2(s−1)ζ(s)
s(s+1)

, (2.21)

which is as claimed in the lemma.

Lemma 2.3. For � > 0, let

δ�(x)= 1
2

√
�
π
e−(�/4)x

2
, ∆�(t)=

∫ +∞
−∞
δ�(x)e−ixtdx. (2.22)

Then ∆�(t)= e−(1/�)t2 and in particular ∆�(0)= 1.

Lemma 2.4. Let k(x) be as in Lemma 2.2 and δ� as in Lemma 2.3. Then

there exists a function q� ∈ L1(R) such that δ� = q� ∗k. Let n ∈ N. If ε1 is a

fixed positive number, however small, then (as x→∞)

q�(x)� n!
xn
�1+ε1nΓ

(
2ε1n+1

)
. (2.23)
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Proof. Let k(x) be as in Lemma 2.2. Let

q�(x)=
∫ +∞
−∞
∆�(u)
K(u)

eixudu, K(u)=
∫ +∞
−∞
k(t)e−iutdt. (2.24)

That the integral defining q� does exist follows from (2.28) and (2.31). Then

we have

q�∗k(x)=
∫ +∞
−∞
k(t)

∫ +∞
−∞
∆�(u)
K(u)

ei(x−t)ududt

=
∫ +∞
−∞
∆�(u)
K(u)

eixu
∫ +∞
−∞
k(t)e−itudtdu= δ�(x).

(2.25)

We can integrate n times by parts to obtain

q�(x)=
(
i
x

)n∫ +∞
−∞

(
∆�(u)
K(u)

)(n)
eixudu. (2.26)

Now we must show that

I :=
∫ +∞
−∞

∣∣∣∣∣∣
(
∆�(u)
K(u)

)(n)∣∣∣∣∣∣du�n!�1+ε1nΓ
(
2ε1n+1

)
. (2.27)

Let s = 1+iu. Then

Z(s) := s(s+1)
2(s−1)ζ(s)

e(1/�)(s−1)2 = ∆�(u)
K(u)

(2.28)

is an analytic function of s in the region (see [5, Theorem 15, page 157])

s = σ +it such that σ ≥ 1− c
log |t| , (2.29)

where c is a suitable positive real number. Therefore,

dn

dsn
Z(s)= n!

2πi

∫
Z(s+ξ) dξ

ξn+1
, (2.30)

where the integral is over the small circle |ξ| = c/2log |u|. Since (see [5, Theo-

rem 16, page 158])

Z(s)�ue−(1/�)u
2
logu (as u �→∞), (2.31)

then we also have

(
∆�(u)
K(u)

)(n)
�n!ue−(1/�)u

2
logn+1u. (2.32)
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If ε1 is a positive number, then we have

I
n!
�
∫∞

0
ue−(1/�)u

2
logn+1(3+u)du

� �
∫∞

0
ue−u

2
logn+1 (3+√�u)du

� �
∫∞

0
ue−u

2(√
�u
)2ε1ndu

= �1+ε1n
∫∞

0
u2ε1ne−udu

= �1+ε1nΓ
(
2ε1n+1

)
.

(2.33)

Proof of Theorem 1.1. We apply Lemma 2.4 with n+1∈N and ε1 small.

Let φ= g−1. Then we have

δ�∗φ(x)= q�∗k∗φ(x)= q�∗h(x), (2.34)

where h(x)= k∗φ(x)=O(1/xα), as it follows from (2.5). Since

q�∗h(x)=
{∫ x/2

−∞
+
∫∞
x/2

}
q�(x−t)h(t)dt

� sup
t∈R

∣∣h(t)∣∣
∫∞
x/2

∣∣q�(t)∣∣dt+ sup
t>x/2

∣∣h(t)∣∣
∫ +∞
−∞

∣∣q�(t)∣∣dt,
(2.35)

then we see that δ�∗φ(x)� �τ(1/xα+1/xn) as x →∞ holds with any con-

stant τ > 1. Letting n= [α]+1, we obtain

δ�∗g(x)= 1+O
(
�τ

xα

)
. (2.36)

Let ε be real and positive. Since etg(t)= F(et) is nondecreasing and nonnega-

tive, then x−ε≤ t ≤ x+ε implies

ex−εg(x−ε)≤ etg(t)≤ ex+εg(t) (2.37)

so that x−ε≤ t ≤ x+ε implies

e−2εg(x−ε)≤ g(t). (2.38)

Therefore, we have

e−2εg(x−ε)
∫ +ε
−ε
δ�(t)dt ≤

∫ x+ε
x−ε
g(t)δ�(x−t)dt. (2.39)

Now we would like to extend these integrals from the finite range |x−t| ≤ ε to

the whole real line. From Lemma 2.1, we know that g(t) is a bounded function.

Thus ∫
|t|≥ε

g(x−t)δ�(t)dt�
√
�
∫∞
ε
e−(�/4)x

2
dx� e−(�/4)ε

2
, (2.40)
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where the implied constant is independent of x. Hence,

e−2εg(x−ε)≤ δ�∗g(x)+O
(
e−(�/4)ε

2
)
. (2.41)

This inequality, together with (2.36), implies

g(x)≤ 1+O
(
ε+ �

τ

xα
+e−(�/4)ε2

)
. (2.42)

Let β < α/3. Letting ε = x−β and �τ = xα−β, we obtain the right-hand-side

inequality of

1+O
(

1
xβ

)
≤ g(x)≤ 1+O

(
1
xβ

)
. (2.43)

One can prove the left-hand-side inequality in a similar fashion. Recalling that

g(x)= F(ex)/ex , we now have that

F(x)= x+O
(

x
logβx

)
(2.44)

holds with β <α/3.
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