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1. Introduction. It is well known that the Euler numbers and polynomials

can be defined by the following definitions.

Definition 1.1 (see [1]). The Euler numbers Ek are defined by the following

expansion:

secht = 2et

e2t+1
=

∞∑
k=0

Ek
k!
tk, |t| ≤π. (1.1)

In [6, page 5], the Euler numbers are defined by

2et/2

et+1
= sech

t
2
=

∞∑
n=0

(−1)nEn
(2n)!

(
t
2

)2n
, |t| ≤π. (1.2)

Definition 1.2 (see [1, 6]). The Euler polynomials Ek(x) for x ∈R are de-

fined by

2ext

et+1
=

∞∑
k=0

Ek(x)
k!

tk, |t|<π. (1.3)

Let N denote the set of all positive integers. It can also be shown that the

polynomials Ei(t), i ∈N, are uniquely determined by the following two prop-

erties:

E′i(t)= iEi−1(t), E0(t)= 1,

Ei(t+1)+Ei(t)= 2ti.
(1.4)

Euler polynomials are related to the Bernoulli numbers. For information

about Bernoulli numbers and polynomials, we refer to [1, 2, 3, 5, 6].

In this note, we give some generalizations of the concepts of Euler numbers

and Euler polynomials and research their basic properties. In fact, motivations
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and ideas of this note and other articles, see, for example, [2, 3, 4], originate

essentially from [5].

2. Generalizations of Euler numbers and polynomials. In this section, we

give two definitions, the generalized Euler number and the generalized Euler

polynomial, which generalize the concepts of Euler number and Euler polyno-

mial.

Definition 2.1. For positive numbers a, b, and c, the generalized Euler

numbers Ek(a,b,c) are defined by

2ct

b2t+a2t =
∞∑
k=0

Ek(a,b,c)
k!

tk. (2.1)

Definition 2.2. For any given positive numbers a, b, and c and x ∈R, the

generalized Euler polynomials Ek(x;a,b,c) are defined by

2cxt

bt+at =
∞∑
k=0

Ek(x;a,b,c)
k!

tk. (2.2)

Taking a= 1 and b = c = e, then Definitions 1.1 and 1.2 can be deduced from

Definitions 2.1 and 2.2, respectively. Thus, Definitions 2.1 and 2.2 generalize

the concepts of Euler numbers and polynomials.

3. Some properties of the generalized Euler numbers. In this section, we

study some basic properties of the generalized Euler numbers defined in

Definition 2.1.

Theorem 3.1. For positive numbers a, b, and c and real number x ∈R,

E0(a,b,c)= 1, Ek(1,e,e)= Ek, Ek
(
1,e1/2,ex

)= Ek(x), (3.1)

Ek(a,b,c)= 2k(lnb− lna)kEk
(

lnc−2lna
2(lnb− lna)

)
, (3.2)

Ek(a,b,c)=
k∑
j=0

(
k
j

)
(lnb− lna)j(lnc− lna− lnb)k−jEj. (3.3)

Proof. The formulas in (3.1) follow from Definitions 1.1, 1.2, and 2.1 easily.

By Definitions 1.2 and 2.1 and direct computation, we have

2ct

b2t+a2t =
2exp

(
(lnc−2lna)/2(lnb− lna)·2t(lnb− lna)

)
exp

(
2t(lnb− lna)

)+1

=
∞∑
k=0

2k(lnb− lna)kEk
(

lnc−2lna
2(lnb− lna)

)
tk

k!
.

(3.4)

Then, formula (3.2) follows.
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Substituting Ek(x)=
∑k
j=0 2−j

(
k
j

)
(x−1/2)k−jEj into the formula (3.2) yields

formula (3.3). The proof of the classical result for Ek(x) follows from the more

general proof that will be given for (4.1).

Theorem 3.2. For k∈N,

Ek(a,b,c)=−1
2

k−1∑
j=0

(
k
j

)[
(2lnb− lnc)k−j+(2lna− lnc)k−j

]
Ej(a,b,c), (3.5)

Ek(a,b,c)= Ek(b,a,c), (3.6)

Ek
(
aα,bα,cα

)=αkEk(a,b,c). (3.7)

Proof. By Definition 2.1, direct calculation yields

1= 1
2

[(
b2

c

)t
+
(
a2

c

)t] ∞∑
k=0

tk

k!
Ek(a,b,c)

= 1
2

∞∑
k=0

tk

k!

[(
ln
b2

c

)k
+
(

ln
a2

c

)k] ∞∑
k=0

tk

k!
Ek(a,b,c)

= 1
2

∞∑
k=0


 k∑
j=0

(
k
j

)[(
ln
b2

c

)k−j
+
(

ln
a2

c

)k−j]
Ej(a,b,c)


 tk
k!
.

(3.8)

Equating coefficients of tk in (3.8) gives us

k∑
j=0

(
k
j

)[(
ln
b2

c

)k−j
+
(

ln
a2

c

)k−j]
Ej(a,b,c)= 0. (3.9)

Formula (3.5) follows.

The other formulas follow from Definition 2.1 and formula (3.2).

Remark 3.3. For positive numbers a, b, and c, we have

E0(a,b,c)= 1,

E1(a,b,c)= lnc− lna− lnb,

E2(a,b,c)= (lnc−2lna)(lnc−2lnb),

E3(a,b,c)=
[
(lnc− lna− lnb)2−3(lnb− lna)2

]
(lnc− lna− lnb).

(3.10)

Since it is well known and easily established that the Ek are integers, Ej = 0

if j is odd, and Ej(0) = 0 if j is positive and even, it follows from (3.3) and

(3.2) that Ek(a,b,c) is an integer polynomial in lna, lnb, and lnc which is

homogeneous of degree k and which is divisible by lnc− lna− lnb if k is odd,

and divisible by (lnc−2lna)(lnc−2lnb) if k is even and positive.
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4. Some properties of the generalized Euler polynomials. In this section,

we investigate properties of the generalized Euler polynomials defined by

Definition 2.2.

Theorem 4.1. For any given positive numbers a,b, and c and x ∈R,

Ek(x;a,b,c)=
k∑
j=0

(
k
j

)
(lnc)k−j

2j

(
x− 1

2

)k−j
Ej(a,b,c), (4.1)

Ek(x;a,b,c)=
k∑
j=0

(
k
j

)
(lnc)k−j

(
ln
b
a

)j(
x− 1

2

)k−j
Ej
(

lnc−2lna
2(lnb− lna)

)
, (4.2)

Ek(x;a,b,c)=
k∑
j=0

j∑
�=0

(
k
j

)(
j
�

)
(lnc)k−j

2j

[
ln
b
a

]�[
ln

c
ab

]j−�[
x− 1

2

]k−j
E�,

(4.3)

Ek(a,b,c)= 2kEk
(

1
2

;a,b,c
)
, (4.4)

Ek(x)= Ek(x;1,e,e). (4.5)

Proof. By Definitions 2.1 and 2.2, we have

2c2xt

b2t+a2t =
∞∑
k=0

2kEk(x;a,b,c)
tk

k!
,

2c2xt

b2t+a2t =
2ct

b2t+a2t ·c(2x−1)t

=

 ∞∑
k=0

tk

k!
Ek(a,b,c)




 ∞∑
k=0

tk

k!
(2x−1)k(lnc)k




=
∞∑
k=0


 k∑
j=0

(
k
j

)
(lnc)k−j(2x−1)k−jEj(a,b,c)


 tk
k!
.

(4.6)

Equating the coefficients of tk/k! in (4.6) yields

2kEk(x;a,b,c)=
k∑
j=0

(
k
j

)
(lnc)k−j(2x−1)k−jEj(a,b,c). (4.7)

Formula (4.1) follows.

The other formulas follow directly from substituting formulas (3.2) and (3.3)

into (4.1) and taking x = 1/2 in (4.1), respectively.
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Theorem 4.2. For positive integer 1≤ p ≤ k,

∂p

∂xp
Ek(x;a,b,c)= k!

(k−p)! (lnc)
pEk−p(x;a,b,c), (4.8)∫ x

β
Ek(t;a,b,c)dt = 1

(k+1) lnc
[
Ek+1(x;a,b,c)−Ek+1(β;a,b,c)

]
. (4.9)

Proof. Differentiating equation (2.2) with respect to x yields

∂
∂x
Ek(x;a,b,c)= k(lnc)Ek−1(x;a,b,c). (4.10)

Using formula (4.10) and by mathematical induction, formula (4.8) follows.

Rearranging formula (4.10) produces

Ek(x;a,b,c)= 1
(k+1) lnc

∂
∂x
Ek+1(x;a,b,c). (4.11)

Formula (4.9) follows from integration on both sides of formula (4.11).

Theorem 4.3. For positive numbers a, b, and c and x ∈R,

Ek(x+1;a,b,c)=
k∑
j=0

(
k
j

)
(lnc)k−jEj(x;a,b,c), (4.12)

Ek(x+1;a,b,c)= 2xk(lnc)k

+
k∑
j=0

(
k
j

)[
(lnc)k−j−(lnb)k−j−(lna)k−j]Ej(x;a,b,c),

(4.13)

Ek(x+1;a,b,c)= Ek
(
x;
a
c
,
b
c
,c
)
. (4.14)

Proof. From Definition 2.2 and straightforward calculation, we have

2cxt

bt+at ·c
t =


 ∞∑
k=0

tk

k!
Ek(x;a,b,c)




 ∞∑
k=0

tk

k!
(lnc)k




=
∞∑
k=0


 k∑
j=0

(
k
j

)
(lnc)k−jEj(x;a,b,c)


 tk
k!
,

2cxt

bt+at ·c
t = 2c(x+1)t

bt+at =
∞∑
k=0

tk

k!
Ek(x+1;a,b,c).

(4.15)

Therefore, from equating the coefficients of tk/k! in (4.15), formula (4.12) fol-

lows.



3898 QIU-MING LUO ET AL.

Similarly, we obtain

2c(x+1)t

bt+at =
∞∑
k=0

tk

k!
Ek(x+1;a,b,c)= 2cxt+ 2cxt

bt+at
(
ct−bt−at)

= 2
∞∑
k=0

tk

k!
xk(lnc)k

+

 ∞∑
k=0

tk

k!
Ek(x;a,b,c)




 ∞∑
k=0

(
(lnc)k−(lnb)k−(lna)k) tk

k!




=
∞∑
k=0

[
2xk(lnc)k

+
k∑
j=0

(
k
j

)[
(lnc)k−j−(lnb)k−j−(lna)k−j]Ej(x;a,b,c)

]
tk

k!
.

(4.16)

By equating coefficients of tk/k!, we obtain formula (4.13).

Since

∞∑
k=0

tk

k!
Ek(x+1;a,b,c)= 2c(x+1)t

bt+at =
2cxt(

b/c
)t+(a/c)t

=
∞∑
k=0

tk

k!
Ek
(
x;
a
c
,
b
c
,c
)
,

(4.17)

by equating coefficients, we obtain formula (4.14). The proof is complete.

Corollary 4.4. The following formulas are valid for positive numbers a,

b, and c and real number x:

Ek(x+1)+Ek(x)= 2xk, (4.18)

Ek(x+1)=
k∑
j=0

(
k
j

)
Ej(x), (4.19)

Ek(x+1;1,b,b)+Ek(x;1,b,b)= 2xk(lnb)k, (4.20)

Ek(x+1;1,b,b)=
k∑
j=0

(
k
j

)
Ej(x;1,b,b)(lnb)k−j, (4.21)

k−1∑
j=0

(
k
j

)
Ej(x;1,b,b)(lnb)k−j+2Ek(x;1,b,b)= 2xk(lnb)k, (4.22)

∫ x+1

x
Ek(t;a,b,c)dt = 1

(k+1) lnc

k∑
j=0

(
k+1
j

)
(lnc)k−jEj(x;a,b,c). (4.23)
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Theorem 4.5. For positive numbers a,b,c > 0, x ∈ R, and nonnegative in-

teger k,

Ek(1−x;a,b,c)= (−1)kEk
(
x;
c
a
,
c
b
,c
)
, (4.24)

Ek(1−x;a,b,c)= Ek
(
−x;

a
c
,
b
c
,c
)
. (4.25)

Proof. From Definition 2.2 and easy computation, we have

∞∑
k=0

tk

k!
Ek(1−x;a,b,c)= 2c(1−x)t

bt+at =
2ct ·c−xt
bt+at = 2c−xt(

c/b
)−t+(c/a)−t

=
∞∑
k=0

tk

k!
(−1)kEk

(
x;
c
a
,
c
b
,c
)
.

(4.26)

Equating coefficients of tk above leads to formula (4.24).

By the same procedure, we can establish formula (4.25).

Theorem 4.6. For positive numbers a,b,c > 0, nonnegative natural number

k, and x,y ∈R,

Ek(x+y ;a,b,c)=
k∑
j=0

(
k
j

)
(lnc)k−jyk−jEj(x;a,b,c),

Ek(x+y ;a,b,c)=
k∑
j=0

(
k
j

)
(lnc)k−jxk−jEj(y ;a,b,c).

(4.27)

Proof. These two formulas can be deduced from the following calculation

and considering symmetry of x and y :

∞∑
k=0

tk

k!
Ek(x+y ;a,b,c)= 2c(x+y)t

bt+at = 2cxt ·cyt
bt+at

=

 ∞∑
k=0

tk

k!
Ek(x;a,b,c)




 ∞∑
k=0

tk

k!
(lnc)kyk




=
∞∑
k=0


 k∑
j=0

(
k
j

)
(lnc)k−jyk−jEj(x;a,b,c)


 tk
k!
.

(4.28)

The proof is complete.

Theorem 4.7. For natural numbers k and m and positive number b,

m∑
�=1

(−1)��k = 1
2(lnb)k

[
(−1)mEk(m+1;1,b,b)−Ek(1;1,b,b)

]
. (4.29)
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Proof. Rearranging formula (4.20) gives us

xk = 1
2(lnb)k

[
Ek(x+1;1,b,b)+Ek(x;1,b,b)

]
. (4.30)

Replacing x by � ∈N and summing up � from 1 to m yields

m∑
�=1

(−1)��k = 1
2(lnb)k

m∑
�=1

(−1)�
[
Ek(�+1;1,b,b)+Ek(�;1,b,b)

]

= 1
2(lnb)k

[
(−1)mEk(m+1;1,b,b)−Ek(1;1,b,b)

]
.

(4.31)

The proof is complete.

Remark 4.8. Finally, we give several concrete formulas as follows:

E0(x;a,b,c)= 1,

E1(x;a,b,c)=
(
x− 1

2

)
lnc+ 1

2
(lnc− lna− lnb),

E2(x;a,b,c)=
(
x− 1

2

)2

(lnc)2+
(
x− 1

2

)
(lnc− lnb− lna) lnc

+ 1
4
(lnc−2lna)(lnc−2lnb).

(4.32)
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