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We consider a higher-order semilinear parabolic equationut =−(−∆)mu−g(x,u)
in RN×R+,m>1. The nonlinear term is homogeneous: g(x,su)≡ |s|P−1sg(x,u)
and g(sx,u) ≡ |s|Qg(x,u) for any s ∈ R, with exponents P > 1, and Q > −2m.
We also assume that g satisfies necessary coercivity and monotonicity conditions
for global existence of solutions with sufficiently small initial data. The equation
is invariant under a group of scaling transformations. We show that there exists a
critical exponent P = 1+(2m+Q)/N such that the asymptotic behavior as t→∞ of
a class of global small solutions is not group-invariant and is given by a logarithmic
perturbation of the fundamental solution b(x,t)= t−N/2mf(xt−1/2m) of the par-
abolic operator ∂/∂t+(−∆)m, so that for t�1,u(x,t)=C0(lnt)−N/(2m+Q)[b(x,t)
+o(1)], where C0 is a constant depending on m, N, and Q only.
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1. Introduction: main results on critical global asymptotics. The main goal

of the paper is to present a class of nonlinear higher-order parabolic equations

with two homogeneous operators

ut =Au+G(u) for t > 0, u(0)=u0, (1.1)

which are invariant relative to a group of scaling transformations, but generic

global asymptotics of solutions as t →∞ are not invariants. The basic exam-

ple is a 2mth-order semilinear parabolic equation in the critical case, where

a special nonlinear interaction between operators produces asymptotics per-

turbed by logarithmic factors. Such perturbed asymptotics are well known for

the second-order (m= 1) semilinear and quasilinear heat equations and were

studied in detail in the last two decades.

1.1. Statement of the asymptotic problem with critical nonlinearity. Con-

sider the Cauchy problem for the 2mth-order semilinear parabolic equation

(with m> 1)

ut =−(−∆)mu−g(x,u) in RN×R+,
u(x,0)=u0(x) in RN,

(1.2)
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where ∆ denotes the Laplace operator in RN and u0 ∈ X = L1(RN)∩L∞(RN).
The nonlinear term g(x,u) on the right-hand side is assumed to be smooth and

sufficiently small asu→ 0 andg = g′u = 0 atu= 0. Higher-order semilinear and

quasilinear diffusion operators occur in applications in thin film theory, non-

linear diffusion and lubrication theory, flame and wave propagation, and phase

transition at critical Lifschitz points and bistable systems (e.g., the Kuramoto-

Sivashinsky equation and the extended Fisher-Kolmogorov equation). See mod-

els and references in [30].

We are going to describe a class of (1.2) admitting a nonstandard, logarith-

mically perturbed asymptotic behavior as t → ∞. In order to guarantee the

existence of global solutions, without loss of generality of the asymptotic tech-

nique to be applied, we assume that the perturbation term g satisfies a coerciv-

ity condition to ensure the existence of a local solution of the integral equation

obtained by means of application of the continuous semigroup generated by

−(−∆)m. We thus assume that

g(x,u)u≥ 0 for any u∈R, x ∈RN. (1.3)

Then the lower-order term is of the same sign as the diffusion operator and

plays a role of an absorption-like operator ensuring the boundedness of the

orbits. Multiplying equation (1.2) byu and integrating by parts, this guarantees

global a priori estimates on u(·, t) in L2(RN) and in L2(Hm(RN) : R+), and

semigroup techniques apply to give global solutions (see [29, 32, 33]) where

detailed assumptions on nonlinearities are stated. In other applications, g is

a monotone operator satisfying in its domain 〈g(u)−g(v),u−v〉 ≥ 0, where

〈·,·〉 denotes the inner product in L2(RN); see examples below. We introduce

the crucial assumption on the critical nonlinearity ensuring the existence of

special noninvariant global asymptotics.

Critical scaling hypothesis. We assume that g(x,u) is homogeneous

in both variables, for all s ∈R, x ∈RN , and u∈R,

g(x,su)≡ |s|P−1sg(x,u),

g(sx,u)≡ |s|Qg(x,u), (1.4)

with exponents P > 1 and Q>−2m. Then the critical exponent is given by

P = Pc ≡ 1+ 2m+Q
N

. (1.5)

Inequality P > 1 implies that g′u(x,0)≡ 0. In the classical case of the homoge-

neous algebraic nonlinearity g(u) = |u|p−1u with exponent p > 1, where the

semilinear equation with absorption takes the form

ut =−(−∆)mu−|u|p−1u in RN×R+, (1.6)

we have P = p, Q= 0, and the critical exponent is Pc = pc = 1+2m/N.
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Remark 1.1 (the same Fujita exponent for a blowup problem). The same

exponent pc = 1+2m/N is the critical Fujita one for the semilinear equation

with source

ut =−(−∆)mu+|u|p in RN×R+, (1.7)

but in the different sense, for p ∈ (1,pc], any solution u �≡ 0 with arbitrarily

small initial data satisfying
∫
u0 ≥ 0 blows up in finite time [9, 18]. For (1.7),

pc is exactly the critical case, where the trivial stationary solution u≡ 0 loses

its stability (for p > pc it is stable and is unstable for p ≤ pc ). For (1.6), u ≡ 0

is stable for any p > 1 and bounded solutions are always global, but their

asymptotic behavior is different in the subcritical range p < pc and in the

supercritical one p > pc . It is worth mentioning that for any p > 1, (1.7) admits

blowup patterns corresponding to the evolution on the centre manifold with

a noninvariant logarithmically perturbed behavior [13].

For the homogeneous function g containing a first-order gradient nonlin-

earity, we have

g(u)= |u|p0−1u|∇u|p1 , p0,p1 > 1 �⇒ P = p0+p1,

Q=−p1.
(1.8)

For a more general function depending on derivatives up to lth order,

g(x,u)= |x|σ |u|p0−1u
∣∣Dxu∣∣p1 ···∣∣Dlxu∣∣pl , σ >−N,

pk > 1, k= 0, . . . , l < 2m,
(1.9)

where Dkxu = {∂βxu : |β| = k}, β = (β1, . . . ,βN) is a multi-index, |β| = β1+···+
βN ,

P =
l∑
k=0

pk, Q= σ −
l∑
k=0

kpk. (1.10)

As a further example, we put in (1.6) an extra nonlocal multiplier via the norm

in Lq(RN), so that g is a sufficiently smooth lower-order operator composed

of linear differential or integral Hammerstein and Nemytskii operators, for

example,

g(u)= |u|p0−1u
(∫

RN
|u|qdx

)ν/q
, ν > 1, q ≥ 1 �⇒ P = p0+ν,

Q= Nν
q
.

(1.11)

The coercivity condition (1.3) holds for (1.11).
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1.2. Main result. We will show that in the critical case P = Pc , under certain

assumptions of g and initial data, there exist small global solutions with the

following asymptotic behavior as t→∞:

u(x,t)=±C0t−N/2m(lnt)−N/(2m+Q)
[
f
(
x

t1/2m

)
+o(1)

]
, (1.12)

where f is the rescaled kernel of the fundamental solution of the linear para-

bolic operator (see Section 2). It is important that the constant C0 �= 0 depends

on the parameters m, N, and Q and is independent of initial data. This criti-

cal behavior corresponds to the evolution on the local centre manifold of the

nonlinear operator in the rescaled equation to be introduced in Section 4. It is

a generic behavior, though there exist other types of exponentially decaying

rescaled patterns on the stable manifold.

The main result for P = Pc is proved in Section 4, where we also discuss

possible generic behavior in the supercritical P > Pc and subcritical P ∈ (1,Pc)
ranges.

The phenomenon of critical noninvariant asymptotics is expected to exist

for a wider class of evolution equations including quasilinear higher-order par-

abolic equations. Nevertheless, it is not easy to specify such reasonable well-

posed quasilinear models. Indeed, the invariant scaling hypothesis on the dif-

fusion term implies that the homogeneous quasilinear operator is degenerate,

for examplel, A(u) = −(−∆)m(|u|σu) with σ > 0. Uniqueness and regularity

results for such degenerate equations (necessary for applying centre manifold

techniques) as well as a detailed analysis of the fundamental instantaneous

source-type solutions of the unperturbed equations and spectral properties

of the corresponding linear non-selfadjoint operators remain open for higher-

order equations withm> 1, unlike the second-order equations, which we will

discuss in a small survey below. We expect that a number of higher-order de-

generate quasilinear equations with critical absorption exponents, for which

proper solutions can be constructed by regularization, can admit similar non-

invariant asymptotics. For instance, the phenomenon of critical noninvariant

asymptotic behavior as t→∞ is expected to exist for the nonnegative solutions

of the well-posed thin film equation with critical absorption in R×R+,

ut =−
(
unuxxx

)
x−up with n∈ (0,3), pc =n+5. (1.13)

1.3. Critical behavior in nonlinear heat equations: a short survey. For the

canonical semilinear heat equation with m= 1,

ut =∆u−up in RN×R+ (u≥ 0), (1.14)

the asymptotic behavior in the critical exponent pc = 1+2/N was established

in [16, 15]. For positive L1 initial datau0(x)with exponential decay as |x| →∞,
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it was proved to be given by the logarithmically perturbed Gaussian kernel

u(x,t)= C0(t lnt)−N/2
[
e−|x|

2/4t+o(1)] as t �→∞ uniformly, (1.15)

where C0 is calculated explicitly, C0 = (N/2)N/2(1+ 2/N)N2/2. Compactness

of the rescaled orbits was proved by constructing suitable super- and sub-

solutions having a structure similar to (1.15) (an estimate from below was

earlier obtained in [23]), and the uniqueness of the rescaled limit (uniqueness

of the constant C0) was proved by a special energy analysis of the rescaled

equation.

A principle generalization was obtained in [4, 5], where such logarithmically

perturbed asymptotics were justified by a perturbation analysis of linearized

second-order selfadjoint operator and, hence, were shown to exist for a wide

class of second-order semilinear evolution equations.

Logarithmic factors in the asymptotics can occur for (1.14) due to a different

mechanism; for instance, for p > pc , assuming that the initial function has a

critical asymptotics ∼ |x|−N as |x| →∞ [25]. It is a phenomenon of interaction

of the Laplacian with initial data (having a critical behavior at infinity), which

follows from the convolution b(t)∗u0.

The critical asymptotic behavior of nonnegative solutions exists for second-

order quasilinear heat equations like the porous medium equation (PME) with

absorption

ut =∆|u|σu−|u|p−1u in RN×R+, σ > 0, p > 1. (1.16)

The critical exponent is pc = σ +1+2/N, and for compactly supported initial

data u0, the critical behavior as t→∞ takes the form

u(x,t)= (t lnt)−γ[f∗(xt−γ/N(lnt)γσ/2)+o(1)], γ = N
Nσ +2

, (1.17)

where f∗ ≥ 0 is a uniquely chosen rescaled profile of the famous Zel’dovich-

Kompaneetz-Barenblatt similarity solution of the PME ut =∆|u|σu. It has the

form

f∗(y)=
[

γσ
2N(σ +1)

(
a2
∗−|y|2

)
+

]1/σ
, (1.18)

where (·)+ denotes the positive part. The constant a∗, playing a role of C0 in

the semilinear case (1.15), is uniquely determined as follows:

a∗ =
[

2N(σ +1)
γσ

]1/2
[
NB(N/2,1+1/σ)
2B
(
N/2,1+pc/σ

)
]γσ/2

, (1.19)

with B(·,·) being Euler’s Beta function. Unlike the semilinear case σ = 0, in

(1.17) an unbounded lnt-factor scales also the space variable. Proof of con-

vergence (1.17) was done in [19] for the one-dimensional case N = 1, where
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the rescaled equation was shown to admit an approximate Lyapunov function

being “almost” monotone on evolution orbits (compactness of the rescaled

orbits via super- and sub-solutions as for σ = 0 and the uniqueness of the

asymptotic limit were established for any N ≥ 1). The proof of (1.17) for any

N > 1 was done in [21] by a general stability approach for perturbed dynamical

systems with uniformly stableω-limit sets. Similar lnt-perturbed asymptotics

are available for the p-Laplacian equation with the critical absorption

ut =∇·
(|∇u|σ∇u)−|u|p−1u, σ > 0,

pc = σ +1+ σ +2
N

.
(1.20)

Compactness of the rescaled orbits and the uniqueness of the limit profile

were established in [19], and passage to the limit was performed in [21] via

a dynamical systems approach. We note that linearization techniques similar

to those in [4, 5] are not straightforward for quasilinear equations like (1.16)

and (1.20). A linearization procedure about compactly supported profiles like

(1.18) even for N = 1 leads to a singular second-order symmetric ordinary

differential operators on bounded intervals (unlike the semilinear case σ = 0)

having singularities at finite endpoints. Spectral analysis and completeness of

eigenfunctions for suitable selfadjoint extensions of such operators are not

straightforward. For N > 1, one obtains complicated problems on selfadjoint

extensions of singular elliptic operators. Further results on asymptotics of

quasilinear heat equations with absorption can be found in ([31, Chapters 2

and 4] and the references therein).

Logarithmically perturbed “dipole” Barenblatt-Zel’dovich similarity solu-

tions for the PME with absorption (u≥ 0)

ut =
(
um

)
xx−up in R+×R+, u|x=0 ≡ 0, (1.21)

m> 0, pc =m+1, were studied in [20]. Critical absorption exponents cannot

be calculated explicitly if the corresponding unperturbed equation admits the

generic behavior described by self-similarity of the second kind, which cannot

be found via a dimensional analysis. For example, this is true for the 1D dual

PMEut = |uxx|m−1uxx , wherem> 1 (see [1]). The critical absorption exponent

for the dual PME with absorption

ut = |∆u|m−1∆u−|u|p−1u in RN×R+, m > 1, p > 1 (1.22)

is calculated but cannot be explicitly expressed via the diffusion exponent m
and dimension N [14]. The critical Fujita exponent for the one-dimensional

dual PME with the source

ut =
∣∣uxx∣∣m−1uxx+up, m> 1, p > 1 (1.23)

was calculated in [17].
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2. Preliminaries: fundamental solution and semigroup. We consider clas-

sical solutions of the Cauchy problem satisfying the integral equation

u(t)= e−(−∆)mtu0−
∫ t

0
e−(−∆)

m(t−s)g
(
u(s)

)
ds, t > 0. (2.1)

Let p(ω)=−|ω|m be the characteristic polynomial of−(−∆)m. Then e−(−∆)mtu0

= b(t)∗u0, where the kernel b(x,t) of the integral operator e−(−∆)mt is the

fundamental solution of the parabolic operator ∂/∂t+(−∆)m,

b(x,t)=�−1(ep(ω)t)≡ (2π)−N
∫
RN
e−|ω|

mt−i(ω·x)dω
(
b(x,0)= δ(x)).

(2.2)

It follows that it takes the standard self-similar form

b(x,t)= t−N/2mf(y), y = x
t1/2m

. (2.3)

Substituting b(x,t) into the linear equation

ut =−(−∆)mu, (2.4)

by the uniqueness of the fundamental solution of linear differential operators,

the radially symmetric profile f(y) is a unique solution of a linear ordinary

differential equation (ODE), which is the radial restriction of the elliptic equa-

tion

Bf ≡−(−∆y)mf + 1
2m

∇yf ·y+ N
2m

f = 0 in RN,
∫
RN
f = 1. (2.5)

The operator B has the divergent representation

Bf ≡−(−∆)mf + 1
2m

∇·(yf). (2.6)

For m > 1, the rescaled kernel changes sign and f = f(ξ), where ξ = |y|, is

oscillating as ξ→∞. Estimates of fundamental solutions, their derivatives, and

other properties are available in [11]. In particular, it is convenient to present

an upper estimate of f in the following form: there exist constants D > 1 and

d> 0 depending on m and N such that

∣∣f(y)∣∣<DF(y)≡Dω1e−d|y|
α

in RN, α= 2m
2m−1

∈ (1,2), (2.7)

whereω1 > 0 is a normalization constant such that
∫
F = 1. The positive kernel

b̄(x,t)= t−N/2mF(y),
∫
b̄(x,t)dx ≡ 1, (2.8)

is then the majorizing one for b in the sense that |b(x,t)| ≤ Db̄(x,t) in

RN ×R+. Therefore, solutions of order-preserving integral equation with the
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majorizing kernel b̄ can be compared with solutions of the original PDEs like

(2.1) and this gives global existence of small solutions of (1.7) for p > 1+2m/N
and estimates on blowup rates of general solutions (see [6, 18]). Local and

global solvability and regularity properties of classical solutions of

u(t)= b(t)∗u0−
∫ t

0
b(t−s)∗g(u(s))ds (2.9)

are well known (see, e.g., [33, Chapter 15] and recent results in [7, 10, 18]).

3. Spectral properties of B and of the adjoint operator B∗. We begin with

the spectral properties of B and the corresponding adjoint operator B∗ which

will play a key role in further asymptotic analysis of the nonlinear problem.

3.1. Point spectrum of non-selfadjoint operator B. For m > 1, B is not

symmetric and does not admit a selfadjoint extension. We consider B in the

weighted space L2
ρ(RN) with the exponentially growing weight function

ρ(y)= ea|y|α > 0 in RN, (3.1)

where a ∈ (0,2d) is a constant. We ascribe to B the domain H2m
ρ (RN). The

following result is valid [10, 13].

Lemma 3.1. (i) The operator B : H2m
ρ (RN) → L2

ρ(RN) is a bounded linear

operator with only the real point spectrum

σ(B)=
{
λβ =− |β|

2m
, |β| = 0,1,2, . . .

}
. (3.2)

Eigenvalues λβ have finite multiplicity with eigenfunctions

ψβ(y)= (−1)|β|√
β!

Dβf(y). (3.3)

(ii) The set of eigenfunctions Φ = {ψβ, |β| = 0,1,2, . . .} is complete in L2
ρ(RN).

(iii) The operator B is sectorial in L2
ρ and in l2ρ .

The “little” L2-space l2ρ ⊂ L2
ρ(RN) consists of functions v = ∑aβψβ with

coefficients {aβ} ∈ l2, that is,
∑
a2
β < ∞ with the same inner product [10]. In

the classical second-order casem= 1, f(y)= (4π)−N/2e−|y|2/4 is the rescaled

positive Gaussian kernel and the eigenfunctions are

ψβ(y)= e−|y|2/4Hβ(y), Hβ(y)≡Hβ1

(
y1
)···HβN (yN), (3.4)

where Hβ are Hermite polynomials in RN [2]. Operator B with the domain

H2
ρ(RN) with the weight ρ = e|y|2/4 is selfadjoint and the eigenfunctions form

an orthogonal basis in L2
ρ(RN).
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The point spectrum of B is calculated by differentiating the elliptic equation

(2.5),

DβBf = BDβf + |β|
2m

Dβf = 0. (3.5)

Performing the rescaling u(x,t)= t−N/2mw(y,τ), y = x/t1/2m and τ = lnt ∈
R of a solution u(x,t) of (2.4) with initial data u0 ∈H2m

ρ (RN), yields the par-

abolic equation

wτ = Bw for τ = lnt ∈R. (3.6)

Rescaling the convolution u(t) = b(t)∗u0 leads to the following explicit rep-

resentation of the semigroup eBτ :

w(y,τ)=
∫
RN
f
(
y−ze−τ/2m)u0(z)dz, (3.7)

and further Taylor expansion in the kernel shows that (3.2) is the point spec-

trum. Completeness of Φ is proved in [10] by the Riesz-Fischer theorem which

is similar to the completeness of Hermite’s or Laguerre’s orthogonal polynomi-

als (see [27, page 431]). Completeness is also associated with exact semigroup

representation (3.7) (no other eigenfunctions from L2
ρ(RN) can occur in the

expansion).

Operator B̃ = B− I has the strictly negative point spectrum σp(B̃) = {λ̃β =
−1− |β|/2m}. By the explicit convolution representation (3.7), the descent

method of construction of fundamental solutions implies that

B̃−1g ≡K∗g, g ∈ L2
ρ
(
RN
)
, (3.8)

with the kernel

K(y,ζ)=−
∫ 1

0
(1−z)−N/2mf [(y−ζz1/2m)(1−z)−1/2m]dz. (3.9)

In view of known oscillatory properties of the exponentially decaying rescaled

kernel f , see (2.7), using a transformation RN → B1 in both independent vari-

ables in (3.9) (B1 is the unit ball), we have that K is an Lp-kernel, p ∈ (1,2], and

(3.8) is a compact operator with a discrete spectrum accumulating at 0. Thus,

B has only a point spectrum, the resolvent (B−λI)−1 in l2ρ has a pole ∼ 1/λ as

λ→ 0 (λ0 = 0 has a multiplicity one) [24], and B is sectorial [12].

Lemma 3.1 gives the centre and stable subspaces of B, Ec = Span{ψ0 = f}
and Es = Span{ψβ, |β|> 0}.

3.2. Spectrum and polynomial eigenfunctions of the adjoint operator B∗.

We now describe eigenfunctions of the adjoint operator

B∗ = −(−∆)m− 1
2m

y ·∇. (3.10)
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In the second-order case m= 1, it admits a symmetric representation

B∗ = 1
ρ∗
∇·(ρ∗∇), ρ∗(y)= e−|y|2/4. (3.11)

Then −B∗ ≥ 0 is semibounded and there exists its unique Friedrichs extension,

which is a selfadjoint operator in the weighted Hilbert space L2
ρ∗(RN) with the

domain �(B∗)=H2
ρ∗(RN) and a discrete spectrum. The eigenfunctions form an

orthonormal basis in L2
ρ∗(RN) and the classical Hilbert-Schmidt theory applies

(see [2]).

Let m > 1 and consider B∗ in L2
ρ∗(RN) with the exponentially decaying

weight function

ρ∗(y)= 1
ρ(y)

≡ e−a|y|α > 0. (3.12)

The following results are valid [10].

Lemma 3.2. (i) The operator B∗ : H2m
ρ∗ (RN) → L2

ρ∗(RN) is a bounded linear

operator with spectrum σ(B∗) given by (3.2). Eigenfunctions ψ∗β (y) are |β|th-

order polynomials

ψ∗β (y)=
1√
β!


yβ+ [|β|/2m]∑

j=1

1
j!
(−∆)mjyβ


. (3.13)

(ii) The subset {ψ∗β} is complete in L2
ρ∗(RN).

(iii) The operator B∗ is sectorial in L2
ρ∗ and l2ρ∗ .

With this definition of the adjoint eigenfunctions, the orthonormality con-

dition holds:

〈
ψβ,ψ∗γ

〉= δβ,γ. (3.14)

We use the expansion analysis of the explicit convolution representation. In

order to get the adjoint operator B∗, we introduce different rescaled variables

corresponding to blowup as t→ 1−, u(x,t)=w(y,τ), y = x/(1−t)1/2m, and

τ =− ln(1−t) (0< t < 1), and then w solves the problem

wτ = B∗w for τ > 0, w(0)=u0. (3.15)

Rescaling the convolution u(t) = b(t)∗u0 yields the explicit representation

of the semigroup with the infinitesimal generator B∗

w(y,τ)=
∫
RN
f(ζ−ν)u0

(
ζt1/2m

)
dζ, ν =y[(1−t)/t]1/2m. (3.16)

The asymptotic expansions in (3.16) as τ →∞ (t→ 1−) gives a complete point

spectrum in L2
ρ∗(RN), (see [13]). Completeness follows from (3.13) and the well-

known fact that polynomials {yβ} are complete in Lp-spaces with any suitable
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positive weights. Regardless of the pure polynomial structure of eigenfunc-

tions, completeness properties in weighted spaces can be seen from the con-

tinuity of the corresponding uniformly parabolic flow (3.15). For m = 1, both

(3.2) and (3.13) are well-known properties of the separable Hermite polynomi-

als generated by a selfadjoint Sturm-Liouville problem [2].

Taking the operator B∗− I with uniformly negative point spectrum and us-

ing the fact that operations (·)∗ and (·)−1 commute for operators in Banach

spaces, and that adjoint operator of a compact operator is compact, we have

that (B∗−I)−1 is compact with only the point spectrum.

4. Centre manifold behavior: the main result. It is convenient to state the

main result in terms of rescaled variables generated by the similarity structure

of the fundamental solution. We perform the change of the dependent and

independent variables (u,x,t)� (v,y,τ), where

u(x,t)= (1+t)−N/2mv(y,τ),
y = x

(1+t)1/2m , τ = ln(1+t) :R+ �→R+.
(4.1)

The critical exponent Pc has been chosen in such a way that, under the scaling

invariance condition (1.4) with P = Pc , the scaling group admitted by the full

equation (1.2) is the same as the group of the linear equation (2.4). Therefore,

in terms of the new rescaled variables (4.1) we obtain an autonomous (time-

independent) parabolic equation

vτ =A(v)≡ Bv−g(y,v) for τ > 0, v(0)=u0. (4.2)

We consider sufficiently small initial data u0 ∈H2m
ρ (RN) satisfying |u0(y)| ≤

ce−b|y|α in RN , where c > 0 is small and b ≥ d is large enough.

Sectorial operator B generates a strong continuous analytic semigroup {eBτ ,
τ ≥ 0} (see [12]). The asymptotic behavior with a finite-dimensional local cen-

tre manifold is covered by the invariant manifold theory (see [28, Chapter 6])

using interpolation spaces Ei = DB(θ+ i,∞) for i = 0,1, θ ∈ (0,1). The main

assumption on the spectral set σ+(B) = {λ ∈ σ(B) : Reλ ≥ 0} is valid, and

moreover, σ+(B) consists of a unique zero simple eigenvalue λ0 = 0 with the

eigenfunctionψ0 = f (no unstable subspace is available). Setting σ−(B)= {λ∈
σ(B) : Reλ < 0}, we observe a positive gap

ω− = −sup
{

Reλ : λ∈ σ−(B)
}= 1

2m
> 0. (4.3)

Using projection P associated with the spectral set σ+(B), P(E0)⊂ E1, leads to

a one-dimensional equation for X(τ)= Pv(τ),

X′ = B+X−Pg(X+Y), τ ≥ 0, (4.4)
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where B+ = B|P(E0) is the null operator (since λ0 = 0) and Y(τ) = (I−P)v(τ).
Necessary assumptions on the nonlinear term g are valid for several kinds

of such lower-order operators, see the conditions in [28, Section 9.2]. Various

projectivity methods for non-selfadjoint cases can be found in [32]. It then

follows from [28, Theorem 9.2.2] that there exists a one-dimensional invariant

local centre manifoldWc(0) of the origin, which is the graph of a Lipschitz con-

tinuous function γ : P(E0)→ (I−P)(E1). Moreover, it follows from (4.3) that it

is exponentially attractive provided that g is twice continuously differentiable,

see [28, Proposition 9.2.3]. Thus, we state the following condition on g:

there exists a one-dimensional Wc
loc(0). (4.5)

Under the above hypotheses, we have the following result.

Theorem 4.1. Let (1.4) be valid with the critical exponent P = Pc ≥ 2 given

in (1.5). Let twice continuously differentiable function g(·,v) be such that (4.5)

holds and

R∗ ≡
〈
g(·,f ),ψ∗0

〉
> 0, (4.6)

whereψ∗0 ≡ c∗0 > 0 is the first eigenfunction of the adjoint operator B∗. Then any

small solution v(·,τ), which does not decay exponentially fast, has the following

asymptotic behavior as t→∞:

v(y,τ)=±C0τ−N/(2m+Q)
[
f(y)+o(1)], where C0=

[
R∗(2m+Q)

N

]−N/(2m+Q)
.

(4.7)

Hence, (4.7) implies that the null solution is asymptotically stable in E1 (see

[28, page 371]).

Proof. The projection is Pv = 〈v,ψ∗0 〉ψ0 with ψ0 = f and ψ∗0 ≡ 1. The

behavior of the local centre manifold is given by the one-dimensional equation

(see [28, pages 365–371]) z′(τ) = Pg(z(τ)+γ(z(τ))) for τ ≥ 0, where by the

regularity assumptions on the nonlinearity, γ′(0)= 0. Setting z(τ)= a0(τ)ψ0,

we have

a′0 =−
〈
g
(
a0ψ0+o

(
a0
))
,ψ∗0

〉
. (4.8)

Using the second homogenuity hypothesis in (1.4), we finally derive the evolu-

tion equation of the local centre manifold

a′0 =−
∣∣a0

∣∣P−1a0
〈
g
(
ψ0
)
,ψ∗0

〉+o(∣∣a0

∣∣P)≡−R∗∣∣a0

∣∣P−1a0+o
(∣∣a0

∣∣P).
(4.9)

In the derivation, we have used that ψ0(y) is exponentially decaying as |y| →
∞ and g(·,v)=O(|v|P ) as v → 0. Equation (4.9) can be integrated asymptoti-

cally as a standard ODE and admits only globally decaying orbits (4.7).



CRITICAL GLOBAL ASYMPTOTICS IN HIGHER-ORDER SEMILINEAR . . . 3821

Remark 4.2 (unstable centre manifold behavior). The sign restriction (4.6)

is essential. If R∗ < 0, then the asymptotic ODE (4.9) implies unstability of

the origin via centre manifold evolution. In the case of (1.7) with nonnegative

nonmonotone perturbation, this is exactly the case: any solution with initially

positive first Fourier coefficient,
∫
u0 > 0, blows up in finite time (see differ-

ent proofs in [9] (by a test-function method) and in [18] (by a modification of

Kaplan’s eigenfunction method)).

Remark 4.3 (exponentially decaying patterns on the stable manifold). Con-

cerning another assumption of the theorem, we note that general equation

(4.2) admits orbits on the infinite-dimensional stable manifold of the origin,

which follows from the eigenfunctions expansion of solutions. Under natural

hypotheses on nonlinear term g, v(y,τ) for τ ≥ 0 is sufficiently smooth by the

parabolic regularity theory (see [11, 12]). In view of completeness and orthonor-

mality of eigenfunctions of B, for smooth small initial data v0 ∈H2m
ρ (RN), we

use the eigenfunctions expansion of the solution

v(τ)=
∑
β
aβ(τ)ψβ = a0(τ)ψ0+

∑
|β|≥1

aβ(τ)ψβ ≡X(τ)+Y(τ), (4.10)

where X(τ) ≡ Pv(τ) ∈ Ec , and Y(τ) ∈ Es for all τ > 0 are the corresponding

projections. The expansion coefficients satisfy the dynamical system

a′β = λβaβ−
〈
g(·,v),ψ∗β

〉
for any β, (4.11)

where the first equation with |β| = 0 gives the evolution equation on the one-

dimensional local centre manifold. The diagonal structure of the system (4.11)

shows that if the nonlinear term g forms an exponentially decaying perturba-

tion as τ →∞, then there exist patterns with exponential decay as τ →∞

v(y,τ)= Ceλβτ(ψβ(y)+o(1)), C = C(u0
) �= 0, (4.12)

whereψβ is a suitable eigenfunction with λβ < 0 for |β|> 0. Indeed, asymptot-

ically, these are exponentially decaying solutions of the linear equation (3.6).

Such results are well known in the linear perturbation theory, (see [8, 12]).

4.1. Asymptotic behavior in the supercritical range. Assuming that P > Pc
and performing rescaling (4.1), we obtain a perturbed equation

vτ = Bv−eγτg(y,v), where γ = N
(
Pc−P

)
2m

(4.13)

(γ = 0 for P = Pc leads to the autonomous equation (4.2)), so that γ < 0 if P > Pc
and the nonlinear term forms an exponentially small perturbation of the linear

equation (3.6). This implies the existence of global small solutions regardless of

the sign of the nonlinear term g, (see [10, 18], cf. a general semigroup approach

in [7]).
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The asymptotic behavior is then expected to be “almost” the same as for

the linear equation (3.6) (see comments below on special critical cases). For

g(v) = −|v|p with p > pc = 1+2m/N, the generic stable behavior v(y,τ) =
C0ψ0(y)+o(1) as τ →∞was established in [10]. A dynamical system approach

there admits extensions to more general equations.

4.2. On stable similarity solutions in the subcritical range. Let P ∈ (1,Pc).
In view of (1.4), we perform the rescaling corresponding to the invariant group

of transformations

u= (1+t)µv, y = x
(1+t)1/2m , τ = ln(1+t) :R+ �→R+, (4.14)

with the negative exponent µ =−(1+Q/2m)/(P−1) for Q>−2m. This gives

the autonomous equation for the rescaled solution

vτ = B∗v−g(y,v) for τ > 0, (4.15)

where

B∗ = B+c∗I, c∗ = N
(
Pc−P

)
2m(P−1)

(4.16)

with spectrum σ(B∗) = {c∗−|β|/2m}. Hence, c∗ > 0 for P ∈ (1,Pc), operator

B∗ in (4.15) has finite positive Morse index and v ≡ 0 is unstable stationary so-

lution (unlike the case P ≥ Pc ). This suggests looking for a nontrivial similarity

profiles V = V(y) satisfying the stationary elliptic equation

B∗V −g(y,V)= 0 in RN (4.17)

with exponential decay as y →∞. Such very singular similarity solutions (VSS)

describing the generic asymptotic behavior as t→∞ are known from the 1980s

for the second-order (m = 1) semilinear equations with g(v) = vp ; see first

results on existence, uniqueness, and stability of a similarity profile V > 0 in

[3, 16, 26]. For higher-order equations withm> 1, these interesting problems

remain open. For a particular equation (1.6) with 1 < p < 1+ 2m/N, some

analytical and numerical evidence of existence of a finite number of VSS’s (the

first one stable) is presented in [22].

4.3. On countable subset of critical exponents. It follows from (4.16) that

there exists a countable subset of exponents {Pk} with integer k = |β| such

that B∗ has a nontrivial centre subspace,

c∗− k
2m

= 0 �⇒ Pk = 1+ 2m+Q
k+N , k= 0,1,2, . . . , (4.18)

and hence, Pc is the first one P0 with k= 0. In the radial setting, assuming that

g = g(|x|,u), for arbitrary even k= 2,4, . . . , operator B∗ has eigenvalue 0 with

a one-dimensional centre subspace Ec = Span{ψk(|y|)} and a finite number
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of isolated positive eigenvalues. The rest of the construction is quite similar

to that for k = 0 in Theorem 4.1. Assuming that a centre manifold analysis

applies in this case (though it is more delicate) and looking for a solution of

(4.15) in the form v(τ) = ak(τ)ψk(y)+··· , we obtain the asymptotic ODE

a′k = −ck|ak|P−1ak+··· with the coefficient ck = 〈g(·,ψk),ψ∗k 〉 assumed to

be positive. For ck < 0, the centre manifold behavior is unstable. This gives

the orbit ak(τ) = ±Ckτ−1/(P−1)+··· as τ →∞, where Ck = [ck(2m+Q)/(k+
N)]−(k+N)/(2m+Q). Finally, returning back to the original variables via (4.14), we

derive the following asymptotic patterns in the critical cases P = Pk for even

k= 2,4, . . . (cf. (1.12)):

u(x,t)=±Ckt−(k+N)/2m(lnt)−(k+N)/(2m+Q)ψk
( |x|
t1/2m

)
+··· for t� 1.

(4.19)

The first term of such asymptotic behavior does not reveal any trace of initial

data. We again obtain lnt-perturbed asymptotic patterns at the countable sub-

set of critical exponents P = Pk. In the case of nonlinearity g(x,v) = −|v|p ,

spectra of asymptotically exponentially decaying patterns for (1.7) including

the critical cases were studied in [10]. A countable subset of logarithmically

perturbed patterns can be constructed for nonlinear reaction-absorption equa-

tions (1.16) and (1.22) (see [14]).
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