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A delayed three-species periodic food-chain system with Holling type-II functional
response is investigated. By using Gaines and Mawhin’s continuation theorem of
coincidence degree theory, a set of easily verifiable sufficient conditions is derived
for the existence of positive periodic solutions to the system.
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1. Introduction. A rather characteristic behavior of population dynamics is

the often-observed oscillatory phenomenon of the population densities. There

are three typical approaches for modelling such a behavior: (i) introducing

more species into the model and considering the higher-dimensional systems

(like predator-prey interactions, see May [8]); (ii) assuming that the per capita

growth function is time dependent and periodic in time; (iii) taking into account

the time-delay effect on the population dynamics (Smith and Kuang [9], Zhao

et al. [12]). In most of the models considered so far, it has been assumed that

all biological and environmental parameters are constants in time. However,

any biological or environmental parameters are naturally subject to fluctua-

tion in time. The effects of a periodically varying environment are important

for evolutionary theory as the selective forces on systems in a fluctuating en-

vironment differ from those in a stable environment. Thus, the assumptions

of periodicity of the parameters are a way of incorporating the periodicity of

the environment (such as seasonal effects of weather, food supplies, mating

habits, etc.); on the other hand, it is generally recognized that some kinds of

time delays are inevitable in population interactions (see [1, 2] and the refer-

ences cited therein). Time delay due to gestation is a common example because,

generally, the consumption of prey by the predator throughout its past history

governs the present birth rate of the predator. The effect of time delays on the

asymptotic behavior of populations has been studied by a number of authors

(see, e.g., [3, 11]). Therefore, more realistic models of population interactions

should take into account the seasonality of the changing environment and the

effect of time delays.
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Recently, Wang and Fan [10] discussed a two-species periodic predator-prey

system with infinite delay. Sufficient conditions are derived in [10] for the ex-

istence of a positive periodic solution to the system. Motivated by the work

of Wang and Fan in [10], in the present paper, we are devoted to the study

of the following three-species periodic food-chain predator-prey system with

time delays:

ẋ1(t)= x1(t)
[
r1(t)−a11(t)x1

(
t−τ11(t)

)− a12(t)x2(t)
1+m1(t)x1(t)

]
,

ẋ2(t)= x2(t)
[
−r2(t)+ a21(t)x1

(
t−τ21(t)

)
1+m1(t)x1

(
t−τ21(t)

) − a23(t)x3(t)
1+m2(t)x2(t)

]
,

ẋ3(t)= x3(t)
[
−r3(t)+ a32(t)x2

(
t−τ32(t)

)
1+m2(t)x2

(
t−τ32(t)

)],
(1.1)

with initial conditions

xi(s)=φi(s), s ∈ [−τ,0], φi(0) > 0, i= 1,2,3, (1.2)

where x1(t), x2(t), and x3(t) denote the densities of prey, predator, and

top predator population, respectively. The parameter r1(t) is the intrinsic

growth rate of the prey and a11(t) is the density-dependent coefficient of

the prey species. The parameters a12(t) and a23(t) are the capturing rates of

the predator and the top predator, respectively. The ratios a21(t)/a12(t) and

a32(t)/a23(t) are the conversion rates of the predator and the top predator,

respectively. The parameters r2(t) and r3(t) are the death rates of the predator

and the top predator, respectively. The parameters m1(t) and m2(t) are the

half capturing saturation rates of the predator and the top predator, respec-

tively. The parameter τ11(t)≥ 0 denotes the delay due to negative feedback of

the prey species x1. The parameters τ21(t) and τ32(t) are the time delays due

to gestation, that is, mature adult predators (top predators) can only contribute

to the production of predator (top predator) biomass. The parameters τ11(t),
τ21(t), and τ32(t) are assumed to be nonnegative periodic continuous func-

tions with common period ω> 0, τ =maxt∈[0,ω]{τ11(t),τ21(t),τ32(t)}; aij(t)
(i,j = 1,2,3) and mi(t) (i= 1,2) are positively periodic continuous functions

with period ω> 0.

It is well known that by the fundamental theory of functional differential

equations [6], system (1.1) has a unique solution x(t) = (x1(t),x2(t),x3(t))
satisfying initial conditions (1.2). It is easy to verify that solutions of system

(1.1) corresponding to initial conditions (1.2) are defined on [0,+∞) and remain

positive for all t ≥ 0. In this paper, the solution of system (1.1) satisfying initial

conditions (1.2) is said to be positive.

2. Existence of periodic solutions. In this section, by using Gaines and

Mawhin’s continuation theorem of coincidence degree theory, we show the

existence of positive ω-periodic solutions of (1.1) and (1.2). To this end, we
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first introduce the following notations. Let X, Y be real Banach spaces, let

L : DomL ⊂ X → Y be a linear mapping, and let N : X → Y be a continu-

ous mapping. The mapping L is called a Fredholm mapping of index zero if

dimKerL= codimImL <+∞ and ImL is closed in Y . If L is a Fredholm mapping

of index zero and there exist continuous projectors P : X → X and Q : Y → Y
such that ImP = KerL and KerQ= ImL= Im(I−Q), then the restriction LP of L
to DomL∩KerP : (I−P)X → ImL is invertible. Denote the inverse of LP by KP .

If Ω is an open bounded subset of X, the mapping N will be called L-compact

on Ω̄ if QN(Ω̄) is bounded and KP(I−Q)N : Ω̄→ X is compact. Since ImQ is

isomorphic to KerL, there exists isomorphism J : ImQ→ KerL.

For convenience of use, we introduce the continuation theorem of coinci-

dence degree theory (see [5, page 40]) as follows.

Lemma 2.1. LetΩ ⊂X be an open bounded set. Let L be a Fredholm mapping

of index zero and let N be L-compact on Ω̄. Assume

(a) for each λ∈ (0,1), x ∈ ∂Ω∩DomL, Lx ≠ λNx;

(b) for each x ∈ ∂Ω∩KerL, QNx ≠ 0;

(c) deg{JQN,Ω∩KerL,0}≠ 0.

Then Lx =Nx has at least one solution in Ω̄∩DomL.

In what follows, we will use the notations

f̄ = 1
ω

∫ω
0
f(t)dt, f L = min

t∈[0,ω]
f (t), fM =max

[0,ω]
f (t), (2.1)

where f is a continuous ω-periodic function.

Lemma 2.2. Assume the following hold:

(H1) a32−r3mM
2 > 0,

(H2) r1
(
a21−mM

1 r2
)−a11 r2 > 0.

Then the system of algebraic equations

r1−a11u1 = 0,

−r2+ 1
ω

∫ω
0

a21(t)u1

1+m1(t)u1
dt− 1

ω

∫ω
0

a23(t)u3

1+m2(t)u2
dt = 0,

−r3+ 1
ω

∫ω
0

a32(t)u2

1+m2(t)u2
dt = 0,

(2.2)

has a unique solution (u∗1 ,u
∗
2 ,u

∗
3 ) and u∗i > 0, i= 1,2,3.

Proof. Let

f
(
u2
)=−r3+ 1

ω

∫ω
0

a32(t)u2

1+m2(t)u2
dt. (2.3)
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A direct calculation shows that

f ′
(
u2
)= 1

ω

∫ω
0

a32(t)(
1+m2(t)u2

)2dt > 0, f (0)=−r3 < 0,

lim
u2→+∞

f
(
u2
)=−r3+

(
a32

m2

)
>−

(
r3− a32

mM
2

)
> 0.

(2.4)

Obviously, there exists a unique zero point u∗2 > 0 such that f(u∗2 )= 0.

The first equation of system (2.2) has a unique zero point u∗1 = r1/a11 > 0.

Furthermore, from the second equation of (2.2), we obtain

u∗3
ω

∫ω
0

a23(t)
1+m1(t)u∗2

dt = 1
ω

∫ω
0

a21(t)u∗1
1+m1(t)u∗1

dt−r2

≥ 1
ω

∫ω
0

a21(t)r1/a11

1+mM
1 r1/a11

dt−r2

= r1
(
a21−mM

1 r2
)−a11 r2

a11+mM
1 r1

> 0,

(2.5)

which yields u∗3 > 0. The proof is complete.

We are now in a position to state our main result on the existence of a pos-

itive periodic solution to system (1.1).

Theorem 2.3. In addition to (H1) and (H2), further assume that

(H3) r1 > r2a11/(a21−r2mM
1 )e2r1ω+r3a12/(a32−mM

2 r3)e2(a21/m1)ω.
Then system (1.1), with initial conditions (1.2), has at least one strictly positive

ω-periodic solution.

Proof. Since solutions of (1.1) and (1.2) remain positive for all t ≥ 0, we let

y1(t)= ln
[
x1(t)

]
, y2(t)= ln

[
x2(t)

]
, y3(t)= ln

[
x3(t)

]
. (2.6)

On substituting (2.6) into system (1.1), we derive

ẏ1(t)= r1(t)−a11(t)ey1(t−τ11(t))− a12(t)ey2(t)

1+m1(t)ey1(t)
,

ẏ2(t)=−r2(t)+ a21(t)ey1(t−τ21(t))

1+m1(t)ey1(t−τ21(t))
− a23(t)ey3(t)

1+m2(t)ey2(t)
,

ẏ3(t)=−r3(t)+ a32(t)ey2(t−τ32(t))

1+m2(t)ey2(t−τ32(t))
.

(2.7)

It is easy to see that if system (2.7) has one ω-periodic solution (y∗1 (t),y
∗
2 (t),

y∗3 (t))T , then

x∗(t)= (x∗1 (t),x∗2 (t),x∗3 (t))T = (exp
[
y∗1 (t)

]
,exp

[
y∗2 (t)

]
,exp

[
y∗3 (t)

])T
(2.8)
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is a positive ω-periodic solution of system (1.1). Therefore, to complete the

proof, it suffices to show that system (2.7) has one ω-periodic solution.

Take

X = Y =
{(
y1(t),y2(t),y3(t)

)T ∈ C(R,R3) :yi(t+ω)=yi(t), i= 1,2,3
}
,

∥∥∥(y1(t),y2(t),y3(t)
)T∥∥∥= 3∑

i=1

max
t∈[0,ω]

∣∣yi(t)∣∣,
(2.9)

where | · | denotes the Euclidean norm. It is easy to verify that X and Y are

Banach spaces with the norm ‖·‖. Set

L
(
y1(t),y2(t),y3(t)

)T
=
(
dy1(t)
dt

,
dy2(t)
dt

,
dy3(t)
dt

)T
,
(
y1(t),y2(t),y3(t)

)T ∈X, (2.10)

and N :X →X,

N



y1(t)
y2(t)
y3(t)


=




r1(t)−a11(t)ey1(t−τ11(t))− a12(t)ey2(t)

1+m1(t)ey1(t)

−r2(t)+ a21(t)ey1(t−τ21(t))

1+m1(t)ey1(t−τ21(t))
− a23(t)ey3(t)

1+m2(t)ey2(t)

−r3(t)+ a32(t)ey2(t−τ32(t))

1+m2(t)ey2(t−τ32(t))



. (2.11)

Define two projectors P and Q as

P



y1

y2

y3


=Q



y1

y2

y3


=




1
ω

∫ω
0
y1(t)dt

1
ω

∫ω
0
y2(t)dt

1
ω

∫ω
0
y3(t)dt



,



y1

y2

y3


∈X. (2.12)

It is clear that

KerL= {x | x ∈X, x = h, h∈ R3},
ImL=

{
y |y ∈ Y ,

∫ω
0
y(t)dt = 0

}
is closed in Y ,

dimKerL= codimImL= 3.

(2.13)

Therefore, L is a Fredholm mapping of index zero. It is easy to show that P
and Q are continuous projectors such that

ImP = KerL, KerQ= ImL= Im(I−Q). (2.14)
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Furthermore, the inverse KP of LP exists, that is, KP : ImL → DomL∩KerP ,

which is given by

KP(y)=
∫ t

0
y(s)ds− 1

ω

∫ω
0

∫ t
0
y(s)dsdt. (2.15)

Then QN :X → Y and KP(I−Q)N :X →X read

QNx =




1
ω

∫ω
0

[
r1(t)−a11(t)ey1(t−τ11(t))− a12(t)ey2(t)

1+m1(t)ey1(t)

]
dt

1
ω

∫ω
0

[
−r2(t)+ a21(t)ey1(t−τ21(t))

1+m1(t)ey1(t−τ21(t))
− a23(t)ey3(t)

1+m2(t)ey2(t)

]
dt

1
ω

∫ω
0

[
−r3(t)+ a32(t)ey2(t−τ32(t))

1+m2(t)ey2(t−τ32(t))

]
dt



,

KP (I−Q)Nx =
∫ t

0
Nx(s)ds− 1

ω

∫ω
0

∫ t
0
Nx(s)dsdt−

(
t
ω
− 1

2

)∫ω
0
Nx(s)ds.

(2.16)

Clearly, QN and KP(I−Q)N are continuous.

In order to apply Lemma 2.1, we need to search for an appropriate open

bounded subset Ω.

Corresponding to the operator equation Lx = λNx, λ∈ (0,1), we obtain

ẏ1(t)= λ
[
r1(t)−a11(t)ey1(t−τ11(t))− a12(t)ey2(t)

1+m1(t)ey1(t)

]
,

ẏ2(t)= λ
[
−r2(t)+ a21(t)ey1(t−τ21(t))

1+m1(t)ey1(t−τ21(t))
− a23(t)ey3(t)

1+m2(t)ey2(t)

]
,

ẏ3(t)= λ
[
−r3(t)+ a32(t)ey2(t−τ32(t))

1+m2(t)ey2(t−τ32(t))

]
.

(2.17)

Suppose that (y1(t),y2(t),y3(t))T ∈X is a solution of system (2.17) for some

λ∈ (0,1). Integrating system (2.17) over [0,ω], we have

∫ω
0
a11(t)ey1(t−τ11(t))dt+

∫ω
0

a12(t)ey2(t)

1+m1(t)ey1(t)
dt =

∫ω
0
r1(t)dt, (2.18)

∫ω
0
r2(t)dt+

∫ω
0

a23(t)ey3(t)

1+m2(t)ey2(t)
dt =

∫ω
0

a21(t)ey1(t−τ21(t))

1+m1(t)ey1(t−τ21(t))
dt, (2.19)

∫ω
0
r3(t)dt =

∫ω
0

a32(t)ey2(t−τ32(t))

1+m2(t)ey2(t−τ32(t))
dt. (2.20)
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It follows from (2.18), (2.19), and (2.20) that

∫ω
0

∣∣ẏ1(t)
∣∣dt

= λ
∫ω

0

∣∣∣∣∣r1(t)−a11(t)ey1(t−τ11(t))− a12(t)ey2(t)

1+m1(t)ey1(t)

∣∣∣∣∣dt
≤
∫ω

0

[
r1(t)+a11(t)ey1(t−τ11(t))+ a12(t)ey2(t)

1+m1(t)ey1(t)

]
dt

= 2r1ω
∆= d1,

(2.21)

∫ω
0

∣∣ẏ2(t)
∣∣dt

= λ
∫ω

0

∣∣∣∣∣−r2(t)+ a21(t)ey1(t−τ21(t))

1+m1(t)ey1(t−τ21(t))
− a23(t)ey3(t)

1+m2(t)ey2(t)

∣∣∣∣∣dt
≤
∫ω

0

[
r2(t)+ a21(t)ey1(t−τ21(t))

1+m1(t)ey1(t−τ21(t))
+ a23(t)ey3(t)

1+m2(t)ey2(t)

]
dt

≤ 2
(
a21

m1

)
ω ∆= d2,

(2.22)

∫ω
0

∣∣ẏ3(t)
∣∣dt

= λ
∫ω

0

∣∣∣∣∣−r3(t)+ a32(t)ey2(t−τ32(t))

1+m2(t)ey2(t−τ32(t))

∣∣∣∣∣dt
≤
∫ω

0

[
r3(t)+ a32(t)ey2(t−τ32(t))

1+m2(t)ey2(t−τ32(t))

]
dt = 2r3ω

∆= d3.

(2.23)

Since (y1(t),y2(t),y3(t))T ∈X, there exists ti, Ti such that

yi
(
ti
)= min

t∈[0,ω]
yi(t), yi

(
Ti
)= max

t∈[0,ω]
yi(t), i= 1,2,3. (2.24)

It follows from (2.20) that

∫ω
0
r3(t)dt ≥

∫ω
0

a32(t)ey2(t2)

1+mM
2 ey2(t2)

dt = a32ωey2(t2)

1+mM
2 ey2(t2)

, (2.25)

which yields

y2
(
t2
)≤ ln

r3

a32−mM
2 r3

∆= ρ2. (2.26)

This, together with (2.22), leads to

y2(t)≤y2(t2)+
∫ω

0

∣∣ẏ2(t)
∣∣dt ≤ ln

r3

a32−mM
2 r3

+2
(
a21

m1

)
ω. (2.27)
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By (2.20) we derive

∫ω
0
r3(t)dt ≤

∫ω
0

a32(t)ey2(T2)

1+mL
2ey2(T2)

dt = a32ωey2(T2)

1+mL
2ey2(T2)

, (2.28)

which yields

y2
(
T2
)≥ ln

r3

a32−mL
2r3

∆= δ2. (2.29)

This, together with (2.22), leads to

y2(t)≥y2
(
T2
)−

∫ω
0

∣∣ẏ2(t)
∣∣dt ≥ ln

r3

a32−mL
2r3

−2
(
a21

m1

)
ω. (2.30)

It follows from (2.18) that

∫ω
0
a11(t)ey1(t−τ11(t))dt ≤

∫ω
0
r1(t)dt, (2.31)

which implies

y1
(
t1
)≤ ln

r1

a11

∆= ρ1. (2.32)

This, together with (2.21), leads to

y1(t)≤y1
(
t1
)+

∫ω
0

∣∣ẏ1(t)
∣∣dt ≤ ln

r1

a11
+2r1ω. (2.33)

It follows from (2.18) and (2.27) that

r1 ≤ a11ey1(T1)+a12e{ln[r3/(a32−mM
2 r3)]+2(a21/m1)ω}, (2.34)

which yields

y1
(
T1
)≥ ln

r1−
(
a12 r3/

(
a32−mM

2 r3
))
e2(a21/m1)ω

a11

∆= δ1. (2.35)

This, together with (2.21), leads to

y1(t)≥y1
(
T1
)−

∫ω
0

∣∣ẏ1(t)
∣∣dt

≥ ln
r1−

(
a12 r3/

(
a32−mM

2 r3
))
e2(a21/m1)ω

a11
−2r1ω.

(2.36)

By (2.19) and (2.27), we derive

a23ey3(t3)

1+(mM
2 r3/

(
a32−mM

2 r2
))
e2(a21/m1)ω

≤
(
a21

m1

)
, (2.37)
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which yields

y3
(
t3
)≤ ln

(
a21/m1

)(
1+(mM

2 r3/
(
a32−mM

2 r2
))
e2(a21/m1)ω

)
a23

∆= ρ3. (2.38)

It follows from (2.23) and (2.38) that

y3(t)≤y3
(
t3
)+

∫ω
0

∣∣ẏ1(t)
∣∣dt

≤ ln

(
a21/m1

)(
1+(mM

2 r3/
(
a32−mM

2 r2
))
e2(a21/m1)ω

)
a23

+2r3ω.

(2.39)

By (2.19) and (2.36) it follows that

r2ω+a23ωey3(T3)

≥
∫ω

0

a21(t)ey1(t−τ21(t))

1+m1(t)ey1(t−τ21(t))
dt

≥
∫ω

0

a21(t)
[
r1−

(
a12 r3/

(
a32−mM

2 r3
))
e2(a21/m1)ω

]
e−2r1ω

a11+mM
1

[
r1−a12

(
r3/

(
a32−mM

2 r3
))
e2(a21/m1)ω

]
e−2r1ω

dt

=
a21ω

[
r1−

(
a12 r3/

(
a32−mM

2 r3
))
e2(a21/m1)ω

]
a11e2r1ω+mM

1

[
r1−

(
a12 r3/

(
a32−mM

2 r3
))
e2(a21/m1)ω

] ,

(2.40)

which implies

y3
(
T3
)

≥ ln
[((

a21−mM
1 r2

)(
r1−

(
r2a11(

a21−r2mM
1

))e2r1ω

−
(

r3a12(
a32−mM

2 r3
))e2(a21/m1)ω

))

×
(
a23

[
a11e2r1ω+mM

1

(
r1−

(
a12 r3(

a32−mM
2 r3

))e2(a21/m1)ω
)])−1)]

∆= δ3.

(2.41)

It follows from (2.20) and (2.41) that

y3(t)≥y3
(
T3
)−

∫ω
0

∣∣ẏ3(t)
∣∣dt ≥ δ3−2r3ω. (2.42)

From what has been discussed in (2.27), (2.30), (2.33), (2.36), (2.39), and (2.42),

we have

max
t∈[0,ω]

∣∣yi(t)∣∣≤max
{∣∣ρi∣∣+di,∣∣δi∣∣+di} ∆= Bi, i= 1,2,3. (2.43)
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Clearly, Bi (i= 1,2,3) are independent of λ. Denote B = B1+B2+B3+B0; here

B0 is taken sufficiently large so that each solution (v∗1 ,v
∗
2 ,v

∗
3 )T of the system

of algebraic equations

r1−a11ev1− 1
ω

∫ω
0

a12(t)ev2

1+m1(t)ev1
dt = 0,

−r2+ 1
ω

∫ω
0

a21(t)ev1

1+m1(t)ev1
dt− 1

ω

∫ω
0

a23(t)ev3

1+m2(t)ev2
dt = 0,

−r3+ 1
ω

∫ω
0

a32(t)ev2

1+m2(t)ev2
dt = 0,

(2.44)

satisfies ‖(v∗1 ,v∗2 ,v∗3 )T‖ = |v∗1 | + |v∗2 | + |v∗3 | < B (if system (2.44) has solu-

tions). Now, we take Ω = {(y1,y2,y3)T ∈ X : ‖(y1,y2,y3)T‖ < B}. Thus, con-

dition (a) of Lemma 2.1 is satisfied. When (y1,y2,y3) ∈ ∂Ω∩KerL = ∂Ω∩R3,

(y1,y2,y3)T is a constant vector in R3 with |y1|+ |y2|+ |y3| = B. If system

(2.42) has solutions, then

QN



y1

y2

y3


=




r1−a11ey1+ 1
ω

∫ω
0

a12(t)ey2

1+m1(t)ey1
dt

−r2+ 1
ω

∫ω
0

a21(t)ey1

1+m1(t)ey1
dt− 1

ω

∫ω
0

a23(t)ey3

1+m2(t)ey2
dt

−r3+ 1
ω

∫ω
0

a32(t)ey2

1+m2(t)ey2
dt



≠




0

0

0


 .

(2.45)

If system (2.44) does not have a solution, then we can directly derive

QN



y1

y2

y3


≠




0

0

0


 . (2.46)

Thus, condition (b) in Lemma 2.1 is satisfied.

In the following, we will prove that condition (c) in Lemma 2.1 is satisfied.

To this end, we define φ : DomL×[0,1]→X by

φ
(
y1,y2,y3,µ

)=




r1−a11ey1

−r2+ 1
ω

∫ω
0

a21(t)ey1

1+m1(t)ey1
dt− 1

ω

∫ω
0

a23(t)ey3

1+m2(t)ey2
dt

−r3+ 1
ω

∫ω
0

a32(t)ey2

1+m2(t)ey2
dt




+µ



− 1
ω

∫ω
0

a12(t)ey2

1+m1(t)ey1
dt

0

0


 ,

(2.47)
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where µ is a parameter. When (y1,y2,y3)T ∈ ∂Ω∩R3, (y1,y2,y3)T is a con-

stant vector in R3 with |y1|+|y2|+|y3| = B. We will show that when (y1,y2,
y3)T ∈ ∂Ω∩KerL, φ(y1,y2,y3,µ)≠ 0. If the conclusion is not true, then there

is a constant vector (y1,y2,y3)T ∈ R3 with |y1|+ |y2|+ |y3| = M satisfying

φ(y1,y2,y3,µ)= 0, that is,

r1−a11ey1−µ 1
ω

∫ω
0

a12(t)ey2

1+m1(t)ey1
dt = 0,

−r2+ 1
ω

∫ω
0

a21(t)ey1

1+m1(t)ey1
dt− 1

ω

∫ω
0

a23(t)ey3

1+m2(t)ey2
dt = 0,

−r3+ 1
ω

∫ω
0

a32(t)ey2

1+m2(t)ey2
dt = 0.

(2.48)

A similar argument in (2.27), (2.30), (2.33), (2.36), (2.39), and (2.42) shows that

∣∣yi∣∣≤max
{∣∣δi∣∣,∣∣ρi∣∣}, i= 1,2,3. (2.49)

Thus

∣∣y1

∣∣+∣∣y2

∣∣+∣∣y3

∣∣≤ 3∑
i=1

max
{∣∣ρi∣∣,∣∣δi∣∣}< B, (2.50)

which is a contradiction. Using the property of topological degree and taking

J = I : ImQ→ KerL, (y1,y2,y3)T → (y1,y2,y3)T , we have

deg
(
JQN

(
y1,y2,y3

)T , Ω∩KerL,(0,0,0)T
)

= deg
(
φ
(
y1,y2,y3,1

)
, Ω∩KerL,(0,0,0)T

)
= deg

(
φ
(
y1,y2,y3,0

)
, Ω∩KerL,(0,0,0)T

)
= deg

((
r1−a11ey1 ,−r2+ 1

ω

∫ω
0

a21(t)ey1

1+m1(t)ey1
dt− 1

ω

∫ω
0

a23(t)ey3

1+m2(t)ey2
dt,

−r3+ 1
ω

∫ω
0

a32(t)ey2

1+m2(t)ey2
dt
)T
, Ω∩KerL,(0,0,0)T

)
.

(2.51)

Under the assumptions (H1)–(H3), by Lemma 2.2 we see that system (2.2) has

a unique solution (u∗1 ,u
∗
2 ,u

∗
3 )T and u∗i > 0, i= 1,2,3. Thus, a direct and stan-

dard calculation shows that

deg
(
JQN

(
y1,y2,y3

)T ,Ω∩KerL,(0,0,0)T
)
=−1. (2.52)

Finally, it is easy to show that the set {KP(I−Q)Nu | u∈ Ω̄} is equicontin-

uous and uniformly bounded. By using the Arzelá-Ascoli theorem, we see that

KP(I−Q)N : Ω→ X is compact. Moreover, QN(Ω̄) is bounded. Consequently,

N is L-compact.
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By now we have proved that Ω satisfies all the requirements in Lemma 2.1.

Hence, system (2.7) has at least one ω-periodic solution. Accordingly, system

(1.1) has at least one positive ω-periodic solution. This completes the proof.

3. Discussion. If all the biological and environmental parameters of system

(1.1) are constants, then system (1.1) reduces to the following autonomous

differential system:

ẋ1(t)= x1(t)
[
r1−a11x1

(
t−τ11

)− a12x2(t)
1+m1x1(t)

]
,

ẋ2(t)= x2(t)
[
−r2+ a21x1

(
t−τ21

)
1+m1x1

(
t−τ21

) − a23x3(t)
1+m2x2(t)

]
,

ẋ3(t)= x3(t)
[
−r3+ a32x2

(
t−τ32

)
1+m2x2

(
t−τ32

)],
(3.1)

where aij , ri, and mi are positive constants, τ11, τ21, and τ32 are nonnegative

constants.

Corresponding to Theorem 2.3, we have the following conclusion.

Theorem 3.1. System (3.1) admits at least one positive equilibrium provided

that

(H1)′ a32−m2r3 > 0,

(H2)′ r1(a21−m1r2)−a11r2 > 0,

(H3)′ r1 > r2a11/(a21−r2m1)+r3a12/(a32−m2r3).

Proof. Consider the following system of algebraic equations:

r1−a11x∗1 −
a12x∗2

1+m1x∗1
= 0, −r2+ a21x∗1

1+m1x∗1
− a23x∗3

1+m2x∗2
= 0,

−r3+ a32x∗2
1+m2x∗2

= 0.
(3.2)

The third equation of system (3.2) has a unique zero point x∗2 = r3/(a32 −
m2r3)

∆=A. On substituting x∗2 =A into the first equation of (3.2), we obtain

r1−a11x∗1 −
a12A

1+m1x∗1
= 0, (3.3)

that is

a11m1x∗
2

1 +(a11−m1r1
)
x∗1 −

(
r1−a12A

)= 0. (3.4)

Let ∆ = (a11−m1r1)2+4a11m1(r1−a12A). It follows from (H3)′ that r1−
a12A > 0. Thus we see that (3.4) has a unique positive solution x∗1 . It follows

from the first equation of system (3.2) that x∗1 > (r1−a12A)/a11. Therefore,
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from the third equation of system (3.4), we obtain

a23x∗3
1+m2x∗2

= a21x∗1
1+m1x∗1

−r2

>
a21

((
r1−a12A

)
/a11

)
1+m1

((
r1−a12A

)
/a11

) −r2

=
(
a21−m1r2

)(
r1−r2a11/

(
a21−r2m1

)−r3a12/
(
a32−m2r3

))
a11+m1

(
r1−a12r3/

(
a32−m2r3

)) > 0.

(3.5)

Hence it follows that x∗3 > 0. This completes the proof.

In this paper, we have combined the effects of periodicity of the environment

and time delays on the dynamics of a food-chain model with Holling type-II

functional response. By using Gaines and Mawhin’s continuation theorem of

coincidence degree theory, we have discussed the existence of positive periodic

solutions of the model.

We note that assumptions (H1), (H2), and (H3) in Theorem 2.3 are equivalent

to the following:

(i) a32 > r3mM
2 ,

(ii) a21 > r2mM
1 ,

(iii) r1−(r2a11/(a21−r2mM
1 ))e2r1ω > (r3a12/(a32−mM

2 r3))e2(a21/m1)ω.

By Theorem 2.3, we see that system (1.1), with initial conditions (1.2), will

have at least one periodic solution if the intrinsic growth rate of the prey

species and the conversion rates of the predator and the top predator are

high, and the density-dependent coefficient of the prey, the death rate of the

predator and the top predator are low enough. By Theorem 2.3, we see that

the time delays are harmless to the existence of positive periodic solutions.

An alternative method in proving the existence of positive periodic solu-

tions of system (1.1) may be the application of Horn’s asymptotic fixed-point

theorem (see, e.g., [4, 7]), while this method allows the investigator to address

the stability issue of the periodic solutions. This may be our future work.

We would like to mention here that it is interesting but challenging to discuss

the global attractiveness of positive periodic solutions of system (1.1) when all

its coefficients are periodic functions with a common period. We leave this for

our future work.
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