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We give an algorithm to compute the series expansion for the inverse of a given
function. The algorithm is extremely easy to implement and gives the firstN terms
of the series. We show several examples of its application in calculating the in-
verses of some special functions.
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1. Introduction. The existence of series expansions for inverses of analytic

functions is a well-known result of complex analysis [17]. The standard inverse

function theorem, a proof of which can be found, for example, in [12], is as

follows.

Theorem 1.1. Let h(x) be analytic for |x−x0|<R, where h′(x0)≠ 0. Then

z = h(x) has an analytic inverse x = H(z) in some ε-neighborhood of z0 =
h(x0).

In the case when x0 = z0 = 0, |h(x)| ≤ M for |x| < R, and h′(0) = a,

Redheffer [25] has shown that it is enough to take ε = (1/4)((aR)2/M).
However, the procedure to obtain the actual series is usually very difficult to

implement in practice. Under the conditions of Theorem 1.1, the two standard

methods to compute the coefficients bn of

h−1(z)=H(z)=
∑
n≥0

bn
(
z−z0

)n
(1.1)

are reversion of series [16, 26, 33] and Lagrange’s theorem. The first one re-

quires expanding h(x) around x0

h(x)=
∑
n≥0

an
(
x−x0

)n
(1.2)

and then solving for bn in the equation

z =
∑
n≥0

an

[ ∑
n≥0

bn
(
z−z0

)n−x0

]n
(1.3)
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by equating powers of z and taking into account that a0 = z0 and b0 = x0. This

method is especially useful if all what is known about h(x) are the first few

an. When x0 = z0 = 0 and a1 = a, it was shown by Whittaker [34] that

b1 = 1
a
, b2 =−a2

a3
, b3 = 1

3!a5

∣∣∣∣∣3a2 a
6a3 4a2

∣∣∣∣∣ , . . . ,

bn = (−1)n−1

n!a2n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

na2 a 0 0 ···
2na3 (n+1)a2 2a 0 ···
3na4 (2n+1)a3 (n+2)a2 3a ···
4na5 (3n+1)a4 2(n+1)a3 (n+3)a2 ···

...
...

...
...

. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

(1.4)

where |·| ≡ det(·).
In Example 4.7, we show how to get the bn in terms of the an using our

method.

A computer system like Maple can reverse the power series ofh(x), provided

h(x) is not too complicated, by using the command

>Order :=N+1;

> solve(series(h(x), x = x0, N+1)= z, x); (1.5)

where N is the number of terms wanted. Fast algorithms of order (n logn)3/2

for reversion of series have been analyzed by Brent and Kung [5, 6]. The multi-

variate case has been studied by several authors [4, 8, 14, 21], and Wright [35]

has studied the connection between reversion of power series and “rooted

trees.”

The second and more direct method is Lagrange’s inversion formula [1]

bn = 1
n!

dn−1

dxn−1

{[
x−x0

h(x)−z0

]n}∣∣∣∣∣
x=x0

. (1.6)

Unfortunately, more direct does not necessarily mean easier, and except for

some simple cases Lagrange’s formula (1.6) is extremely complicated for prac-

tical applications. The q-analog (a mathematical expression parameterized by

q which generalizes an expression and reduces to it in the limit q→ 1+) of (1.6)

has been studied by various authors [2, 18, 19, 20] and a unified approach to

both the regular and q-analog formulas has been obtained by Krattenthaler

[23]. There has also been a great deal of attention to the asymptotic expansion

of inverses [27, 28, 31, 32].

In this note, we present a simple, easy to implement method for computing

the series expansion for the inverse of any function satisfying the conditions

of Theorem 1.1, although the method is especially powerful when h(x) has
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the form

h(x)=
∫ x
a
g(x)dx (1.7)

and g(x) is some function simpler than h(x). Since this is the case for many

special functions, we will present several such examples. This note is organized

as follows.

In Section 2, we define a sequence of functions Dn[f](x), obtained from a

given one f(x), that we call “nested derivatives,” for reasons which will be

clear from the definition. We give a computer code for generating the nested

derivatives and examples of how Dn[f](x) look for some elementary func-

tions. Section 3 shows how to compute the nested derivatives by using gen-

erating functions. We present some examples and compare the results with

those obtained in Section 1.

Section 4 contains our main result of the use of nested derivatives to com-

pute power series of inverses. We test our result with some known results

and we apply the method for obtaining expansions for the inverse of the error

function, the incomplete gamma function, the sine integral, and other special

functions.

2. Definitions

Definition 2.1. The nth nested derivative Dn[f](x) of the function f(x)
is defined by the following recursion:

D0[f ](x)≡ 1, (2.1)

Dn[f](x)= d
dx

[
f(x)×Dn−1[f ](x)

]
, n≥ 1. (2.2)

Proposition 2.2. The nested derivative Dn[f](x) satisfies the following ba-

sic properties.

(1) For n≥ 1, Dn[κ]≡ 0, with κ constant.

(2) For n≥ 0, Dn[κf](x)= κnDn[f](x), with κ constant.

(3) For n≥ 1, Dn[f](x) has the following integral representation:

Dn[f](x)= 1
(2πi)n

∮
C1

∮
C2

···
∮
Cn

f
(
zn
)

(
zn−x

)2

n−1∏
k=1

f
(
zk
)

(
zk−zk+1

)2dzn ···dz1,

(2.3)

where Ck is a small loop around x in the complex plane.

Proof. Properties (1) and (2) follow immediately from the definition of

Dn[f](x).
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To prove (3) we use induction on n. For n = 1, the result follows from

Cauchy’s formula

D1[f ](x)= df
dx

= 1
2πi

∮
C1

f
(
z1
)

(
z1−x

)2dz1. (2.4)

Assuming that the result is true for n and using (2.2),

Dn+1[f ](x)= d
dx

[
f(x)×Dn[f](x)

]

= 1
2πi

∮
Cn+1

f
(
zn+1

)
Dn[f]

(
zn+1

)
(
zn+1−x

)2 dzn+1

= 1
(2πi)n+1

∮
C1

···
∮
Cn+1

f
(
zn+1

)
(
zn+1−x

)2

f
(
zn
)

(
zn−zn+1

)2

×
n−1∏
k=1

f
(
zk
)

(
zk−zk+1

)2dzn+1 ···dz1

= 1
(2πi)n+1

∮
C1

···
∮
Cn+1

f
(
zn+1

)
(
zn+1−x

)2

×
n∏
k=1

f
(
zk
)

(
zk−zk+1

)2dzn+1 ···dz1.

(2.5)

Algorithm 2.3 (the D algorithm). The following Maple procedure imple-

ments the recurrence relation (2.2). We define d(k)=Dk[f ](x), where N is the

number of terms desired:

>d(0) := 1;

> for k from 0 to N do:

>d(k+1) := simplify
(
diff

(
f * d(k),x

))
:

> print
(
k+1, d(k+1)

)
:

> od:

(2.6)

Example 2.4. Let the function f(x)= x, then

D1[f ](x)= 1,

D2[f ](x)= 1,

...

Dn[f](x)= 1.

(2.7)
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Example 2.5. Let the power function f(x)= xr , r ≠ 1, then

D1[f ](x)= rxr−1,

D2[f ](x)= r(2r −1)x2(r−1),

vD3[f ](x)= r(2r −1)(3r −2)x3(r−1),

...

Dn[f](x)=
n∏
j=1

[
jr −(j−1)

]
xn(r−1)

= (r −1)n
Γ
(
n+1+1/(r −1)

)
Γ
(
1+1/(r −1)

) xn(r−1).

(2.8)

Notice that when r = k/(k+1), k = 1,2, . . . , the sequence of nested deriva-

tives has only k+1 nonzero terms.

Dn[f](x)=




k!
(k−n)!(k+1)n

x−(n/(k+1)), 1≤n≤ k,
0, n≥ k+1.

(2.9)

Example 2.6. Let the exponential function f(x)= erx , then

D1[f ](x)= rerx,
D2[f ](x)= 2r 2e2rx,

D3[f ](x)= 6r 3e3rx,

...

Dn[f](x)=n!rnenrx.

(2.10)

3. Generating functions. Generating functions provide a valuable method

for computing sequences of functions defined by an iterative process, we will

use them to calculate Dn[f](x). In the sequel, we will implicitly assume that

the generating function series converges in some small disc around z = 0.

Theorem 3.1. Given h(x) = ∫ (1/f(x))dx, its inverse H(x) = h−1(x), and

the exponential generating functionG(x,z)=∑n≥0 Dn[f](x)(zn/n!), it follows

that

G(x,z)= 1
f(x)

(f ◦H)[z+h(x)]. (3.1)
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Proof. Taking (2.2) into account gives

∂
∂x
[
f(x)G(x,z)

]= ∑
n≥0

d
dx

[
f(x)×Dn[f](x)

]zn
n!

=
∑
n≥0

Dn+1[f ](x)
zn

n!
=
∑
n≥1

Dn[f](x)
zn−1

(n−1)!

= ∂
∂z

∑
n≥0

Dn[f](x)
zn

n!
= ∂
∂z
G(x,z).

(3.2)

Hence, the generating function satisfies the PDE

∂(f ×G)
∂x

= ∂G
∂z

(3.3)

with general solution

G(x,z)= 1
f(x)

g
[
z+h(x)], (3.4)

where g(z) is an arbitrary analytic function. Invoking the boundary condition

G(x,0)=D0[f ](x)= 1, (3.4) gives

1
f(x)

g
[
h(x)

]= 1, (3.5)

and therefore,

f(x)= (g◦h)(x). (3.6)

If we take x =H(w), then

(f ◦H)(w)= (g◦h◦H)(w)= g(w) (3.7)

and the theorem follows.

Example 3.2 (the function f(x)=x). Hereh(x)=∫ (1/x)dx= ln(x),H(x)=
ex , and from (3.1) it follows that

G(x,z)= 1
x

exp
[
z+ ln(x)

]= ez. (3.8)

We could obtain the same result from Example 2.4 by summing the series

G(x,z)=
∑
n≥0

1
zn

n!
= ez. (3.9)

Example 3.3 (the power function f(x)= xr , r ≠ 1). Now,

h(x)=
∫
x−rdx = x

1−r

1−r , H(x)= [(1−r)x]1/(1−r), (3.10)
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and we get

G(x,z)= x−r
{[
(1−r)

(
z+ x

1−r

1−r
)]1/(1−r)}r

=
[
(1−r)z+x1−r

x1−r

]r/(1−r)

= [1+(1−r)xr−1z
]r/(1−r).

(3.11)

Expanding in series around z = 0, we recover the result from Example 2.5.

If r/(1−r) = k, that is, r = k/(k+1), k = 0,1, . . . , then G(x,z) is a polyno-

mial of degree k in z, and hence,

Dn[f](x)= 0, n≥ k+1, (3.12)

as we have already observed in Example 2.5.

Given the particular form of the function h(x) in Theorem 3.1, we can get

alternative expressions for (3.1) which sometimes are easier to employ.

Corollary 3.4. Let h(x) = ∫ (1/f(x))dx, its inverse H(x) = h−1(x), and

the exponential generating function G(x,z)=∑n≥0 Dn[f](x)(zn/n!). Then,

(i) G(x,z)= 1/f(x)H′[z+h(x)],
(ii) G(x,z)= d/dxH[z+h(x)].
Proof. (i) By definition, (h◦H)(x)= x, so

h′
[
H(x)

]
H′(x)= 1 (3.13)

but since h(x)= ∫ (1/f(t))dt, we get

1
f
[
H(x)

]H′(x)= 1 (3.14)

or

(f ◦H)(x)=H′(x), (3.15)

and therefore,

G(x,z)= 1
f(x)

(f ◦H)[z+h(x)]

= 1
f(x)

H′[z+h(x)]. (3.16)

(ii) Using the chain rule,

d
dx

H
[
z+h(x)]=H′[z+h(x)]h′(x)=H′[z+h(x)] 1

f(x)
(3.17)

and the conclusion follows from part (i).
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4. Applications. We now state our main result.

Theorem 4.1. Let h(x)= ∫ xa (1/f(t))dt, with f(a)≠ 0,±∞, and its inverse

H(x)= h−1(x). Then,

H(z)= a+f(a)
∑
n≥1

Dn−1[f ](a)
zn

n!
, (4.1)

where |z|< ε, for some ε > 0.

Proof. We first observe that since h(a) = 0, we have H(0) = a, and from

Corollary 3.4(i),

G(a,z)= 1
f(a)

H′[z+h(a)]= 1
f(a)

H′(z), (4.2)

where

G(a,z)=
∑
n≥0

Dn[f](a)
zn

n!
. (4.3)

Hence,

H(z)=H(0)+
∫ z

0
f(a)

∑
n≥0

Dn[f](a)
tn

n!
dt

= a+f(a)
∑
n≥0

Dn[f](a)
zn+1

(n+1)!

= a+f(a)
∑
n≥1

Dn−1[f ](a)
zn

n!
.

(4.4)

Example 4.2 (the natural logarithm function). Let f(x) = e−x with a = 0.

We have f(0)= 1,

h(x)=
∫ x

0
etdt = ex−1, H(x)= ln(x+1), (4.5)

and from Example 2.6,

Dn[f](0)= (−1)nn!. (4.6)

Hence, from (4.1), we get the familiar formula

ln(z+1)=
∑
n≥1

(−1)n−1 zn

n
. (4.7)

Example 4.3 (the tangent function). Let f(x) = x2 + 1 with a = 0. Now

f(0)= 1,

h(x)=
∫ x

0

1
t2+1

dt = arctan(x), H(x)= tan(x) (4.8)
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and (4.1) implies that

tan(z)=
∑
n≥1

Dn−1[x2+1
]
(0)

zn

n!
. (4.9)

Therefore,

D2k+1[x2+1
]
(0)= 0, k≥ 0, (4.10)

D2k[x2+1
]
(0)= 2

k+1
4k
(
4k+1−1

)∣∣B2(k+1)
∣∣, k≥ 1, (4.11)

where Bk are the Bernoulli numbers [1].

Remark 4.4. From Example 2.5, we recall that

Dn[x2](x)= (n+1)!xn, (4.12)

and consequently,

Dn[x2](0)= 0, n≥ 1. (4.13)

Comparing (4.11) and (4.13) we can see the highly nonlinear behavior of the

nested derivatives, since even the addition of 1 to f(x) creates a completely

different sequence of values, far more complex than the original.

We now start testing our result on some classical functions.

Example 4.5 (elliptic functions). Let f(x)=
√

1−p2 sin2(x), 0≤ p ≤ 1, a=
0. We have, f(0)= 1 and

h(φ)=
∫φ

0

dθ√
1−p2 sin2(θ)

= F(p;φ),

H(p;x)= am(p;x),

(4.14)

where F(p;φ) is the incomplete elliptic integral of the first kind, and am(p;x)
is the elliptic amplitude [29]

am(p;x)= arcsin
[
sn(p;x)

]= arccos
[
cn(p;x)

]

= arcsin



√

1−dn2(p;x)
p


 (4.15)

with sn(p;x), cn(p;x), and dn(p;x) denoting the Jacobian elliptic functions.

Computing Dn[f](0) with (2.6) gives

D2k+1[f ](0)= 0, k≥ 0,

D2k[f ](0)= (−1)kp2Qk(p), k≥ 1,
(4.16)
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where Qk(p) is a polynomial of degree 2(k−1) of the form

Qk(p)= p2(k−1)+···+22(k−1). (4.17)

The first few Qk(p) are

Q1(p)= 1,

Q2(p)= p2+4,

Q3(p)= p4+44p2+16,

Q4(p)= p6+408p4+912p2+64,

Q5(p)= p8+3688p6+307682p4+15808p2+256,

(4.18)

and (4.1) implies that

am(p;x)= z−p2 z3

3!
+p2(p2+4

)z5

5!
−p2(p4+44p2+16

)z7

7!
+··· (4.19)

in agreement with the known expansions for am(p;x) [11].

Example 4.6 (the Lambert-W function). Let f(x) = e−x(x + 1)−1, a = 0,

f(a)= 1. Here,

h(x)= xex, H(x)= LW(x), (4.20)

where by LW(x) we denote the Lambert-W function [9, 10, 22]. In this case,

(2.6) gives

D1[f ](0)=−2,

D2[f ](0)= 9,

D3[f ](0)=−64,

...

Dn[f](0)= [−(n+1)
]n.

(4.21)

From (4.1) we conclude that

LW(z)=
∑
n≥1

(−1)n−1nn−1 zn

n!
. (4.22)

Example 4.7. We now derive a well-known result [1] about reversion of

series. If we take

h(x)= a1x+a2x2+a3x3+a4x4+a5x5+a6x6+a7x7+··· , (4.23)
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where a1 ≠ 0, then

f(x)= 1
h′(x)

= 1
a1+2a2x+3a3x2+4a4x3+5a5x4+6a6x5+7a7x6+··· ,

(4.24)

a= 0, f(0)= 1/a1, and from (2.6), we get

D1[f ](0)=−2
a2(
a1
)2 ,

D2[f ](0)= 6
2
(
a2
)2−a1a3(
a1
)4 ,

D3[f ](0)= 24
5a1a2a3−

(
a1
)2a4−5

(
a2
)3

(
a1
)6 ,

D4[f ](0)= 120
6
(
a1
)2a2a3+3

(
a1a3

)2+14
(
a2
)4−(a1

)3a5−21a1
(
a2
)2a3(

a1
)8 .

(4.25)

Hence,

H(z)= 1
a1
z− a2(

a1
)3 z

2+ 2
(
a2
)2−a1a3(
a1
)5 z3

+ 5a1a2a3−
(
a1
)2a4−5

(
a2
)3

(
a1
)7 z4

+ 6
(
a1
)2a2a3+3

(
a1a3

)2+14
(
a2
)4−(a1

)3a5−21a1
(
a2
)2a3(

a1
)9 z5+··· .

(4.26)

Remark 4.8. An explicit formula for the nth term is given by Morse and

Feshbach in [24, Part 1, pages 411–413],

bn = 1

n
(
a1
)n ∑

s,t,u,...
(−1)s+t+u+···

n(n+1)···(n−1+s+t+u+···)
s!t!u!···

×
(
a2

a1

)s(a3

a1

)t
··· ,

s+2t+3u+··· =n−1.

(4.27)

Example 4.9 (the error function, erf(x)). We now have

h(x)= erf(x)= 2√
π

∫ x
0
e−t

2
dt,

f (x)=
√
π
2
ex

2
, a= 0, f (a)=

√
π
2
,

(4.28)
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and (2.6) gives,

Dn[f](0)=




0, n= 2k+1, k≥ 0,(√
π
2

)n
Ak, n= 2k, k≥ 0,

(4.29)

where

A0 = 1, A1 = 2, A2 = 28, A3 = 1016, A4 = 69904,

A5 = 7796768, A6 = 1282366912, A7 = 291885678464.
(4.30)

From (4.1), we get

H(z)=
∑
n≥0

An
(√

π
2

)2n+1 z2n+1

(2n+1)!
. (4.31)

Our result agrees with other authors calculations [3, 7, 13, 15, 30].

We will now extend (4.1) to a more general result.

Corollary 4.10. Let h(x) = ∫ x
a (1/f(t))dt, z0 = h(b), with f(b) ≠ 0,

±∞, and its inverse H(x)= h−1(x). Then,

H(z)= b+f(b)
∑
n≥1

Dn−1[f ](b)
(
z−z0

)n
n!

, (4.32)

where |z−z0|< ε, for some ε > 0.

Proof. Consider the function

u(x)= h(x)−z0, (4.33)

which satisfies u(b) = 0, and its inverse U(x) = u−1(x). Since f(b) ≠ 0,±∞,

we can apply (4.1) to u(x) and conclude that

U(z)= b+f(b)
∑
n≥1

Dn−1[f ](b)
zn

n!
. (4.34)

All that is left is to see the relation between U(z) and H(z). Suppose that

u(x)=y . Then

y =u(x)= h(x)−z0, h(x)=y+z0, x =H(y+z0), (4.35)

and therefore,

U(y)=H(y+z0
)

(4.36)

or

H(z)=U(z−z0
)

(4.37)

and (4.32) follows.
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We will now use our results to get some power series expansions that have

not been studied before .

Example 4.11 (the incomplete Gamma function, γ(ν ;x)). We have

h(ν ;x)= γ(ν ;x)≡
∫ x

0
e−ttν−1dt, ν > 0, x ≥ 0,

f (ν ;x)= exx1−ν , a= 0.
(4.38)

Since

f(ν ;a)=

0, 0< ν < 1,

∞, ν > 1,
(4.39)

we cannot apply (4.1). Choosing b = 1, z0(ν)= γ(ν ;1), f(ν ;b)= e, we conclude

from (4.32) that

H(ν ;z)= 1+e
∑
n≥1

Dn−1[f ](1)
[
z−z0(ν)

]n
n!

. (4.40)

We use (2.6) to compute the first few Dn[f](1) and obtain

Dn[f](1)= enQn(ν), (4.41)

where Qn(ν) is a polynomial of degree n,

Q1(ν)= 2−ν,
Q2(ν)= 7−7ν+2ν2,

Q3(ν)= 36−53ν+29ν2−6ν3,

Q4(ν)= 245−474ν+375ν2−146ν3+24ν4,

Q5(ν)= 2076−4967ν+5104ν2−2847ν3+874ν4−120ν5,

(4.42)

and we can write

H(ν ;z)= 1+
∑
n≥1

enQn−1(ν)
[
z−z0(ν)

]n
n!

. (4.43)

Example 4.12 (the sine integral, Si(x)). In this case,

h(x)= Si(x)=
∫ x

0

sin(t)
t

dt,

f (x)= x
sin(x)

, a= 0.
(4.44)

For this example, f(a) is well defined, but to simplify the calculations we

choose b =π/2, z0 = Si(π/2)	 1.37076216. Then,

f(b)= π
2
, Dn[f]

(
π
2

)
=Qn(π), (4.45)
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where Qn(x) is once again a polynomial,

Q1(x)= 1,

Q2(x)= 1+ 1
4
x2,

Q3(x)= 1+ 7
4
x2,

Q4(x)= 1+8x2+ 9
16
x4,

Q5(x)= 1+ 61
2
x2+ 159

16
x4,

Q6(x)= 1+ 423
4
x2+ 1671

16
x4+ 225

64
x6,

(4.46)

and from (4.32), we obtain

H(z)= π
2
+ π

2

∑
n≥1

Qn(π)
(
z−z0

)n
n!

. (4.47)

Example 4.13 (the logarithm integral, li(x)). From the definition,

h(x)= li(x)≡
∫ x

0

1
ln(t)

dt,

f (x)= ln(x), a= 0.
(4.48)

In this case, f(a)=−∞, so we must choose b. A natural candidate is b = e,
and then

f(b)= 1, z0 = li(e)	 1.895117816,

Dn[f](e)= e−nAn (4.49)

with

A1 = 1, A2 = 0, A3 =−1, A4 = 2, A5 = 1,

A6 =−26, A7 = 99, A8 = 90, A9 =−3627,
(4.50)

and we have

H(z)= e+
∑
n≥1

An
(
z−z0

)n
n!

. (4.51)

Example 4.14 (the incomplete Beta function, B(ν,µ;x)). By definition,

h(ν,µ;x)= B(ν,µ;x)≡
∫ x

0
tν−1(1−t)µ−1dt, 0≤ x < 1 (4.52)

and hence

f(ν,µ;x)= x1−ν(1−x)1−µ, a= 0. (4.53)
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To avoid the possible singularities at x = 0 and x = 1, we consider b = 1/2,

and therefore,

f(ν,µ;b)= 1
4

2ν+µ,

z0(ν,µ)= B
(
ν,µ;

1
2

)
.

(4.54)

The D algorithm now gives

Dn[f]
(

1
2

)
= 2n(ν+µ−1)Qn(ν,µ) (4.55)

with Qn(ν,µ) a multivariate polynomial of degree n,

Q1(ν,µ)= µ−ν,
Q2(ν,µ)=−2+ν−4νµ+µ+2µ2+2ν2,

Q3(ν,µ)= (µ−ν)
(
6µ2−12νµ+7µ−12+6ν2+7ν

)
,

Q4(ν,µ)= 16−46νµ2−46ν2µ−63µ2−22µ+154νµ

−96νµ3−96ν3µ+144ν2µ2−22ν

−63ν2+24ν4+46ν3+24µ4+46µ3,

Q5(ν,µ)= (µ−ν)
(
120µ4+326µ3−480νµ3+720ν2µ2−323µ2

−326νµ2−362µ−480ν3µ+1154νµ−326ν2µ

−323ν2+240+120ν4+326ν3−362ν
)

(4.56)

and we have

H(z)= 1
2
+ 1

4
2r+µ

∑
n≥1

2n(r+µ−1)Qn(r ,µ)
(
z−z0

)
n

n!
. (4.57)

5. Conclusion. We have presented a simple method for computing the se-

ries expansion for the inverses of functions and have given a Maple procedure

to generate the coefficients in these expansions. We showed several examples

of the method applied to elementary and special functions and stated the first

few terms of the series in each case.
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