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The Shields-Harary numbers are a class of graph parameters that measure a certain
kind of robustness of a graph, thought of as a network of fortified reservoirs, with
reference to a given cost function. We prove a result about the Shields-Harary
numbers with respect to concave continuous cost functions which will simplify
the calculation of these numbers for certain classes of graphs, including graphs
formed by two intersecting cliques, and complete multipartite graphs.
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1. Introduction. Suppose we have finite simple graph G and a “weighting”

function g : V(G) → [0,∞), which together constitute a weighted network.

Think of the weights assigned to each vertex of G by g as representing some

amount of harmful “stuff” stored there.

Some enemy of this weighted network might wish to dismantle it by knock-

ing out vertices until the sum of weights on each remaining connected compo-

nent is no greater than some threshold, say 1. (We will call a set of vertices

which, after being knocked out, satisfies this requirement a g-dismantling

set.) The enemy does not get to knock out vertices for free. The enemy will

pay f(g(v)) to knock out vertex v where f is some particular nonincreas-

ing, nonnegative function on the range of g. If S represents the set of vertices

knocked out, then the enemy will pay
∑
v∈S f (g(v)). Assume that the enemy’s

intelligence is good and so the enemy will always pay the least amount to dis-

mantle the network for each particular weighting, say mf(g,G). The Shields-

Harary number of G with respect to the cost function f , denoted by SH(G,f ),
is supg:V→[0,∞)mf (g,G).

Informally, SH(G,f ) can be thought of as the most the enemy can be made

to pay to dismantle the network. This is not quite accurate since the “sup” in

this definition is usually not a “max.”

Suppose the definition of dismantling is altered so that the network is dis-

mantled when the sum of the weights on each remaining component after

vertex removal is strictly less than 1. Let the minimum cost the enemy pays to

dismantle the weighted network with this definition of dismantling be denoted
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bymf(g,G). (Clearly,mf(g,G)≥mf(g,G).) We define SH(G,f ) by SH(G,f )=
supg:V→[0,∞)mf (g,G). It turns out that when f is continuous, the “sup” in this

case is always a “max.” (We can actually make the enemy pay this amount.)

A weighting g at which the max is achieved will be called optimal (for G and

f ). By the way SH(G,f ) is defined, we may as well search for optimal weight-

ings taking no value greater than 1. Therefore, SH(G,f ) depends only on the

behavior of f on [0,1].
We define SH0(G,f ) and SH0(G,f ) as SH(G,f ) and SH(G,f ) were defined,

with the weighting functions g confined to be constants. Clearly, SH0(G,f ) ≤
SH(G,f ) and SH0(G,f )≤ SH(G,f ).

Why is the cost function decreasing (or at least nonincreasing)? The situation

we are presenting here is one in which the more stuff stored at each vertex, the

harder it will be to defend that vertex, and thus the less it will cost the enemy

to knock it out.

The Shields-Harary parameters arose from a conjecture posed in 1972 by

the late Allen Shields about which he consulted Frank Harary. They proved

some initial results, which they did not publish, but which survived somehow.

Their efforts were later added to by others in contribution to what we now

know about these parameters. Some of what we know is presented next.

Initially, much of what was done with the Shields-Harary parameters dealt

with the specific cost function f(x) = 1/x, which was the cost function in-

volved in Shields’ original conjecture. Johnson [3] presented everything known

at the time about the SH parameters with that particular cost function. Much

of what has been done more recently involves arbitrary cost functions.

Exact values of SH(G,f ) are known for all continuous f when G = Kn− e
[2], G = Kn, and G = K1,n−1 [1]. Harary and Johnson, in the same paper, also

provided bounds for Pn (the path on n vertices) and Cn as well as the following

result: if f is continuous, then SH(G,f ) is a max and SH(G,f )= SH(G,f ).
The following conjecture is posed by Harary and Johnson: if f is continuous

and G is vertex-transitive, then there is a constant optimal weighting of V(G).
So SH(G,f )= SH(G,f )= SH0(G,f )= SH0(G,f ).

Here is a problem that is related to this conjecture: for which continuous f
is it the case that for every G, there is an optimal weighting of V(G) which is

constant on each orbit of V(G) under Aut(G)?
In Section 2, we give the results of this paper. The main result of the paper

has to do with cost functions which are concave on [0,1]. We then end the

paper with examples of how we apply these results to obtain the Shields-Harary

numbers of some graphs with particular concave cost functions.

2. Results. In what follows, G will be an arbitrary finite simple graph with

vertex set V(G), of order n(G)= |V(G)|. For u∈ V(G), deg(u) will denote the

degree of u in G, and NG(u) will denote the set of vertices adjacent to u in G.

The complete graph (clique) on n vertices will be denoted Kn.
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Kl Ks Kr

Figure 2.1

Proposition 2.1. Suppose that T ⊆ V(G) and, for each u ∈ T , deg(u) =
n(G)−1. For any continuous f , there is an optimal weighting g of G satisfying

g(u)≤ g(v) for each u∈ T and each v ∉ T .

For 0 < s < l,r , denote by G(l,r ,s) the graph consisting of a Kl and a Kr
intersecting in a Ks , as indicated in Figure 2.1.

Corollary 2.2. For any continuous f , there is an optimal weighting g of

G(l,r ,s) with g(u)≤ g(v) for every u in the Ks and every v not in the Ks .

Proposition 2.3. If f is continuous and gn is an optimal weighting of G for

each n= 1,2,3, . . . and gn(v)→ g(v) as n→∞ for each v ∈ V(G), then g is an

optimal weighting of G.

Definition 2.4. A function f : I →R is concave on an interval I if and only

if, for all x,y ∈ I and t ∈ [0,1], f(tx+(1−t)y)≥ tf (x)+(1−t)f (y).

Proposition 2.5. Suppose f is continuous and concave on [0,1] and S ⊆
V(G) satisfies NG(u)\{v} = NG(v)\{u} for each u,v ∈ S. Suppose either that

f(1)= 0 or that S induces a clique in G. Then, for any optimal weighting g of G,

there is another optimal weighting g̃ ofGwhich is constant on S and agrees with

g on V(G)\S, and minv∈S g(v) ≤ g̃|S ≤ maxv∈S g(v). Further, if S1,S2, . . . ,Sk
are disjoint sets of vertices of G, each satisfying the suppositions above, then

there is an optimal weighting ĝ of G which is constant on each Si, i= 1,2, . . . ,k,

agrees with g at vertices not in any Si, and, for each i, minv∈Si g(v) ≤ ĝ|Si ≤
maxv∈Si g(v).

Corollary 2.6. If f is continuous and concave on [0,1], there is an opti-

mal weighting of G(l,r ,s) satisfying the conclusion of Corollary 2.2, which is

constant on each of Kl\Ks , Kr\Ks , and Ks .

3. Proofs

Proof of Proposition 2.1. Let g be an optimal weighting of G with re-

spect to f (i.e.,mf(g,G)= SH(G,f )) and let T ⊆ V(G) such that for eachu∈ T ,

deg(u)=n(G)−1. Now, suppose that g(v) < g(u) for some v ∉ T , u∈ T . De-

fine ĝ by ĝ(u)= g(v), ĝ(v)= g(u), and ĝ = g on V(G)\{u,v}. We will show
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that ĝ is an optimal weighting ofG with respect to f . This will prove the propo-

sition since, even if ĝ does not satisfy the requirement of the conclusion, we

can go on switching values until we arrive at a weighting that does satisfy that

requirement, and this final weighting will be optimal.

Let S ⊆ V(G) be a strict ĝ-dismantling set such that

mf(ĝ,G)=
∑
w∈S

f
(
ĝ(w)

)
. (3.1)

If neither u nor v , or if both u and v , belongs to S, then S is a strict g-dis-

mantling set, whence

SH(G,f )≥mf(ĝ,G)=
∑
w∈S

f
(
ĝ(w)

)= ∑
w∈S

f
(
g(w)

)
≥mf(g,G)= SH(G,f ),

(3.2)

and it follows that ĝ is an optimal weighting of G with respect to f . This leaves

two cases to consider.

Case I (v ∈ S, u ∉ S). In this case, because u ∈ T is not in S, G−S is con-

nected, and
∑
w∈V(G)\S ĝ(w) < 1. Let S̃ = (S\{v})∪{u}. Then

∑
w∈V(G)\S̃

g(w)=
∑

w∈V(G)\S
ĝ(w) < 1, (3.3)

so S̃ is a strict g-dismantling set, and so

mf(g,G)≤
∑
w∈S̃

f
(
g(w)

)= ∑
w∈S

f
(
ĝ(w)

)=mf(ĝ,G). (3.4)

The conclusion that ĝ is an optimal weighting follows as before.

Case II (v ∉ S, u∈ S). In this case, S is a strict g-dismantling set and

mf(g,G)≤
∑
w∈S

f
(
g(w)

)≤ ∑
w∈S

f
(
ĝ(w)

)=mf(ĝ,G) (3.5)

because ĝ(u) < g(u) and f is nonincreasing. The conclusion that ĝ is optimal

follows as before.

Proof of Corollary 2.2. The proof of this corollary follows immediately

from Proposition 2.1 by taking T = V(Ks).
Proof of Proposition 2.3. Since each weighting gn is an optimal weight-

ing of G,mf(gn,G)= SH(G,f ) for each n. Now, let S be a strict g-dismantling

set of vertices of least cost with
∑
v∈S f (g(v))=mf(g,G)≤ SH(G,f ). We now

show that S is a strict gn-dismantling set for all n sufficiently large by showing

that for such n and for each component H of G−S,
∑
v∈V(H) gn(v) < 1.
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Since S is a strict g-dismantling set, then, for each component H of G−S,

we have

lim
n→∞

∑
v∈V(H)

gn(v)=
∑

v∈V(H)
g(v) < 1. (3.6)

Thus, there exists some integer NH such that n≥NH implies that∑
v∈V(H)

gn(v) < 1. (3.7)

There are only finitely many such H; take

N = max
H a component of G−S

NH, (3.8)

then n≥N implies that for each such H,
∑
v∈V(H) gn(v) < 1.

Now, for all n sufficiently large, we have

SH(G,f )=mf
(
gn,G

)≤ ∑
v∈S

f
(
gn(v)

)
�→

∑
v∈S

f
(
g(v)

)=mf(g,G). (3.9)

This gives us that mf(g,G) ≥ SH(G,f ). Since mf(g,G) ≤ SH(G,f ), g is an

optimal weighting of G.

Proof of Proposition 2.5. Suppose we have an optimal weighting g of

G with respect to f , so mf(g,G) = SH(G,f ). Let S ⊆ V(G) be such that for

each u,v ∈ S with u ≠ v , NG(u) \ {v} = NG(v) \ {u}. We further suppose

that either f(1) = 0 or S induces a clique in G. If g is constant on S, we can

take g̃ = g, so assume that g is not constant on S. Let u0,u1 ∈ S such that

g(u0)=minv∈S g(v) < g(u1)=maxv∈S g(v).
Now, we define a weighting ĝ by ĝ = g except at u0 and u1, where ĝ(u0)=

ĝ(u1) = (g(u0)+g(u1))/2. We will show that mf(ĝ,G) ≥ mf(g,G), which

implies that mf(ĝ,G)= SH(G,f ).
Let T ⊆ V(G) be a strict ĝ-dismantling set of least cost, so mf(ĝ,G) =∑
v∈T f (ĝ(v)). We have four cases to consider.

Case 1 (u0 ∉ T , u1 ∈ T ). In this case, for any connected component H of

G−T ,
∑
u∈V(H) g(u)≤

∑
u∈V(H) ĝ(u) < 1 since g(u0) < ĝ(u0) andu0 ∉ T . Thus,

T is a strict g-dismantling set, so

mf(g,G)≤
∑
u∈T

f
(
g(u)

)≤ ∑
u∈T

f
(
ĝ(u)

)=mf(ĝ,G) (3.10)

because f is nonincreasing.

Case 2 (u0 ∈ T , u1 ∉ T ). If this occurs, we can find another set

T1 =
(
T \{u0

})∪{u1
}

(3.11)

with a dismantling cost equal to
∑
v∈T f (ĝ(v)) because ĝ(u0) = ĝ(u1). The

set T1 is a strict ĝ-dismantling set of vertices because T is, and u0 and u1
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have the same neighbors other than themselves. Since, by assumption, T is a

cheapest strict ĝ-dismantling set, T1 must be one as well. Further, T1 satisfies

the requirement defining Case 1, so we are done in this case.

Case 3 (u0 ∉ T , u1 ∉ T ). If u0 and u1 are adjacent, then they will be in the

same component of G−T . Then, for every connected component H of G−T ,∑
u∈V(H) g(u)=

∑
u∈V(H) ĝ(u) < 1. So T is a g-dismantling set, whence

mf(g,G)≤
∑
v∈T

f
(
g(v)

)= ∑
v∈T

f
(
ĝ(v)

)=mf(ĝ,G). (3.12)

Now, if u0 and u1 are not adjacent, then S does not induce a clique in G,

so f(1) = 0. Now, u0 and u1 may possibly not be in the same component of

G−T . If they are in the same component, then T is a strict g-dismantling set

and we are done. If they are not, then u0 and u1 are isolated vertices in G−T
because they have the same neighbor sets in G. We know that

∑
u∈V(H) g(u)≤∑

u∈V(H) ĝ(u) < 1 for every connected component H of G− T except the H
consisting of the vertex u1. Now, if g(u1) < 1, then T is a g-dismantling set

and we are done. If g(u1) = 1, then f(g(u1)) = 0, and so T ∪{u1} is a strict

g-dismantling set with the same cost as T . We have that

mf(g,G)≤
∑

v∈T∪{u1}
f
(
g(v)

)= ∑
v∈T

f
(
g(v)

)
=
∑
v∈T

f
(
ĝ(v)

)=mf(ĝ,G).
(3.13)

Case 4 (u0 ∈ T , u1 ∈ T ). In this case, it is clear that for every connected

component H of G−T ,
∑
u∈V(H) g(u) =

∑
u∈V(H) ĝ(u) < 1 and so T is a strict

g-dismantling set. Now,

mf(ĝ,G)=
∑
v∈T

f
(
ĝ(v)

)
=
∑
v∈T

f
(
g(v)

)−[f (g(u0
))+f (g(u1

))]+2

[
f
(
g
(
u0
)+g(u1

)
2

)]

≥mf(g,G)−f
(
g
(
u0
))−f (g(u1

))+2
[
f
(

1
2
g
(
u0
)+ 1

2
g
(
u1
))]

≥mf(g,G)
(3.14)

since f is concave. This completes the proof that ĝ is optimal.

Now, for any weighting h of G, let d(h) = maxu∈S h(u)−minu∈S h(u). We

will show that for every optimal weighting h of G with d(h) > 0, there is an-

other optimal weighting h̃ satisfying the following: d(h̃) < d(h), h̃(v)= h(v),
for all v ∈ V(G)\S, and minv∈S h(v)≤ h̃|S ≤maxv∈S h(v).

Let h be any optimal weighting of G with d(h) > 0 and let h1 = ĥ, ob-

tained as above. By the definition of ĥ, h(v)= h1(v) for all v ∈ V(G−S), and
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clearly, minv∈S h(v) ≤ minv∈S h1(v) ≤ maxv∈S h1(v) ≤ maxv∈S h(v). There-

fore, d(h1) ≤ d(h). If d(h1) < d(h), take h̃ = h1. Otherwise, we have d(h1) =
d(h) > 0, which implies that maxv∈S h1(v)=maxv∈S h(v) and minv∈S h1(v)=
minv∈S h(v). Note that the set of vertices in S where h1 achieves its maximum

is the set of vertices in S where h achieves its maximum, minus one vertex, and

the same holds for the sets of points where h and h1 achieve their minimum

on S.

Let h2 = ĥ1. If d(h2) < d(h), take h̃ = h2. Otherwise, continue, letting h3 =
ĥ2, and so on. In going from hi−1 to hi, one vertex of S at which hi−1 is maxi-

mal has its weight decreased, and one vertex at which hi−1 is minimal has its

weight increased, and these are vertices at which h is maximal and minimal,

respectively. Since there are only a finite number of such vertices, we must

have d(hi) < d(h) eventually. It is straightforward to see that h̃ = hi has the

desired properties.

Suppose that g is an optimal weighting of G and suppose that W = {h :

V(G)→[0,1],h is an optimal weighting ofG,h≡g onV(G)\S, and minv∈S g(v)
≤ h|S ≤ maxv∈S g(v)} contains no weightings which are constant on S. Let

d= inf[d(h); h∈W]. By the meaning of inf, for each positive integer k, there

is a weighting hk ∈ W with d ≤ d(hk) < d+1/k. Then (hk) is a sequence of

optimal weightings. Since the hk are bounded functions on a finite set V(G),
the sequence (hk) has a convergent subsequence; to avoid proliferation of

subscripts, we suppose that (hk) itself is convergent, that is, for eachv ∈ V(G),
(hk(v)) converges to some value h(v).

By Proposition 2.3, the weighting h is optimal, and it clearly satisfies the

other requirements for membership in W . We claim that d(h) = d. It is cer-

tainly clear by the definition of d that d ≤ d(h). Let u0,u1 ∈ S be such that

h(u1)=maxu∈S h(u) andh(u0)=minu∈S h(u). Then, d(h)= h(u1)−h(u0)=
limk→∞(hk(u1)−hk(u0))≤ limk→∞d(hk) since, for each hk, d(hk) is the max-

imum distance between the values of hk at two vertices in S. Thus, d(h) ≤ d.

Since d ≤ d(h) and d(h) ≤ d, then d(h) = d as claimed. If d = 0, then h is an

optimal weighting with d(h)= 0, contrary to supposition, so such a weighting

satisfying all conditions of the proposition must exist after all. If d(h) > 0,

then, by previous remarks, there is another optimal weighting h̃ ∈ W with

d(h̃) < d(h)= d. But this contradicts the definition of d, by which d is a lower

bound of a collection of numbers of which d(h̃) is one. So there must be an

optimal weighting of G which is constant on S satisfying all the conditions of

the proposition after all.

Now, suppose that S1, . . . ,Sk are pairwise disjoint sets of vertices, each satis-

fying the conditions of the proposition. We proceed by induction on k. By the

induction hypothesis, there is an optimal weighting ĝk−1 of G, with respect

to f , which is constant on each of S1, . . . ,Sk−1, agrees with g off
⋃k−1
i=1 Si, and

whose constant value on Si is between the max and min values of g on Si, for

each i= 1, . . . ,k−1. If we let Sk play the role of S and let ĝk−1 replace g in the
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argument above, we get an optimal weighting ĝ that satisfies the conclusion

of the proposition.

Proof of Corollary 2.6. Let g be an optimal weighting ofG(l,r ,s) satis-

fying the conclusion of Corollary 2.2, possibly not constant on Kl−Ks , Kr −Ks ,
and/or Ks . Now, let S1 = V(Kl −Ks), S2 = V(Kr −Ks), and S3 = V(Ks). The

sets S1, S2, and S3 are disjoint sets of vertices which satisfy the conditions of

Proposition 2.5. Applying Proposition 2.5 to G(l,r ,s) with the weighting g of

Corollary 2.2 will then yield a new optimal weighting ĝ which will satisfy the

conclusion of the corollary.

4. Examples

Example 4.1. If G =G(3,3,1) and f(x)= 1−x, then SH(G,f )= 3/2. Corol-

lary 2.6 tells us that there will be an optimal weighting of G as illustrated in

Figure 4.1 where either (1) a≥ b ≥ x or (2) b ≥ a≥ x. Clearly, we may look for

a weighting satisfying (1), without loss of generality.

a

a

b

x

b

Figure 4.1

The simplification provided by Corollary 2.6 in the problem of determining

SH(G(l,r ,s),f ) for any concave cost function f is mainly to reduce the num-

ber of variables involved from l+r − s (= 5, in this case) to 3. Even with this

reduction, and even with a particular cost function f , the analysis necessary

to determine SH(G(l,r ,s),f ) and (what may be more important) an optimal

weighting of the vertices of G, will be rather tedious and involved with the

inspection of numerous cases. We will give some indication of these below, in

this case, but will spare the reader the details. In fact, supplying those details

might be an interesting exercise.

An enemy of this weighted network would certainly be attracted to the re-

moval of the center vertex of weight x based solely on the structure of the

graph. However, that vertex will have the highest removal cost. The owner of

this network will want to find a way to drive the minimum dismantling cost

as high as possible. In light of all of this, we can break the analysis down into

three cases: (1) 2a ≥ 1 and 2b ≥ 1, (2) 2a ≥ 1 and 2b < 1, and (3) 2a < 1 and

2b < 1.

We will examine one subcase of one of these cases to give the reader the fla-

vor of the game. In case (1) in the preceding paragraph, there are two subcases:
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1/2 1/2

1/2 1/2

x

Figure 4.2

(1i) b+x ≥ 1 and (1ii) b+x < 1. In subcase (1i), assuming additionally that

a,b,x < 1 (which is reasonable if f(x) = 1−x), there are, for each a ≥ b ≥ x
satisfying the requirements of the case and subcase, only two candidates (up

to “equivalence”) for a strict dismantling set of minimum cost, and the costs of

these are C1 = 2(1−a)+2(1−b) and C2 = (1−x)+(1−a)+(1−b). The cost of

dismantling will be the minimum of these two. Clearly, we may as well make a,

b, and x as small as possible, while not violating the subcase requirements nor

omitting possible values. In particular, we may as well assume that b+x = 1,

so x = 1−b ≤ 1/2 (because x ≤ b).

Then, C1 = 4−2(a+b) and C2 = 2−a. For each b ≥ 1/2, we make each of

these as large as possible by taking the smallest possible a and b within the

requirements of the subcase; that would be a= b = 1/2= x.

This turns out to be an optimal weighting, by comparison with the results in

the other cases. Analysis of the other cases discovers other optimal weightings;

they are all of the form shown in Figure 4.2, with 0≤ x ≤ 1/2.

Example 4.2. If G = G(3,3,1) and f(x) = 2−x, then SH(G,f ) = 5. The

analysis in this case is similar to that in Example 4.1, but is complicated by

the possibility of using 1 as a weight. Any vertex with weight 1 will have to be

removed in strict dismantling. When the cost function was 1−x, the cost of

this removal was zero, so there was no point in assigning 1 as a weight. But

with f(x)= 2−x, it turns out to be optimal to use 1 as a weight. There are two

optimal weightings of the “a−b−x” type, given by a = b = x = 1 and a = 1,

b = x = 1/2.

We state without proof that if f(x)=A−x, A≥ 1, then SH(G,f ) is

(1) 3(A−1/2), with the same optimal weightings given in Example 4.1, if

1≤A≤ 3/2;

(2) 4A−3, with optimal weighting a= 1, b = x = 1/2, if 3/2≤A≤ 2;

(3) 5(A−1), with optimal weighting a= b = x = 1, if A≥ 2.

Example 4.3. If G = K2,3 and f(x) = 1−x, then SH(G,f ) = 3/2. In the

case of a complete r -partite graph Kn1,...,nr , r ≥ 2, and a concave cost function

f satisfying f(1) = 0, the application of Proposition 2.5 allows us to look for

optimal weightings which are constant on each part of sizeni ≥ 2, and constant

on the clique formed by the parts with only one vertex. Thus, the number of
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variables is reduced from n=∑r
i=1ni either to r −s+1 or to r , if s = {i; ni =

1} = 0.

Thus, for the complete bipartite graphsKm,n, except forK1,1 =K2 and such a

cost function, there are only two variables to worry about, the constant weights

on each part. We leave it as a recreation to see that SH(K2,3,1−x)= 3/2, with

optimal weightings 1/4 on the small part and 1/2 on the large part, or 1/4 on

every vertex.
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