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ORTHANT SPANNING SIMPLEXES WITH MINIMAL VOLUME
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A geometry problem is to find an (n−1)-dimensional simplex in Rn of minimal
volume with vertices on the positive coordinate axes, and constrained to pass
through a given point A in the first orthant. In this paper, it is shown that the opti-
mal simplex is identified by the only positive root of a (2n−1)-degree polynomial
pn(t). The roots of pn(t) cannot be expressed using radicals when the coordinates
of A are transcendental over Q, for 3 ≤ n ≤ 15, and supposedly for every n. Fur-
thermore, limited to dimension 3, parametric representations are given to points
A to which correspond triangles of minimal area with integer vertex coordinates
and area.

2000 Mathematics Subject Classification: 26B15, 11D99.

1. Introduction. A geometry problem is to find an (n−1)-dimensional sim-

plex S in Rn of minimal volume, whose n vertices are points Vi = (0, . . . ,0,vi,
0, . . . ,0), with vi > 0 on the ith coordinate axis and 1 ≤ i ≤ n, which is con-

strained to pass through a given point A= (a1,a2, . . . ,an)∈Rn in the positive

orthant ai > 0, 1 ≤ i ≤ n. Throughout the paper, this problem, which was

proposed and numerically solved in [8], will be referred to as the optimal sim-

plex problem. The simplex belongs by definition to a plane with “segmental”

equation
∑n
i=1xi/vi = 1, that is,

n∑
i=1

ai
vi
= 1 (1.1)

and its volume (see [7, pages 123–124]) is

S = 1
(n−1)!

√√√√√ n∏
i=1

v2
i

n∑
j=1

1

v2
j
. (1.2)

The volume S is the objective function of a constrained optimization problem

with constraint (1.1) and vi > 0, i = 1, . . . ,n. A standard way to look for a

solution with objective function of the form (1.2) is to apply the Lagrange

multiplier method to the logarithm of this function, namely,

L= lnS+λ
n∑
i=1

ai
vi
=− ln(n−1)!+ 1

2
ln

n∑
j=1

1

v2
j
+

n∑
i=1

lnvi+λ
n∑
i=1

ai
vi
, (1.3)

http://dx.doi.org/10.1155/S0161171203210401
http://dx.doi.org/10.1155/S0161171203210401
http://dx.doi.org/10.1155/ijmms
http://www.hindawi.com


3996 MICHELE ELIA

where λ is computed to satisfy the constraint (1.1). The derivatives of L with

respect to each vi

∂L
∂vi

=
(

1
vi
− 1∑n

j=1

(
1/v2

j
) 1

v3
i

)
−λ ai

v2
i
, i= 1, . . . ,n, (1.4)

equated to 0 give n conditions, which are sufficient to specify the n unknowns

vi. The value λ = n−1 of the Lagrange multiplier is obtained from the sum∑n
j=1vi(∂L/∂vi)= 0. Thus, setting 1/t =∑n

j=1(1/v
2
j )≥ 0, n quadratic polyno-

mials Qi(v) = v2 − (n−1)aiv − t are obtained from the partial derivatives,

each with a single positive root

vi = n−1
2

ai+
√
t+

(
n−1

2
ai
)2

, 1≤ i≤n, (1.5)

that identifies a vertex of the optimal simplex. The positive parameter t turns

out to be the only nonnegative zero of the function

g(t)=
n∑
j=1

aj
vj
−1=

n∑
j=1

aj(
(n−1)/2

)
aj+

√
t+(((n−1)/2

)
aj
)2
−1. (1.6)

Equations g(t) = 0, (1.5), and (1.2) offer a numerical way to compute vertices

and volume of the optimal simplex S for any A∈Rn [8]. The only positive zero

of g(t)= 0 is a root of a polynomial pn(t) of degree 2n−1 whose coefficients

are rational functions of ai’s obtained as follows. Let G(Qi(v)) be the Galois

group of Qi(v) which has order 2. Let σs(g(t)) denote the function

σs
(
g(t)

)= n∑
j=1

aj
σj
(
vj
) −1 (1.7)

associated to a specified sequence of Galois automorphisms s= (σ1,σ2, . . . ,σn)
and σi ∈ G(Qi(v)). Since the product P(t)=∏sσs(g(t)) over all 2n sequences

s is a symmetric function of the roots of Qi(v), for every i = 1, . . . ,n, then

P(t) = pn(t)/t2n−1 is a rational function over Q(a1, . . . ,an). The coefficients

of pn(t) belong to Q(a1, . . . ,an).
Although the solutions of geometry problems are numerically computable,

it is a common practice to look for closed form solutions expressed using rad-

icals. Alongside the three classical Greek problems [9] and the construction

of regular polygons [4], there are numerous other problems. For example, the

problem of computing the distance between two circles in space [5] and the
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problem of computing the length of a tangential polygon [6]. The optimal sim-

plex problem [8] is a problem of this sort. The simplest cases n = 2 and 3

illustrate the situation for any n> 3.

The case n= 2. The problem consists in finding the shortest line passing

through A = (a,b) with endpoints on the positive axes. A direct solution is

well known [8]; however, using the method outlined above, the same cubic

polynomial

p2(t)= t3−3b2a2t−(b2a4+b4a2), (1.8)

which has the positive root expressed by radicals

to = b
(
a2b

)1/3+a(ab2)1/3, (1.9)

is obtained.

The length � of the segment V1V2 is

� =

(a

2
+
√
t+ a

2

4

)2

+
(
b
2
+
√
t+ b

2

4

)2



1/2

=
√(
a2/3+b2/3

)3. (1.10)

The case n= 3. The problem consists in finding a triangle of smallest area,

passing throughA= (a,b,c), with vertices on the positive axes. Using the same

method, we obtain a 7-degree polynomial

p3(t)= t7+4σ1t6+6σ 2
1 t

5+4
(
σ 3

1 −10σ3
)
t4

+σ1
(
σ 3

1 −128σ3
)
t3−8σ3

(
17σ 2

1 +8σ2
)
t2

−16σ3
(
3σ 3

1 +8σ1σ2−5σ3
)
t−64σ3σ1

(
σ1σ2−σ3

)
,

(1.11)

where σ1 = a2+b2+c2, σ2 = a2b2+b2c2+c2a2, and σ3 = a2b2c2 are elemen-

tary symmetric functions of a2, b2, and c2.

In Section 2, it will be proved that p3(t) is not solvable by radicals when a, b,

and c are distinct and transcendental over Q. The same unsolvability will also

be proved for a large set of triples a, b, and c of integers. As a partial counter-

part, the converse Diophantine problem will be solved, namely, to find points

A with integer coordinates such that the corresponding optimal triangles have

vertices with integer coordinates and integer areas.

2. Impossibility of solutions by radicals. In this section, two proofs of

the unsolvability of p3(t) will be given. The first is better for proving the
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unsolvability of pn(t) for any n > 3. The second is more appropriate for ad-

dressing the solvability question with points A of integer coordinates.

We consider the polynomial p3(t) obtained by setting a= 1, b = 4, and c = 6,

P3(t)= t7+212t6+16854t5+572468t4+3982897t3

−243196416t2−6543571968t−63904628736.
(2.1)

This polynomial is easily checked to be irreducible over Q. It is therefore un-

solvable by radicals if its Galois group G(P3) is unsolvable. This group is ob-

tained by applying a method described in [10, Volume I, page 190]. The basis

of this technique is that the Galois group of an irreducible polynomial over

Q includes the Galois groups of the same polynomial considered over finite

Galois fields of prime order p. The Galois group of an irreducible polynomial

over a Galois field is a cyclic group of order equal to its degree. Therefore, if an

irreducible polynomial overQ splits into irreducible factors over a prime field

GF(p), its Galois group will contain the cyclic Galois groups of these irreducible

factors as subgroups.

Theorem 2.1. The Galois group G(P3) is isomorphic to the symmetric group

S7, thus P3(t) is not solvable by radicals.

Proof. The irreducible polynomial P3(t) factors modulo 13 and 7, respec-

tively, as

P3(t)=
(
t6+4t5+6t4+9t2+5t+2

)
tmod13,

P3(t)=
(
t2+3t+6

)
(t+1)3(t+5)2 mod7.

(2.2)

The presence of a 6-degree factor in the factoring modulo 13 implies that the

Galois group of P3(t) over Q contains a cycle of 6 symbols, while the single

2-degree factor and 5 linear factors in the factoring modulo 7 imply that the

Galois group contains a cycle of 2 symbols. The conclusion follows from a

theorem [10, Volume I, page 191] stating that a transitive permutation group

ofn objects containing a cycle of two symbols and an (n−1)-cycle is a symmetric

group Sn, with n= 7. Since S7 is a nonsolvable group [10, volume I, page 149],

then P3(t) cannot be solved by radicals.

A specialization principle incorporated in Galois theory itself proves that

p3(t) is unsolvable by radicals over the coefficient field Q(a,b,c) when a, b,

and c are distinct and transcendental over Q.

Proposition 2.2. Let c1, . . . ,ck be transcendental over Q. If a polynomial

p(x,c1, . . . ,ck) over Q is solvable by radicals with respect to x, then every poly-

nomial obtained setting cj1 = α1, . . . ,cjh = αh with α1, . . . ,αh ∈ Q, for some
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h≤ k, is solvable by radicals. On the contrary, if there is a set of rational num-

bers such that p(x,α1, . . . ,αk) is not solvable by radicals, then p(x,c1, . . . ,ck) is

not solvable by radicals.

As a consequence of this proposition, a fortiori the roots of p3(t) cannot be

computed by radicals when a, b, and c are distinct and transcendental overQ.

The fact observed with P3(t) is not extemporary. Any irreducible polynomial

p3(t) obtained from a triple of integers a, b, and c is actually unsolvable by

radicals. To prove this, let a variable substitution t = z2−2za, b2 = x, and

c2 =y be performed on p3(t). A 14-degree polynomial in z, which splits over

the coefficient field into two polynomials of degree 7, is obtained. Since each

of these two factors is transformed into the other by a linear substitution

z→−z+2a, for the following analysis it is indifferent which factor is retained:

q3(z)= z7−4az6+(2y+6a2+2x
)
z5+(−4ay−4a3−4ax

)
z4

+(y2+2xy+a4+x2+2a2y+2a2x
)
z3+8ayxz2

−12a2yxz+8axy2+8ax2y.

(2.3)

Since q3(z) and p3(t) are related by the Tschirnhaus transformation t = z2−
2za, both are solvable or unsolvable in the same way. The proof of Theorem 2.4

uses the following property, reported from [3] without proof.

Proposition 2.3 [3, page 266]. Let f(z) be a polynomial of degree n over

Q. The Galois group G(f ) is isomorphic to a subgroup of the alternating group

An of degree n if and only if the discriminant of f(z) is a perfect square in Q.

Theorem 2.4. If q3(z) is irreducible over Q, then its Galois group G(q3) is

isomorphic neither to the cyclic group C7 nor to the metacyclic group M7. Thus,

q3(z) is not solvable by radicals.

Proof. Observing that the discriminant

∆= 2(y+4x)4y4a6x4(y+a2+x)6
mod5 (2.4)

of q3(z) is not a quadratic residue modulo 5, because 2 is not, then∆ cannot be

a perfect square inQ. It follows by Proposition 2.3 that G(q3) is not a subgroup

of A7.

Recalling that an irreducible polynomial of prime degree is solvable by rad-

icals if and only if its Galois group is either a cyclic or a metacyclic group [1],

the theorem is proved by a contradiction: both C7 andM7 are subgroups of the

alternating group A7 since 7 is an odd prime and cyclic permutations of odd

length are even, that is, they belong to the alternating group.

2.1. Optimal simplexes in dimensionn> 3. The result thatpn(t) is unsolv-

able by radicals can be proved for every n, considering special points A∈Rn.

For instance, assuming a1 = 1, a2 = 4, and a3 = a4 = ··· = an = 6, the positive
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Table 2.1. Primes p2 and p6 identifying 2- and 6-cycles in G(pn(t)).

n p6 p2

4 41 3803

5 17 5

6 19 1439

7 37 2281

8 29 2971

9 11 6619

10 73 7

11 11 31

12 13 61

13 41 1259

14 41 3121

15 23 1459

root of pn(t) is the root of a factor polynomial f7(t) of degree 7:

f7(t)= (n−1)8t7+848(n−2)(n−1)6t6

+32
(
612n3+3547n2−20888n+22644

)
(n−1)4t5

+256
(
33012n4−177667n3+299918n2−126444n−53776

)
(n−1)2t4

+28(32000896n+395280n6+9437312n3+3118673n4

−31326888n2−2446776n5−11090288
)
t3

+215(−7415124+19258460n+8716105n3

−1777968n4−18997599n2+112752n5)t2

+218(−27802116+67636164n+26141625n3

−4641624n4−62170322n2+198288n5)t
−641728512(36n−55)(n−2)(9n−14)(36n−71).

(2.5)

Applying the van der Waerden technique, with the primes given in Table 2.1,

the Galois group of f7(t) is S7 for 4≤n≤ 15.

Unfortunately, it remains unproven that the same technique works for every

n without exception.

3. Solutions by radicals. As a consequence of Theorems 2.1 and 2.4, poly-

nomial q3(z) is solvable by radicals only when it splits over the coefficient

field. This factoring certainly occurs if c = b, in which case we have

q3(z)=
(
z3−2az2+a2z+4ax

)(
2x−az+z2)2, (3.1)
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so that solving the cubic equation z3−2az2+a2z+4ax = 0 for z, and com-

puting t, we obtain

t = a
2

3


 3

√√√√
1+36

b2

a2
+216

b4

a4
+24

b3

a3

√
3+81

b2

a2

+ 1+24
(
b2/a2

)
3

√
1+36

(
b2/a2

)+216
(
b4/a4

)+24
(
b3/a3

)√
3+81

(
b2/a2

) −2


.
(3.2)

From now on, a, b, and c are assumed to be distinct rational numbers. The

most meaningful situation concerns the splitting of q3(z) with at least one

linear factor. To analyze this case, it is convenient to assume a and z to be

parameters and to consider q3(z)=Q(x,y,a,z)= 0 as a defining equation of

a cubic curve �3 with respect to variables x and y .

A straightforward calculation shows that �3 is a singular cubic with a double

point

PD =
(
az−z2

2
,
az−z2

2

)
. (3.3)

Therefore, a rational representation for �3 is obtained considering the inter-

section with a straight line through PD and slope n/m,

x = az−z
2

2
+mu, y = az−z

2

2
+nu. (3.4)

The value of u≠ 0 identifies the third intersection of the line with the cubic

u=− 1
8amn(m+n)

×z(z2m2+z2n2+4m2a2+4n2a2−4azn2

−8azmn+2z2mn−4azm2+4ma2n
)

(3.5)

so that points on �3 have the parametric representation

x = −z(2ma−nz−zm)
2

8an(n+m) , y = −z(2na−nz−zm)
2

8am(n+m) . (3.6)

Setting z = −2aκ, we have t = 4a2(κ2+κ) and, correspondingly, polynomial

q3(z) has a linear factor z+2aκ. Recalling that b =√x and c =√y , we have

A=
(
a,a(m+nκ+κm)

√
κ

n(n+m),a(n+nκ+κm)
√

κ
m(n+m)

)
(3.7)
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as a function of κ, m, n, and a. The vertex coordinates of the optimal triangle

are

v1 = 2a(κ+1),

v2 = 2a(κ+1)(m+n)
√

κ
n(n+m),

v3 = 2a(κ+1)(m+n)
√

κ
m(n+m),

(3.8)

and the area is

S = 2a2(κ+1)2(m+n)
√
κ(κ+1)
mn

. (3.9)

4. Optimal Diophantine triangles. Minimal triangles having rational vertex

coordinates v1, v2, and v3, and possibly rational areas S, are called optimal

Diophantine triangles. It is evident that points A, with every coordinate being

a nonzero rational number, and optimal Diophantine triangles are obtained by

placing rational parameter values into (3.7) and (3.8), respectively. Moreover,

the next theorem shows that every optimal Diophantine triangle with nonzero

vertices is obtained in this way.

Theorem 4.1. Let A be a point of the first orthant with rational coordinates,

none of which equals 0. Every optimal Diophantine triangle with vertices V1, V2,

and V3 is originated by a point with coordinates

A= (ϑµ1µ2
(
λ2

1µ
2
2+λ2

2µ
2
1

)
,ϑµ2λ3

1

(
λ2

2+µ2
2

)
,ϑµ1λ3

2

(
λ2

1+µ2
1

))
, (4.1)

where ϑ is a rational number and λ1, λ2, µ1, and µ2 are integers. The vertex

coordinates are

v1 = 2ϑµ1µ2
(
λ2

1λ
2
2+λ2

1µ
2
2+λ2

2µ
2
1

)
,

v2 = 2ϑλ1µ2
(
λ2

1λ
2
2+λ2

1µ
2
2+λ2

2µ
2
1

)
,

v3 = 2ϑλ2µ1
(
λ2

1λ
2
2+λ2

1µ
2
2+λ2

2µ
2
1

)
.

(4.2)

Correspondingly, the positive root t and area S are

t = 4ϑ2λ2
1λ

2
2µ

2
1µ

2
2

(
λ2

1λ
2
2+λ2

1µ
2
2+λ2

2µ
2
1

)
,

S = 2ϑ2µ1µ2
(
λ2

1λ
2
2+λ2

1µ
2
2+λ2

2µ
2
1

)5/2.
(4.3)

Proof. Since v1 is rational by assumption, then z = v1 is a rational root

of q3(z). It follows that every rational triple {v1,v2,v3} admits the parametric

representation (3.8). Furthermore, rational v1 and a imply rational κ, while

rational v2 and v3 require that

κ
(

1+m
n

)
= λ

2
1

µ2
1

, κ
(

1+ n
m

)
= λ

2
2

µ2
2

, (4.4)
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where λ1, λ2, µ1, and µ2 are integers. It follows that

m
n
=
(
µ2λ1

µ1λ2

)2

, κ = λ2
1λ

2
2

λ2
1µ

2
2+λ2

2µ
2
1

. (4.5)

In summary, setting a= ϑµ1µ2(λ2
1µ

2
2+λ2

2µ
2
1) in

A=
(
a,a

λ3
1

(
λ2

2+µ2
2

)
µ1
(
λ2

1µ
2
2+λ2

2µ
2
1

) ,a λ3
2

(
λ2

1+µ2
1

)
µ2
(
λ2

1µ
2
2+λ2

2µ
2
1

)
)
, (4.6)

we obtain the representation (4.1) for A, where possible integer denominators

are included in rational ϑ. In conclusion, S and (4.2) are obtained directly from

(3.9) and (3.8), respectively.

4.1. Integer solutions. Let �(A) be an optimal Diophantine triangle having

integer vertex coordinates with the restriction that A(a,b,c) is a point having

integer coordinates. Any triangle obtained by scaling the coordinates of �(A)
with an integer factor λ is minimal for a point B(λa,λb,λc) obtained by scal-

ing the A coordinates of the same factor. Therefore, solutions with relatively

prime point coordinates are of most interest. Any point A with a, b, and c
relatively prime integers is said to be a primitive point and, correspondingly,

�(A) is called a primitive optimal Diophantine triangle. Every primitive opti-

mal Diophantine triangle is given by the following theorem, whose proof stems

from Theorem 4.1.

Theorem 4.2. The integer coordinates of every primitive pointA, associated

to an optimal Diophantine triangle, are given by (4.1), with a possible coordinate

permutation, where the parameters λ1, µ1, λ2, and µ2 are integers satisfying the

conditions gcd(λ1,µ1)= gcd(λ2,µ2)= gcd(λ1,λ2)= gcd(µ1,µ2)= 1, and either

ϑ = 1, if at least one of the four parameters is even in which case v1, v2, and v3

are even integers, or ϑ = 1/2, if all four parameters are odd.

Proof. The coordinates of A are relatively prime if ϑ is chosen to cancel

the greatest common factor

G = gcd
{
µ1µ2

(
λ2

1µ
2
2+λ2

2µ
2
1

)
,µ2λ3

1

(
λ2

2+µ2
2

)
,µ1λ3

2

(
λ2

1+µ2
1

)}
. (4.7)

Let the conditions gcd(λ1,µ1) = gcd(λ2,µ2) = 1 be assumed to avoid trivial

common factors. Furthermore, assuming gcd(µ1,µ2) = 1 and gcd(λ1,λ2) = 1,

the factors µ1, µ2, λ3
1, and λ3

2 are dropped, computing G. Thus, subtracting the

second term multiplied by λ2
1 from the first term in

G = gcd
{(
λ2

1µ
2
2+λ2

2µ
2
1

)
,
(
λ2

2+µ2
2

)
,
(
λ2

1+µ2
1

)}
, (4.8)
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we obtain

G = gcd
{(
λ2

2µ
2
1−λ2

1λ
2
2

)
,
(
λ2

2+µ2
2

)
,
(
λ2

1+µ2
1

)}
= gcd

{(
µ2

1−λ2
1

)
,
(
λ2

2+µ2
2

)
,
(
λ2

1+µ2
1

)}
,

(4.9)

where the λ2
2 factor in the first term which is relatively prime with (λ2

2+µ2
2) has

been dropped. Adding the last term to the first one, we get G = gcd{2µ2
1 ,(λ

2
2+

µ2
2),(λ

2
1 + µ2

1)}, which shows that G is either 1 or 2 if and only if the four

parameters are odd.

Since (4.1) was obtained referring to the first coordinate a of point A, when

we are looking for every integer solution, it is necessary to refer to the similar

solutions obtained considering the b and then the c coordinate. This is tan-

tamount to a permutation of the coordinates of any integer solution obtained

with a.

Note that it is possible to have �(A) with integer vertex coordinates and A
having rational coordinates. For example, taking A(75/13,17/13,45/26), the

corresponding optimal triangle has integral vertices v1=12, v2=4, and v3=3.

Although a= 0 is not included in Theorem 4.2, in this case any point A with

b and c integers has an optimal triangle with integer vertex coordinates v1 = 0,

v2 = 2b, and v3 = 2c and area S = 2bc.

The integer solutions with c = b are obtained directly from (4.1) and (4.2),

with λ1/µ1 = λ2/µ2 = λ/µ, κ = (λ2/2µ2), and a= 2ϑµ3. We have

A= (2ϑµ3,ϑλ
(
λ2+µ2),ϑλ(λ2+µ2)), t = 4ϑ2λ2µ2(λ2+2µ2),

v1 = 2ϑµ
(
λ2+2µ2), v2 = v3 = 2ϑλ

(
λ2+2µ2) (4.10)

and the area is

S = 2ϑ2λ
(√
λ2+2µ2

)5
. (4.11)

Solutions with integer S are obtained when λ2+2µ2 = w2 is a square of an

integer w. A general solution of this quadratic equation is

µ = �2uv, λ= �(2u2−v2), w = �(2u2+v2), (4.12)

with u and v relatively prime [2].
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Every primitive integer solution is given by Theorem 4.2; particular choices

of these parameters yield interesting integer solutions. For example, with µ1 =
λ2 = 1, λ2 =α, and µ2 = µ, we have

A= (µ(1+µ2α2),µα3(1+µ2),(1+α2)),
t = 4µ2α2(1+α2+µ2α2), (4.13)

andv1 = 2µ(1+α2+µ2α2),v2 = 2µα(1+α2+µ2α2), andv3 = 2(1+α2+µ2α2).
Furthermore, the area of the triangle S = 2µ

√
(1+α2+µ2α2)5 is an integer if

1+α2+µ2α2 = γ2, equivalently γ2−(1+µ2)α2 = 1. One solution is α= 2µ and

γ = 2µ2+1, and for any µ, we have an infinity of solutions from the expression

γn+αn
√

1+µ2 =
((

2µ2+1
)+2µ

√
1+µ2

)n
. (4.14)

For example, the smallest solution having distinct a, b, and c is obtained

with µ = 2. We have αn = F6n/2, where Fn denotes a Fibonacci number, and

A=
(

1+
(
F6n

2

)2

,10
(
F6n

2

)3

,2
(

1+4
(
F6n

2

)2))
. (4.15)

Some initial integer values of α are 4, 72, and 1292, to which correspond

points A

(17,640,130), (5185,3732480,41474), (1669265,21566890880,13354114)
(4.16)

and areas 236196, 432702467204, 805003373860133796, respectively.

5. Conclusions. The problem of finding a simplex with minimum volume

and passing through a given point belongs to that sort of the elementary prob-

lem made famous by the three classical Greek problems and it is solved using

the same methods.

Specifically, in this paper, it has been proved that the solution of the opti-

mal simplex problem depends on the positive root of a (2n−1)-degree poly-

nomial. This polynomial cannot be solved using radicals for any n from 3 up

to 15 when the coordinates of A are transcendental over Q. It is likely that it

cannot be solved by radicals for any n, although a proof has not been found.

Limited to dimension n= 3 and points A of distinct integer coordinates, it has

been shown that if the polynomial p3(t) of degree 7 is irreducible, then it is

unsolvable by radicals. A parametric representation of every integer solution,

which corresponds to polynomials p3(t) that split with a linear factor, has

been obtained.
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