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We consider Euler equations with stratified background state that is valid for in-
ternal water waves. The solution of the initial-boundary problem for Boussinesq
approximation in the waveguide mode is presented in terms of the stream func-
tion. The orthogonal eigenfunctions describe a vertical shape of the internal wave
modes and satisfy a Sturm-Liouville problem. The horizontal profile is defined by
a coupled KdV system which is numerically solved via a finite-difference scheme
for which we prove the convergence and stability. Together with the solution of
the Sturm-Liouville problem, the stream functions give the internal waves profile.
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65M12.

1. Introduction. The basic system of Euler equations for internal water

waves in two dimensions (xz), with a stable stratified ambient state and the

buoyancy frequency N(z), is

ux+wz = 0,

ρout =−ρo
( �→v , �→∇)

u−px,

ρowt =−ρo
( �→v , �→∇)

w−pz−ρ′g,

T ′t +wT̄z =−
( �→v , �→∇)

T ′,

(1.1)

where u, v are velocity components, ρo is the density, p is the pressure, ρ′g is

the body force due to stratification, T̄z is the vertical background temperature

gradient, and T ′ is the temperature variable [3]. Combining the equations in

(1.1) and using the state relation for liquid ρ′ = −ρoαT ′, α=−ρz/(ρT̄z) is the

coefficient of thermal expansion, and T̄z =N2/(αg), we obtain

∆wtt+N2wxx−N2
[( �→v , �→∇)∫ t

0
wdt

]
xx

+
[( �→v , �→∇)∫

wzdx
]
txz
+[( �→v , �→∇)

w
]
txx = 0.

(1.2)
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Rescaling the dimensionless variables (primed) using xi = λix′i , t = 2πt′/N̄β,

u = λzN̄u′/2π , w = βλzN̄w′/2π , αT ′ = T , N = N̄N′/2π , N̄ is the average

buoyancy frequency and β is a scale parameter. Substitute in (1.2) and omit

primes for simplicity to obtain

λz
(
N̄β
2π

)3(wxx
λ2
x
+wzz
λ2
z

)
tt
+
(
N̄
2π

)3

(βN)2
(
wxx
λx

)

−
(
N̄
2π

)3( (βN)2
λx

)[
u
∫ t

0
wxdt+w

∫ t
0
wzdt

]
xx

+
(
N̄β
2π

)3

λzλ2

x

[
uwx+wwz

]
xxt

+ 1
λz

[
uwz+w

(∫ t
0
wzdx

)
z

]
xzt


= 0.

(1.3)

Introduce the stream function ψ, w = −σψx and u = σψz (σ is a scale pa-

rameter). Integrate, with respect to x,

ψzztt+N2ψxx =−β2ψxxtt−σ
[
ψzψxz−ψxψzz

]
zt

+σN2
[
ψz

∫ t
0
ψxxdt−ψx

∫ t
0
ψxzdt

]
x
.

(1.4)

Substitute in (1.4) by the stream function of the form

ψ(z,x,t)=
∑
m
Zm(z)θm(x,t), (1.5)

multiply by Zn, integrate with respect to z, and use the separation of variables

that give

Znzz =−
N2

c2
n
Zn. (1.6)

So (1.4) becomes

θntt−c2
nθnxx

= c
2
nβ2

N2
θnxxtt+σc2

n

∑
m,k

{
anm,k

(
θmθkx

)
t+

[
bnm,kθ

mθkt +enm,kθmx
∫ t

0
θkxdt

]
x

}
,

(1.7)
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where

anm,k =N2
∫ h
−h

(
−1

c2
k
+ 1

c2
m

)
zmz zkzndz, bnm,k =

−N2

c2
k

∫ h
−h
zmz zkzndz,

enm,k =N2
∫ h
−h
zmzkzzndz.

(1.8)

System (1.7) describes the two oppositely directed propagated modes. The

equations of the separated propagated modes are obtained by substituting

θnt =un, cnθnx = vn, so (1.7) becomes

unt −cnvnx =
c3
nβ2

N2
vnxxx+σc2

n

∑
m,k


anm,k

(∫ t
0
umdt · v

k

ck

)
t

+
[
bnm,k

∫ t
0
umdt ·uk+enm,k

vm

cm

∫ t
0

vk

ck
dt

]
x


,

vnt −cnunx = 0.
(1.9)

Using projection operators,

P+ = 1
2


 1 1+ c

2β2

2N2
∂2
x

1− c
2β2

2N2
∂2
x 1


 ,

P− = 1
2


 1 −1− c

2β2

2N2
∂2
x

−1+ c
2β2

2N2
∂2
x 1


 .

(1.10)

So

P+

(
un

vn

)
=
(
ϕn+

kϕn+

)
, P−

(
un

vn

)
=
(
ϕn−

−kϕn−
)

(1.11)

or

un =ϕn++ϕn−, vn = (
ϕn+−ϕn−)− c2β2

2N2
∂2
x
(
ϕn+−ϕn−). (1.12)

Operating P+, P− on (1.9) and using (1.12), we obtain the equations for the

separated modes ϕn+, ϕn− as

ϕn+t −cnϕn+x − c
3β2

2N2
ϕn+xxx−

σc2
n

2

∑
m,k
anm,k

(∫ t
0

(
ϕ++ϕ−)mdt ·

(
ϕ+−ϕ−)k

ck

)
t

+
[
bnm,k

∫ t
0

(
ϕ++ϕ−)mdt ·(ϕ++ϕ−)k

+enm,k
(
ϕ+−ϕ−)m

cm

∫ t
0

(
ϕ+−ϕ−)k

ck
dt

]
x
= 0,
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ϕn−t +cnϕn−x + c
3β2

2N2
ϕn−xxx−

σc2
n

2

∑
m,k
anm,k

(∫ t
0

(
ϕ++ϕ−)mdt ·

(
ϕ+−ϕ−)k

ck

)
t

+
[
bnm,k

∫ t
0

(
ϕ++ϕ−)mdt ·(ϕ++ϕ−)k

+enm,k
(
ϕ+−ϕ−)m

cm

∫ t
0

(
ϕ+−ϕ−)k

ck
dt

]
x
= 0. (1.13)

Let ϕn+ = ηn+t , ϕn− = ηn−t , so (1.13) becomes

ηn+t −cnηn+x = c
3β2

2N2
ηn+xxx+

σc2
n

2

∑
m,k
anm,k

(
η++η−)m(η+−η−)kx

+bnm,k
(
η++η−)m ·(η++η−)kx

+ e
n
m,k

ckcm

(
η+−η−)mx (η+−η−)k,

ηn−t +cnηn−x =−c
3β2

2N2
ηn−xxx+

σc2
n

2

∑
m,k
anm,k

(
η++η−)m(η+−η−)kx

+bnm,k
(
η++η−)m ·(η++η−)kx

+ e
n
m,k

ckcm

(
η+−η−)mx (η+−η−)k.

(1.14)

In what follows we will consider both directed modes. In this work we eval-

uate only for short time to describe the phenomena, so we consider only one

direction of the propagating modes. Hence the system that describes one di-

rection of (1.7) has the form (return to θ variable for convenient)

θnt +cnθnx +σ
∑
m,k
gnm,kθ

mθkx+β2dnθnxxx = 0, (1.15)

gnm,k =
σN2c2

n
2

∫ h
−h

[(
−1

c2
m
+ 2

c2
k

)
ZkZmz −

1
cmck

ZmZkz

]
Zndz, dn = c3

n
2N2

.

(1.16)

Hence we can summarize as follows: in the commonly accepted approxima-

tions (incompressibility, Boussinesq approximation, and so forth) the solution

of system (1.1) is constructed as the representation for the stream function

(1.5) which is completely defined by solving (1.6) and (1.15).
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2. Physical model. In this model, we simulate the initial stage of McEwan

experiment [4, 5] for a rectangular tank of dimension 50 cm in x by 25 cm in z
directions filled by a linearly stratified water of constant buoyancy frequency

1.23 s−1. The internal water waves are described by system (1.1). The solution

of this system is constructed as the representation for the stream function

(1.5), where Zn(z) are solutions of the correspondent Sturm-Liouville problem

(1.6), Zzz+(N2/c2
n)Z = 0, Z(0)= Z(h)= 0, and describe a vertical shape of the

wave modes. The linear propagation velocities cn play the role of eigenvalues.

The coefficient functions θn(x,t) are solutions of the coupled KdV system

(1.15) with coefficients from (1.16). We select a localized initial condition along

x-axis described by a smooth enough function that models the paddle motion

as in the experiments of McEwan [5]. The function is also chosen antisymmetric

along x-axis in relation to the paddle axis centered in the middle of the tank.

The time intervals of simulations are taken such that the initial disturbance

decays essentially but does not reach the boundaries.

3. Computation. When the coefficients in the Sturm-Liouville equation (1.6)

are constant, it has very simple general solution

Zn = Bn sin
(
nπz
h

)
, n= 1,2,3, . . . ,L, (3.1)

which tends to zero at boundaries. The eigenvalues

cn = Nhnπ , n= 1,2,3, . . . ,L, (3.2)

have the sense of linear internal gravity waves velocities. Normalization is de-

termined by
∫ h
0 (Zn)2N2dz = 1 and gives Bn = (2/N2h)1/2. Hence

Zn(z)=
(

2
N2h

)1/2
sin

(
nπz
h

)
. (3.3)

To solve the coupled KdV system (1.15) an initial condition is required. We

can select the initial perturbation for the stream function (1.5) which has the

general form

ψ(z,x,0)=
L∑
n=1

Zn(z)θn(x,0)=ϕ(x,z)=ϕ1(x)ϕ2(z). (3.4)

Taking the exponentially localized functions ϕ1(x),ϕ2(z):
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ϕ1(x)= a
cosh(x/l)

,

ϕ2(z)=
(

2
N2h

)1/2
sech

(
b
(
z−z0

))
tanh

(
b
(
z−z0

))
,

(3.5)

as the initial condition we model the impact of a wave-productor.

The choice of the form and the constants a, b, l qualitatively reflects the

paddle movement (we restrict the movement by some isolated pulse), and the

numerical value for the amplitude is estimated also from the description of

the experiment of McEwan [5]. Then the scalar product gives

(
Zj,ψ

)= L∑
n=1

(
Zj,Zn

)
θn(x,0)= (

Zj,ϕ2(z)
)
ϕ1(x), (3.6)

(
Zj,ϕ2(z)

)=
∫ h

0
N2Zjϕ2(z)dz, (3.7)

and using the orthogonality,

(
Zj,Zn

)=
∫ h

0
N2ZjZndz = {

1,(j =n)},{0,(j ≠n)
}
. (3.8)

Hence, (3.6) gives θn(x,0), the initial condition of system (1.15) which is solved

by the numerical method introduced below.

4. Numerical method. For the coupled KdV system (1.15) we introduce a

numerical (finite-difference) method of solution, a two-step three-time-level

scheme similar to the Lax-Wendroff one [1, 7]. The usual Lax-Wendroff scheme

is modified such that the order of the first derivative becomes of orderO(�x4).
The approximation of the nonlinear terms is changed such that the integral of

θ2 is a conserved one. The scheme has the form

((
θn

)j+1/2
i −(

θn
)j
i

)
τ/2

+
cn

((
θn

)j
i+1−

(
θn

)j
i−1

)
2h

+
∑
k,m
gnmk

(
θm

)j
i

((
θk

)j
i+1−

(
θk

)j
i−1

)
2h

+
(
dn− cnh

2

6

)((θn)ji+2−2
(
θn

)j
i+1+2

(
θn

)j
i−1−

(
θn

)j
i−2

)
2h3

= 0,

(4.1)

where n,m, and k are the modes numbers and i and j are discrete space and

time variables, respectively. The time step is denoted by τ while the spatial

step size is denoted by h. Equation (4.1) is accompanied by a discrete equation
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for the intermediate layer as

((
θn

)j+1
i −(

θn
)j
i

)
τ

+
cn

((
θn

)j+1/2
i+1 −(

θn
)j+1/2
i−1

)
2h

+
∑
k,m
gnmk

(
θm

)j+1/2
i

((
θk

)j+1/2
i+1 −(

θk
)j+1/2
i−1

)
2h

+
en

((
θn

)j+1/2
i+2 −2

(
θn

)j+1/2
i+1 +2

(
θn

)j+1/2
i−1 −(

θn
)j+1/2
i−2

)
2h3

= 0.

(4.2)

To support the results, we prove stability and convergence of the scheme in

Appendices A and B [2]. Beside these proofs, we would like to mention that the

order of errors of the difference formulas is improved at the same time they

preserve conservation laws of the KdV-type equations [6].

5. Results. Figure 5.1 is a contour plot presenting the initial perturbation

ψ(z,x,0) for the upper half of the tank due to antisymmetry.

Figure 5.2 is one-dimensional (x) plots for the second tenth modes.

Figure 5.3 is a three-dimensional plot for the wave profile (1.5) at t = 0.02

second for the same half of the tank.
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Figure 5.1. Three-dimensional plot for the initial perturbation
ψ(z,x,0) for the upper half of the tank. The horizontal numbers
(25,400) indicate the number of mesh points used in plotting in x
and z directions while the dimensions are 12.5 cm in z and 50 cm in
x, respectively.
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Figure 5.2. One-dimensional (x) plots of the wave profile at t = 0
and t = 0.02second.
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Figure 5.3. Three-dimensional (x,y,z) plot of the wave profile
ψ(z,x,t) at t = 0.02 second for the upper half of the tank. The hor-
izontal numbers (25,400) indicate the number of mesh points used
in plotting in x and z directions while the dimensions are 12.5 cm
in z and 50 cm in x, respectively.

All the plots for the modes and for the sum (stream function) show the be-

havior that is typical for the multisolitonic perturbation. It looks like a decay of

the initial condition to solitons in the single KdV equation theory. The process

of the wave propagation is accompanied by interaction that implies the energy

transfer between modes. This phenomenon may be considered as a possible

reason for the vertical fine-structure generation [3]. The combination of the

fine structures may explain McEwan experiments [4, 5].

6. Summary. In the commonly accepted approximations (incompressibil-

ity, Boussinesq approximation, and so forth), the solution of the system of

Euler equations with stratified background state is constructed as the repre-

sentation for the stream function. The horizontal profile is defined by a cou-

pled KdV system which is numerically solved via a finite-difference scheme for

which stability and convergence are proved. Together with the solution of the

Sturm-Liouville problem that describes the vertical profile, the stream function

gives the complete internal waves profile.

Appendices

A. Stability proof of the scheme. We prove stability with respect to small

perturbations (because we consider nonlinear equations) of initial conditions.

Strictly speaking, it is the boundness of the discrete solution in terms of small
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perturbation of the initial data. Consider the differential

Tn,j+1
i,r =

{∂θn,j+1
i

∂θn,jr

}
,

dθn,jr =
(
θn,ji−2 θn,ji−1 θn,ji θn,ji+1 θn,ji+2

)t (A.1)

and define the norm

∥∥dθj∥∥=

∑
r

∑
n

(
dθn,jr

)2h




1/2

. (A.2)

We can write

dθn,j+1
i = Tn,j+1

i,r dθn,jr = Tn,j+1
i,r Tn,ji,r dθ

n,j−1
r =Πr

(
Tni,r

)rdθn,or , (A.3)

where dθn,j+1
i is the perturbation of the discrete solution and dθn,or is a small

perturbation of the initial data. Stability required the boundness of Πr (Tni,r )r ,
that is, ‖Tr‖ is bounded. We calculate T from the difference scheme as follows:

Tn,j+1
i,r = δi,r − cnτ

2h
[
δi+1,r −δi−1,r

]

−τ
∑
m,k

{
gnm,k
2h

[
θm,ji

(
δi+1,r −δi−1,r

)+δi,r (θk,ji+1−θk,ji−1

)]}

− τen
2h3

[
δi+2,r −2δi+1,r +2δi−1,r −2δi−2,r

]
.

(A.4)

Rewriting the matrix T (A.4) in terms of identity (E), symmetric (S), and anti-

symmetric (A), matrices yields T = E+S+A,

{
Sn,j+1}

i,r =−
τ

4h

∑
m,k
gnm,k

[(
θm,ji −θm,ji+1

)
δi+1,r −

(
θm,ji −θm,ji−1

)
δi−1,r

+2δi,r
(
θk,ji+1−θk,ji−1

)]
,

{
An,j+1}

i,r =−
cnτ
2h

[
δi+1,r −δi−1,r

]

− τ
4h

∑
m,k
gnm,k

[(
θm,ji +θm,ji+1

)
δi+1,r −

(
θm,ji +θm,ji−1

)
δi−1,r

]

− enτ
2h3

[
δi+2,r −2δi+1,r +2δi−1,r −δi−2,r

]
,

∥∥Sj+1
∥∥≤ τmax

n,m,k

∣∣gnm,k∣∣max
i,m,k

(∣∣θm,jx,i
∣∣,∣∣θ̀ k,jx,i∣∣),
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θm,jx,i =
(
θm,ji+1 −θm,ji

)
h

, θ̀ k,jx,i =
(
θk,ji+1−θk,ji−1

)
2h

,

∥∥Aj+1
∥∥≤ τmaxn,m,k

∣∣gnm,k∣∣
h

max
m,i

∣∣θm,ji
∣∣+ τmaxn

∣∣cn∣∣
h

+ 3τmaxn
∣∣en∣∣

h3
,

∥∥Tj+1
∥∥2 =

∥∥∥(Tj+1)∗Tj+1
∥∥∥= ∥∥(E−Aj+1+Sj+1)(E+Aj+1+Sj+1)∥∥

≤ 1+2
∥∥Sj+1

∥∥+(∥∥Aj+1
∥∥+∥∥Sj+1

∥∥)2

≤ 1+2τmax
n,m,k

∣∣gnm,k∣∣max
m,i

∣∣θm,jx,i
∣∣

+τ2

(
max
n,m,k

∣∣gnm,k∣∣max
m,i

∣∣θm,jx,i
∣∣+maxn,m,k

∣∣gnm,k∣∣
h

max
m,i

∣∣θm,ji
∣∣

+maxn
∣∣cn∣∣
h

+ 3maxn
∣∣en∣∣

h3

)2

≤ eaτ,

a= 1+2τmax
n,m,k

∣∣gnm,k∣∣max
m,i

∣∣θm,jx,i
∣∣

+τ2

(
max
n,m,k

∣∣gnm,k∣∣max
m,i

∣∣θm,jx,i
∣∣+maxn,m,k

∣∣gnm,k∣∣
h

max
m,i

∣∣θm,ji
∣∣

+maxn
∣∣cn∣∣
h

+ 3maxn
∣∣en∣∣

h3

)2

,

(A.5)

which is a necessary condition of stability. The scheme is stable if a≤ constant

in spite of τ , h→ 0. This is a conditional stability of the scheme. It means that

it is required for stability that τ → 0 more faster than h→ 0 or

τ ≤ (constant)·h6. (A.6)

B. Convergence proof of the scheme. We would prove that the solution of

the difference equations (4.1) and (4.2) converges to the solution of (1.15) if the

exact solution is a continuously differentiable one. We place here for brevity

a proof that uses only one-step time difference equation and the whole proof

may be developed by similar ideas. Therefore, we now consider the difference

equation

(
θn

)j+1
i −(

θn
)j
i

τ
+cn

(
θn

)j
i+1−

(
θn

)j
i−1

2h
+
∑
m,k
gnm,k

(
θm

)j
i

(
θk

)j
i+1−

(
θk

)j
i−1

2h

+en
(
θn

)j
i+2−2

(
θn

)j
i+1+2

(
θn

)j
i−1−

(
θn

)j
i−2

2h3
= 0.

(B.1)
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We know that the KdV-type equation has the conservation law
∫∞
−∞u2(x,t)dx =

constant. It may also be shown that if a smooth enough solution un(x,t) of

the set of equations (1.15) exists, then it satisfies the inequality
∑L
n=1

∫∞
−∞(un(x,

t))2dx < B, for a finite t, where B is a constant dependent on initial conditions

only, L-number of modes taken into account by system (1.15). Therefore, it is

natural to use L2-norm in the proof, and

∥∥Θj∥∥=

∑

i

∑
n

[(
θn

)2h
]j
i




1/2

. (B.2)

Here, h is a grid step, i is a discrete space variable, and j is the discrete time.

The symbol Θ denotes a column Θj ≡ (
(θ1)j (θ2)j (θ3)j ···)t and the

components of this column are columns also:

(
θn

)j ≡ (
··· (

θn
)j
i−1

(
θn

)j
i

(
θn

)j
i+1 ···

)t
, (B.3)

where (θn)ji is a solution of the finite-difference equation (B.1).

Let the vector (un)ji = un(xi,tj) be an exact solution of (B.1) in the points

of grid. Then the error (vn)ji is given by

(
vn

)j
i =

(
θn

)j
i −

(
un

)j
i . (B.4)

The difference solution (θn)ji converges to the exact solution (un)ji if ‖Vj‖→ 0

as τ,h→ 0, where Vj ≡Θj−Uj . Substitute (B.4) into (B.1) and obtain

(
vn

)j+1
i −(

vn
)j
i

τ
+cn

(
vn

)j
i+1−

(
vn

)j
i−1

2h

+
∑
m,k

(
gnm,k

(
um

)j
i

(
vk

)j
i+1−

(
vk

)j
i−1

2h
+gnm,k

(
vm

)j
i

(
uk

)j
i+1−

(
uk

)j
i−1

2h

+gnm,k
(
vm

)j
i

(
vk

)j
i+1−

(
vk

)j
i−1

2h

)

+en
(
vn

)j
i+2−2

(
vn

)j
i+1+2

(
vn

)j
i−1−

(
vn

)j
i−2

2h3

=−
((
un

)j+1
i −(

un
)j
i

τ
+cn

(
un

)j
i+1−

(
un

)j
i−1

2h

+
∑
m,k
gnm,k

(
um

)j
i

(
uk

)j
i+1−

(
uk

)j
i−1

2h

+en
(
un

)j
i+2−2

(
un

)j
i+1+2

(
un

)j
i−1−

(
un

)j
i−2

2h3

)
.

(B.5)
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Pick out (in v) a linear part of expression (B.5) and introduce for convenience

an operator Tj by the expression

(
vn

)j
i −τ


cn

(
vn

)j
i+1−

(
vn

)j
i−1

2h

∑
m,k
gnm,k

(
um

)j
i

(
vk

)j
i+1−

(
vk

)j
i−1

2h

+gnm,k
(
vm

)j
i

(
uk

)j
i+1−

(
uk

)j
i−1

2h

+en
(
vn

)j
i+2−2

(
vn

)j
i+1+2

(
vn

)j
i−1−

(
vn

)j
i−2

2h3




=
∑
r

(
Tj+1)

ir
(
vn

)j
i , n= 1,2,3, . . . ,L.

(B.6)

Using the above expression for T and utilizing that (un)ji is an exact solution

of differential equations, due to the approximation, we use the fact that the

right-hand-side term of (B.5) is a small one of order O(τ+h2). Therefore, we

can rewrite (B.5) as follows:

(
vn

)j+1
i −

∑
r

(
Tj+1)

ir
(
vn

)j
i

+τ
∑
m,k
gnm,k

(
vm

)j
i

(
vk

)j
i+1−

(
vk

)j
i−1

2h
=O(τ+h2) (B.7)

or

(
vn

)j+1
i =

∑
r
(T j+1)ir

(
vn

)j
i +τ

(
fn,m,k

)j
i , (B.8)

where

(
fnmk

)j
i =−τ

∑
m,k
gnm,k

(
vm

)j
i

(
vk

)j
i+1−

(
vk

)j
i−1

2h
+O(τ+h2), (B.9)

and the following estimation for the norm is valid:

∥∥Vj+1
∥∥≤ ∥∥Tj+1

∥∥∥∥Vj∥∥+τ∥∥f j∥∥. (B.10)

If we will consequently substitute (B.10) into itself, we will get

∥∥vj+1
∥∥≤ ∥∥Tj+1

∥∥∥∥vj∥∥+τ∥∥f j∥∥
≤ ∥∥Tj+1

∥∥∥∥Tj∥∥∥∥vj−1
∥∥+τ(∥∥Tj+1

∥∥∥∥f j−1
∥∥+∥∥f j∥∥)

≤ ∥∥Tj+1
∥∥∥∥Tj∥∥∥∥Tj−1

∥∥∥∥vj−2
∥∥

+τ(∥∥Tj+1
∥∥∥∥Tj∥∥∥∥f j−2

∥∥+∥∥Tj+1
∥∥∥∥f j−1

∥∥+∥∥f j∥∥).
(B.11)
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Using the estimate of norm of T in inequality (A.5), (B.11) becomes

∥∥vj+1
∥∥≤ eaτj∥∥v0

∥∥+τ(eaτ(j−1)∥∥f 0
∥∥+eaτ(j−2)∥∥f 1

∥∥+···∥∥f j∥∥)
≤ eaτj∥∥v0

∥∥+Mmax
k≤j

(∥∥fk∥∥), M = τ e
atmax −1
eaτ−1

;
(B.12)

M is the sum of a geometric series and tmax is the time of simulation, 0 ≤ t ≤
tmax. The norm of (fn,m,k)ji is given by simple estimations

∥∥f j∥∥=

∑

i

[(
fmk

)j
i

]2
h




1/2

= max
n,m,k

∣∣gnm,k∣∣

∑

i


∑
m,k

(
vm

)j
i

(
vk

)j
i+1−

(
vk

)j
i−1

2h




2

h




1/2

≤ max
n,m,k

∣∣gnm,k∣∣

∑

i

∑
m

[(
vm

)j
i

]2
h
∑
i

∑
k

[(
vk

)j
i

]2
h




1/2
1
h3/2

≤ maxn,m,k
∣∣gnm,k∣∣

h3/2

(∥∥Vj∥∥)2+O(τ+h2).

(B.13)

Using this estimate in inequality (B.12) yields

∥∥Vj+1
∥∥≤ eaτj∥∥V 0

∥∥+M
(

maxn,m,k
∣∣gnm,k∣∣

h3/2

(∥∥Vj+1
∥∥)2+O(τ+h2)). (B.14)

Taking into consideration ‖V 0‖ = 0, the above inequality gives the solution

∥∥Vj+1
∥∥≤ 1−

√
1−(

4Mmaxn,m,k
∣∣gnm,k∣∣/h3/2

)
MO

(
τ+h2

)
2Mmaxn,m,k

∣∣gnm,k∣∣/h3/2


MO(τ+h2),
(B.15)

that is, ‖Vj+1‖→ 0 as τ,h→ 0. Hence the convergence is proved.
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