COEFFICIENTS ESTIMATES FOR FUNCTIONS IN $B_n(\alpha)$

S. ABDUL HALIM

Received 12 February 2003

We consider functions f, analytic in the unit disc and of the normalised form $f(z) = z + \sum_{k=2}^{\infty} a_k z^k$. For functions $f \in B_n(\alpha)$, the class of functions involving the Sălăgean differential operator, we give some coefficient estimates, namely, $|a_2|$, $|a_3|$, and $|a_4|$.

2000 Mathematics Subject Classification: 30C45.

1. Introduction. Let *A* be the class of functions *f* which are analytic in the unit disc $D = \{z : |z| < 1\}$ and are of the form

$$f(z) = z + \sum_{j=2}^{\infty} a_j z^j.$$
 (1.1)

For functions $f \in A$, we introduce the subclass $B_n(\alpha)$ given by the following definition.

DEFINITION 1.1. For $\alpha > 0$ and n = 0, 1, 2, ..., a function f normalised by (1.1) belongs to $B_n(\alpha)$ if and only if, for $z \in D$,

$$\operatorname{Re}\frac{D^{n}[f(z)]^{\alpha}}{z^{\alpha}} > 0, \tag{1.2}$$

where D^n denotes the differential operator with $D^n f(z) = D(D^{n-1} f(z)) = z[D^{n-1} f(z)]'$ and $D^{\circ} f(z) = f(z)$.

REMARK 1.2. The differential operator D^n was introduced by Sălăgean [5].

For n = 1, $B_1(\alpha)$ denotes the class of Bazilević functions with logarithmic growth studied [4, 6, 7], amongst others. In [2], the author established some properties of the class $B_n(\alpha)$ including showing that $B_n(\alpha)$ forms a subclass of S, the class of all analytic, normalized, and univalent functions in D. The class $B_0(\alpha)$ was initiated by Yamaguchi [8].

2. Preliminary results. In proving our results, we need the following lemmas. However, we first denote P to be the class of analytic functions with a positive real part in D.

LEMMA 2.1. Let $p \in P$ and let it be of the form $p(z) = 1 + \sum_{i=1}^{\infty} c_i z^i$. Then

- (i) $|c_i| \le 2 \text{ for } i \ge 1$,
- (ii) $|c_2 \mu c_1^2| \le 2 \max\{1, |1 2\mu|\}$ for any $\mu \in \mathbb{C}$.

LEMMA 2.2 (see [3]). If the functions $1 + \sum_{\nu=1}^{\infty} b_{\nu} z^{\nu}$ and $1 + \sum_{\nu=1}^{\infty} c_{\nu} z^{\nu}$ belong to P, then the same is true for the function $1 + (1/2) \sum_{\nu=1}^{\infty} b_{\nu} c_{\nu} z^{\nu}$.

LEMMA 2.3 (see [3]). Let $h(z) = 1 + h_1 z + h_2 z^2 + \cdots$ and let $1 + g(z) = 1 + g_1 z + g_2 z^2 + \cdots$ be functions in *P*. Set $y_0 = 1$ and for $v \ge 1$,

$$\gamma_{v} = 2^{-v} \left[1 + \frac{1}{2} \sum_{\mu=1}^{v} {v \choose \mu} h_{\mu} \right].$$
 (2.1)

If A_k is defined by

$$\sum_{\nu=1}^{\infty} (-1)^{\nu+1} \gamma_{\nu-1} (g(z))^{\nu} = \sum_{k=1}^{\infty} A_k z^k, \tag{2.2}$$

then

$$|A_k| \le 2. \tag{2.3}$$

3. Results

THEOREM 3.1. If $\alpha > 0$, n = 0, 1, 2, ..., and $f \in B_n(\alpha)$ (n is fixed) with $f(z) = z + \sum_{j=2}^{\infty} a_j z^j$, then the following inequalities hold:

$$\left| a_2 \right| \le \frac{2\alpha^{n-1}}{(1+\alpha)^n},\tag{3.1}$$

$$|a_3| \leq \begin{cases} \frac{2\alpha^{n-1}}{(2+\alpha)^n} \left(1 - \left(\frac{\alpha-1}{\alpha}\right) \left(\frac{\alpha^2 + 2\alpha}{\alpha^2 + 2\alpha + 1}\right)^n\right), & \text{for } 0 < \alpha < 1, \\ \frac{2\alpha^{n-1}}{(2+\alpha)^n}, & \text{for } \alpha \geq 1, \end{cases}$$

$$(3.2)$$

$$|a_4| \leq \begin{cases} \frac{2\alpha^{n-1}}{(3+\alpha)^n} \\ + \frac{4(1-\alpha)\alpha^{2n-2}}{(1+\alpha)^n(2+\alpha)^n} \left(1 + \frac{(1-2\alpha)(2+\alpha)^n\alpha^{n-1}}{3(1+\alpha)^{2n}}\right), & \text{for } 0 < \alpha < 1, \\ \frac{2\alpha^{n-1}}{(3+\alpha)^n}, & \text{for } \alpha \geq 1. \end{cases}$$

$$(3.3)$$

REMARK 3.2. When n = 1, the above results reduce to those obtained by Singh [6].

PROOF. For $f \in B_n(\alpha)$, Definition 1.1 gives

$$\operatorname{Re} \frac{D^n f(z)^{\alpha}}{z^{\alpha}} > 0. \tag{3.4}$$

Inequality (3.4) suggests that there exists $p \in P$ such that for $z \in D$,

$$\frac{D^n f(z)^{\alpha}}{z^{\alpha}} = \alpha^n p(z). \tag{3.5}$$

Next, writing $D^n f(z)^{\alpha}$ as $z[D^{n-1} f(z)^{\alpha}]'$ and $p(z) = 1 + \sum_{i=1}^{\infty} c_i z^i$ in (3.5), it follows that

$$[D^{n-1}f(z)^{\alpha}]' = \alpha^n \left(z^{\alpha-1} + \sum_{i=1}^{\infty} c_i z^{i+\alpha-1}\right)$$
(3.6)

and integration gives

$$\frac{D^{n-1}f(z)^{\alpha}}{z^{\alpha}} = \alpha^{n-1} \left[1 + \sum_{i=1}^{\infty} \alpha \frac{c_i z^i}{(i+\alpha)} \right]. \tag{3.7}$$

Now, repeating the process, we are able to establish the following relation which holds in general for any k = 0, 1, 2, ..., n

$$\frac{D^{n-k}f(z)^{\alpha}}{z^{\alpha}} = \alpha^{n-k} \left[1 + \sum_{i=1}^{\infty} \alpha^k \frac{c_i z^i}{(i+\alpha)^k} \right]. \tag{3.8}$$

In particular, when n = k, we have

$$\frac{D^0 f(z)^{\alpha}}{z^{\alpha}} = \left(\frac{f(z)}{z}\right)^{\alpha} = 1 + \sum_{i=1}^{\infty} \alpha^n \frac{c_i z^i}{(i+\alpha)^n}.$$
 (3.9)

On comparing coefficients in (3.9) with $f(z) = z + \sum_{j=2}^{\infty} a_j z^j$, we obtain

$$\alpha a_2 = \frac{\alpha^n c_1}{(1+\alpha)^n},\tag{3.10}$$

$$\alpha a_3 = \frac{\alpha^n c_2}{(2+\alpha)^n} + \frac{\alpha (1-\alpha) a_2^2}{2},\tag{3.11}$$

$$\alpha a_4 = \frac{\alpha^n c_3}{(3+\alpha)^n} + \frac{\alpha (1-\alpha)(\alpha-2)a_2^3}{6} + \alpha (1-\alpha)a_3 a_2.$$
 (3.12)

Inequality (3.1) follows easily from (3.10) for all $\alpha > 0$ since $|c_1| \le 2$.

Eliminating a_2 in (3.11), we have

$$a_{3} = \frac{\alpha^{n-1}c_{2}}{(2+\alpha)^{n}} + \frac{(1-\alpha)}{2} \left(\frac{\alpha^{n-1}c_{1}}{(1+\alpha)^{n}}\right)^{2}$$

$$= \frac{\alpha^{n-1}}{(2+\alpha)^{n}} \left[c_{2} - \frac{(\alpha-1)}{2} \frac{(2+\alpha)^{n}}{(1+\alpha)^{2n}} \alpha^{n-1}c_{1}^{2}\right]$$

$$= \frac{\alpha^{n-1}}{(2+\alpha)^{n}} \left(c_{2} - \mu c_{1}^{2}\right)$$

$$\leq \frac{2\alpha^{n-1}}{(2+\alpha)^{n}} \max\left\{1, |1-2\mu|\right\},$$
(3.13)

where we used Lemma 2.1(ii) with

$$2\mu = \frac{(\alpha - 1)\alpha^{n-1}}{(1 + \alpha)^n} \left(\frac{2 + \alpha}{1 + \alpha}\right)^n.$$
 (3.14)

Since $\mu \ge 0$ for $\alpha \ge 1$, both inequalities in (3.2) are easily obtained. We now prove (3.3). Using (3.10) and (3.11) in (3.12) gives

$$a_4 = \frac{\alpha^{n-1}}{(3+\alpha)^n} \left[c_3 + \frac{(1-\alpha)(3+\alpha)^n \alpha^{n-1}}{(1+\alpha)^n} \left(\frac{c_1 c_2}{(2+\alpha)^n} + \frac{(1-2\alpha)\alpha^{n-1} c_1^3}{6(1+\alpha)^{2n}} \right) \right]. \tag{3.15}$$

First, we consider the case $0 < \alpha < 1/2$. Applying the triangle inequality with Lemma 2.1(i) in (3.15) results in the inequality

$$\left| a_{4} \right| \leq \frac{2\alpha^{n-1}}{(3+\alpha)^{n}} \left[1 + \frac{2(1-\alpha)(3+\alpha)^{n}\alpha^{n-1}}{(1+\alpha)^{n}} \left(\frac{1}{(2+\alpha)^{n}} + \frac{(1-2\alpha)\alpha^{n-1}}{3(1+\alpha)^{2n}} \right) \right]$$
(3.16)

which is the first inequality in (3.3).

For the case $1/2 \le \alpha < 1$, we use Carathéodory-Toeplitz result which states that for some ε with $|\varepsilon| < 1$,

$$c_2 = \frac{c_1^2}{2} + \varepsilon \left(2 - \frac{|c_1|^2}{2} \right). \tag{3.17}$$

Thus, (3.15) becomes

$$a_{4} = \frac{\alpha^{n-1}}{(3+\alpha)^{n}} \left[c_{3} + \frac{(1-\alpha)(3+\alpha)^{n}\alpha^{n-1}c_{1}}{(1+\alpha)^{n}} \times \left(\frac{c_{1}^{2}}{2(2+\alpha)^{n}} + \frac{(1-2\alpha)\alpha^{n-1}c_{1}^{2}}{6(1+\alpha)^{2n}} + \frac{\varepsilon}{(2+\alpha)^{n}} \left(\frac{2-|c_{1}|^{2}}{2} \right) \right) \right].$$
(3.18)

We then have

$$\left| a_{4} \right| \leq \frac{\alpha^{n-1}}{(3+\alpha)^{n}} \left(\left| c_{3} \right| + \frac{(1-\alpha)(3+\alpha)^{n}\alpha^{n-1}\left| c_{1} \right|}{(1+\alpha)^{n}(2+\alpha)^{n}} \left| \frac{c_{1}^{2}}{2}w - \frac{\left| c_{1} \right|^{2}}{2}\varepsilon + 2\varepsilon \right| \right), \tag{3.19}$$

where

$$w = 1 + \frac{(1 - 2\alpha)\alpha^{n-1}(2 + \alpha)^n}{3(1 + \alpha)^{2n}}.$$
(3.20)

Since $0 < w \le 1$ and $|\varepsilon| < 1$, it is easily shown that

$$\left| a_{4} \right| \leq \frac{\alpha^{n-1}}{(3+\alpha)^{n}} \left(\left| c_{3} \right| + \frac{(1-\alpha)(3+\alpha)^{n}\alpha^{n-1} \left| c_{1} \right|}{(1+\alpha)^{n}(2+\alpha)^{n}} \left(\frac{\left| c_{1} \right|^{2}}{2} (w-1) + 2 \right) \right) \tag{3.21}$$

and the result follows trivially when using $|c_1| \le 2$ and $|c_3| \le 2$.

Finally, we consider (3.3) for the case $\alpha \ge 1$. Here, we use a method introduced by Nehari and Netanyahu [3] which was also used by Singh [6] and the author in [1].

First, let h and g be defined as in Lemma 2.3, and since $p \in P$, Lemma 2.2 indicates that

$$1 + G(z) = 1 + \frac{1}{2} \sum_{k=1}^{\infty} g_k c_k z^k$$
 (3.22)

also belongs to P.

Next, it follows from (2.2) that, with g replaced by G,

$$|A_3| = \left| \frac{1}{2} g_3 c_3 - \frac{1}{2} \gamma_1 g_1 g_2 c_1 c_2 + \frac{1}{8} \gamma_2 g_1^3 c_1^3 \right|. \tag{3.23}$$

Rewriting (3.15) as

$$\alpha^{1-n}(3+\alpha)^n a_4 = c_3 + \frac{(1-\alpha)(3+\alpha)^n \alpha^{n-1}}{(1+\alpha)^n (2+\alpha)^n} c_1 c_2 + \frac{(1-\alpha)(1-2\alpha)(3+\alpha)^n \alpha^{2n-2}}{6(1+\alpha)^{3n}} c_1^3$$
(3.24)

and comparing it with (3.23), the required result is easily obtained since, by Lemma 2.3, $|A_3| = ((3+\alpha)^n/(\alpha^{n-1}))|a_4| \le 2$. This however is only true if we can show the existence of functions h and ψ in P where $\psi(z) = 1 + g(z)$. To be simple, we choose $\psi(z) = (1+z)/(1-z)$. Thus, now it remains to construct and show that an $h \in P$.

Now since $g_1 = g_2 = g_3 = 2$, it follows from (3.23) and (3.24) that

$$2y_1 = \frac{(\alpha - 1)(3 + \alpha)^n \alpha^{n-1}}{(1 + \alpha)^n (2 + \alpha)^n},$$
(3.25)

$$\gamma_2 = \frac{(1-\alpha)(1-2\alpha)(3+\alpha)^n \alpha^{2n-2}}{6(1+\alpha)^{3n}}.$$
 (3.26)

However, from (2.1), we have

$$\gamma_1 = \frac{1}{2} \left(1 + \frac{1}{2} h_1 \right),\tag{3.27}$$

$$\gamma_2 = \frac{1}{4} \left(1 + h_1 + \frac{1}{2} h_2 \right). \tag{3.28}$$

Solving for h_1 by eliminating y_1 from (3.25) and (3.27), we obtain

$$|h_1| = 2 \left| \frac{(\alpha - 1)(3 + \alpha)^n \alpha^{n-1}}{(1 + \alpha)^n (2 + \alpha)^n} - 1 \right|.$$
 (3.29)

Quite trivially, it can be seen that $|h_1| \le 2$ for $\alpha \ge 1$.

In a similar manner, eliminating y_2 from (3.26) and (3.28) and using h_1 given by (3.29), we have

$$h_2 = 2\left\{1 - \frac{2}{3}\left(1 - \frac{1}{\alpha}\right)\left(\frac{\alpha^2 + 3\alpha}{\alpha^2 + 3\alpha + 2}\right)^n \left[\left(\frac{1 - 2\alpha}{\alpha}\right)\left(\frac{\alpha^2 + 2\alpha}{\alpha^2 + 2\alpha + 1}\right)^n + 3\right]\right\}. \tag{3.30}$$

For $\alpha \ge 1$, elementary calculations show that $|h_2| \le 2$.

Next, we construct h by first setting it to be of the form

$$h(z) = \frac{\mu_1(1-z)}{1+z} + \frac{\mu_2(1+\lambda z^2)}{1-\lambda z^2}$$
(3.31)

with

$$\mu_{1} = 1 - \frac{(\alpha - 1)(3 + \alpha)^{n} \alpha^{n-1}}{(1 + \alpha)^{n}(2 + \alpha)^{n}},$$

$$\mu_{2} = \frac{(\alpha - 1)(3 + \alpha)^{n} \alpha^{n-1}}{(1 + \alpha)^{n}(2 + \alpha)^{n}},$$

$$\lambda = 1 - \frac{2}{3} \left[\left(\frac{1 - 2\alpha}{\alpha} \right) \left(\frac{\alpha^{2} + 2\alpha}{\alpha^{2} + 2\alpha + 1} \right)^{n} + 3 \right].$$
(3.32)

It is readily seen that for $\alpha \ge 1$, both μ_1 and μ_2 are nonnegative and $\mu_1 + \mu_2 = 1$. Further, with a little bit of manipulation, it can be shown that $|\lambda| \le 1$ and the coefficients of z and z^2 in the expansion of h are respectively those given by (3.29) and (3.30). Hence $h \in P$ and thus $|a_4| \le 2\alpha^{n-1}/(3+\alpha)^n$, the second inequality in (3.3). This completes the proof of Theorem 3.1.

REFERENCES

- [1] S. Abdul Halim, *On the coefficients of some Bazilevic functions of order*, J. Ramanujan Math. Soc. 4 (1989), no. 1, 53-64.
- [2] _____, On a class of analytic functions involving the Sălăgean differential operator, Tamkang J. Math. 23 (1992), no. 1, 51-58.
- [3] Z. Nehari and E. Netanyahu, *On the coefficients of meromorphic schlicht functions*, Proc. Amer. Math. Soc. **8** (1957), 15–23.
- [4] M. Obradović, *Some results on Bazilevič functions*, Mat. Vesnik **37** (1985), no. 1, 92-96.
- [5] G. S. Sălăgean, Subclasses of univalent functions, Complex Analysis—Fifth Romanian-Finnish Seminar, Part 1 (Bucharest, 1981), Lecture Notes in Math., vol. 1013, Springer, Berlin, 1983, pp. 362–372.
- [6] R. Singh, On Bazilevič functions, Proc. Amer. Math. Soc. 38 (1973), 261–271.
- [7] D. K. Thomas, On a subclass of Bazilevič functions, Int. J. Math. Math. Sci. 8 (1985), no. 4, 779–783.
- [8] K. Yamaguchi, On functions satisfying $R\{f(z)/z\} < 0$, Proc. Amer. Math. Soc. 17 (1966), 588-591.
- S. Abdul Halim: Institute of Mathematical Sciences, University of Malaya, $50603~{\rm Kuala}$ Lumpur, Malaysia

E-mail address: suzeini@um.edu.my