# ON $k$-NEARLY UNIFORM CONVEX PROPERTY IN GENERALIZED CESÀRO SEQUENCE SPACES 

WINATE SANHAN and SUTHEP SUANTAI

Received 19 January 2003


#### Abstract

We define a generalized Cesàro sequence space ces $(p)$, where $p=\left(p_{k}\right)$ is a bounded sequence of positive real numbers, and consider it equipped with the Luxemburg norm. The main purpose of this paper is to show that ces $(p)$ is $k$-nearly uniform convex ( $k$-NUC) for $k \geq 2$ when $\lim _{n \rightarrow \infty} \inf p_{n}>1$. Moreover, we also obtain that the Cesàro sequence space $\operatorname{ces}_{p}$ (where $1<p<\infty$ ) is $k$-NUC, $k R$, NUC, and has a drop property.


2000 Mathematics Subject Classification: 46B20, 46B45.

1. Introduction. Let $(X,\|\cdot\|)$ be a real Banach space and let $B(X)$ and $S(X)$ be the closed unit ball and the unit sphere of $X$, respectively. For any subset $A$ of $X$, we denote by $\operatorname{conv}(A)($ resp., $\overline{\operatorname{conv}}(A))$ the convex hull (resp., the closed convex hull) of Clarkson [1] who introduced the concept of uniform convexity, and it is known that uniform convexity implies reflexivity of Banach spaces. There are different uniform geometric properties which have been defined between the uniform convexity and the reflexivity of Banach spaces. Huff [6] introduced the nearly uniform convexity of Banach spaces. He has proved that the class of nearly uniformly convexifiable spaces is strictly between superreflexive and reflexive Banach spaces.

A Banach space $X$ is called uniformly convex (UC) if for each $\epsilon>0$, there is $\delta>0$ such that for $x, y \in S(X)$, the inequality $\|x-y\|>\epsilon$ implies that

$$
\begin{equation*}
\left\|\frac{1}{2}(x+y)\right\|<1-\delta . \tag{1.1}
\end{equation*}
$$

For any $x \notin B(X)$, the drop determined by $x$ is the set

$$
\begin{equation*}
D(x, B(X))=\operatorname{conv}(\{x\} \cup B(X)) . \tag{1.2}
\end{equation*}
$$

Rolewicz [12], basing on Daneš drop theorem [4], introduced the notion of drop property for Banach spaces.

A Banach space $X$ has the drop property (D) if for every closed set $C$ disjoint with $B(X)$, there exists an element $x \in C$ such that

$$
\begin{equation*}
D(x, B(X)) \cap C=\{x\} . \tag{1.3}
\end{equation*}
$$

A Banach space $X$ is said to have the Kadec-Klee property (or property (H)) if every weakly convergent sequence on the unit sphere is convergent in norm.

In [13], Rolewicz proved that if the Banach space $X$ has the drop property, then $X$ is reflexive. Montesinos [11] extended this result by showing that $X$ has the drop property if and only if $X$ is reflexive and has the property $(\mathrm{H})$.

Recall that a sequence $\left\{x_{n}\right\} \subset X$ is said to be $\epsilon$-separated sequence for some $\epsilon>0$ if

$$
\begin{equation*}
\operatorname{sep}\left(x_{n}\right)=\inf \left\{\left\|x_{n}-x_{m}\right\|: n \neq m\right\}>\epsilon \tag{1.4}
\end{equation*}
$$

A Banach space $X$ is said to be nearly uniformly convex (NUC) if for every $\epsilon>0$, there exists $\delta \in(0,1)$ such that for every sequence $\left(x_{n}\right) \subseteq B(X)$ with $\operatorname{sep}\left(x_{n}\right)>\epsilon$, we have

$$
\begin{equation*}
\operatorname{conv}\left(x_{n}\right) \cap((1-\delta) B(X)) \neq \varnothing \tag{1.5}
\end{equation*}
$$

Huff [6] proved that every NUC Banach space is reflexive and it has property (H).

Kutzarova [7] has defined $k$-nearly uniformly convex Banach spaces. Let $k \geq$ 2 be an integer. A Banach space $X$ is said to be $k$-nearly uniformly convex ( $k$ NUC) if for any $\epsilon>0$, there exists $\delta>0$ such that for any sequence $\left(x_{n}\right) \subset B(X)$ with $\operatorname{sep}\left(x_{n}\right) \geq \epsilon$, there are $n_{1}, n_{2}, \ldots, n_{k} \in \mathbb{N}$ such that

$$
\begin{equation*}
\left\|\frac{x_{n_{1}}+x_{n_{2}}+x_{n_{3}}+\cdots+x_{n_{k}}}{k}\right\|<1-\delta . \tag{1.6}
\end{equation*}
$$

Clearly, $k$-NUC Banach spaces are NUC but the opposite implication does not hold in general (see [7]).

Fan and Glicksberg [5] have introduced fully $k$-convex Banach spaces. A Banach space $X$ is said to be fully $k$-rotund $(k R)$ if for every sequence $\left(x_{n}\right) \subset B(X)$, $\left\|x_{n_{1}}+x_{n_{2}}+\cdots+x_{n_{k}}\right\| \rightarrow k$ as $n_{1}, n_{2}, \ldots, n_{k} \rightarrow \infty$ implies that $\left(x_{n}\right)$ is convergent.

It is well known that UC implies $k R$ and $k R$ implies $(k+1) R$, and $k R$ spaces are reflexive and rotund, and it is easy to see that $k$-NUC implies $k R$.

Denote by $\mathbb{N}$ and $\mathbb{R}$ the set of all natural and real numbers, respectively.
Let $X$ be a real vector space. A functional $\varrho: X \rightarrow[0, \infty]$ is called a modular if it satisfies the following conditions:
(i) $\varrho(x)=0$ if and only if $x=0$;
(ii) $\varrho(\alpha x)=\varrho(x)$ for all scalar $\alpha$ with $|\alpha|=1$;
(iii) $\varrho(\alpha x+\beta y) \leq \varrho(x)+\varrho(y)$ for all $x, y \in X$ and all $\alpha, \beta \geq 0$ with $\alpha+\beta=1$. The modular $\varrho$ is called convex if
(iv) $\varrho(\alpha x+\beta y) \leq \alpha \varrho(x)+\beta \varrho(y)$ for all $x, y \in X$ and all $\alpha, \beta \geq 0$ with $\alpha+\beta=1$.

If $\varrho$ is a modular in $X$, we define

$$
\begin{align*}
& X_{\varrho}=\left\{x \in X: \lim _{\lambda \rightarrow 0^{+}} \varrho(\lambda x)=0\right\},  \tag{1.7}\\
& X_{\varrho}^{*}=\{x \in X: \varrho(\lambda x)<\infty \text { for some } \lambda>0\} .
\end{align*}
$$

It is clear that $X_{\varrho} \subseteq X_{\varrho}^{*}$. If $\varrho$ is a convex modular, for $x \in X_{\varrho}$, we define

$$
\begin{equation*}
\|x\|=\inf \left\{\lambda>0: \varrho\left(\frac{x}{\lambda}\right) \leq 1\right\} \tag{1.8}
\end{equation*}
$$

Orlicz [10] proved that if $\varrho$ is a convex modular on $X$, then $X_{\varrho}=X_{\varrho}^{*}$ and $\|\cdot\|$ is a norm on $X_{\varrho}$ for which $X_{\varrho}$ is a Banach space. The norm $\|\cdot\|$, defined as in (1.8), is called the Luxemburg norm.

A modular $\varrho$ is said to satisfy the $\delta_{2}$-condition $\left(\varrho \in \delta_{2}\right)$ if for any $\epsilon>0$, there exist constants $K \geq 2$ and $a>0$ such that

$$
\begin{equation*}
\varrho(2 u) \leq K \varrho(u)+\epsilon \tag{1.9}
\end{equation*}
$$

for all $u \in X_{\varrho}$ with $\varrho(u) \leq a$.
If $\varrho$ satisfies the $\delta_{2}$-condition for any $a>0$ with $K \geq 2$ dependent on $a$, we say that $\varrho$ satisfies the strong $\delta_{2}$-condition ( $\varrho \in \delta_{2}^{s}$ ).

The following known results are very important for our consideration.
THEOREM 1.1. If $\varrho \in \delta_{2}^{s}$, then for any $L>0$ and $\varepsilon>0$, there exists $\delta>0$ such that

$$
\begin{equation*}
|\varrho(u+v)-\varrho(u)|<\varepsilon \tag{1.10}
\end{equation*}
$$

whenever $u, v \in X_{\varrho}$ with $\varrho(u) \leq L$ and $\varrho(v) \leq \delta$.
Proof. See [2, Lemma 2.1].
THEOREM 1.2. (1) If $\varrho \in \delta_{2}^{s}$, then for any $x \in X_{\varrho},\|x\|=1$ if and only if $\varrho(x)=1$.
(2) If $\varrho \in \delta_{2}$, then for any sequence $\left(x_{n}\right)$ in $X_{\varrho},\left\|x_{n}\right\| \rightarrow 0$ if and only if $\varrho\left(x_{n}\right) \rightarrow 0$.

Proof. See [2, Corollary 2.2 and Lemma 2.3].
Theorem 1.3. If $\varrho \in \delta_{2}^{s}$, then for any $\epsilon \in(0,1)$, there exists $\delta \in(0,1)$ such that $\varrho(x) \leq 1-\epsilon$ implies $\|x\| \leq 1-\delta$.

Proof. Suppose that the theorem does not hold, then there exist $\epsilon>0$ and $x_{n} \in X_{\varrho}$ such that $\varrho\left(x_{n}\right)<1-\epsilon$ and $1 / 2 \leq\left\|x_{n}\right\| \ngtr 1$. Let $a_{n}=1 /\left\|x_{n}\right\|-1$. Then $a_{n} \rightarrow 0$ as $n \rightarrow \infty$. Let $L=\sup \left\{\varrho\left(2 x_{n}\right) ; n \in \mathbb{N}\right\}$. Since $\varrho \in \delta_{2}^{s}$, there exists $K \geq 2$
such that

$$
\begin{equation*}
\varrho(2 u) \leq K \varrho(u)+1 \tag{1.11}
\end{equation*}
$$

for every $u \in X_{\varrho}$ with $\varrho(u)<1$.
By (1.11), we have $\varrho\left(2 x_{n}\right) \leq K \varrho\left(x_{n}\right)+1<K+1$ for all $n \in \mathbb{N}$. Hence, $0<L<$ $\infty$. By Theorem 1.2(1), we have

$$
\begin{align*}
1 & =\varrho\left(\frac{x_{n}}{\left\|x_{n}\right\|}\right)=\varrho\left(2 a_{n} x_{n}+\left(1-a_{n}\right) x_{n}\right) \\
& \leq a_{n} \varrho\left(2 x_{n}\right)+\left(1-a_{n}\right) \varrho\left(x_{n}\right)  \tag{1.12}\\
& \leq a_{n} L+(1-\epsilon) \longrightarrow 1-\epsilon,
\end{align*}
$$

which is a contradiction.
Let $l^{0}$ be the space of all real sequences. For $1<p<\infty$, the Cesàro sequence space ( $\operatorname{ces}_{p}$ ) is defined by

$$
\begin{equation*}
\operatorname{ces}_{p}=\left\{x \in l^{0}: \sum_{n=1}^{\infty}\left(\frac{1}{n} \sum_{i=1}^{n}|x(i)|\right)^{p}<\infty\right\} \tag{1.13}
\end{equation*}
$$

equipped with the norm

$$
\begin{equation*}
\|x\|=\left(\sum_{n=1}^{\infty}\left(\frac{1}{n} \sum_{i=1}^{n}|x(i)|\right)^{p}\right)^{1 / p} \tag{1.14}
\end{equation*}
$$

This space was first introduced by Shiue [14], which is useful in the theory of Matrix operator and others (see [8, 9]). Some geometric properties of the Cesàro sequence space $\operatorname{ces}_{p}$ were studied by many authors. It is known that ( $\operatorname{ces}_{p},\|\cdot\|$ ) is locally uniformly rotund (LUR) and has property (H) (see [9]). Cui and Meng [3] proved that $\left(\operatorname{ces}_{p},\|\cdot\|\right)$ has property $(\beta)$.

Let $p=\left(p_{n}\right)$ be a sequences of positive real numbers with $p_{n} \geq 1$ for all $n \in \mathbb{N}$. The generalized Cesàro sequence space $\operatorname{ces}(p)$ is defined by

$$
\begin{equation*}
\operatorname{ces}(p)=\left\{x \in l^{0}: \rho(\lambda x)<\infty \text { for some } \lambda>0\right\} \tag{1.15}
\end{equation*}
$$

where

$$
\begin{equation*}
\rho(x)=\sum_{n=1}^{\infty}\left(\frac{1}{n} \sum_{i=1}^{n}|x(i)|\right)^{p_{n}} \tag{1.16}
\end{equation*}
$$

is a convex modular on ces $(p)$.
We consider $\operatorname{ces}(p)$ equipped with the Luxemburg norm:

$$
\begin{equation*}
\|x\|=\inf \left\{\varepsilon>0: \rho\left(\frac{x}{\varepsilon}\right) \leq 1\right\} . \tag{1.17}
\end{equation*}
$$

When $p_{n}=q$ for all $n \in \mathbb{N}$, we see that $\operatorname{ces}(p)=\operatorname{ces}_{q}$ and the Luxemburg norm on ces $(p)$ given in (1.17) is equal to the norm $\|\cdot\|$ given in (1.14). In this paper, we show that $\operatorname{ces}(p)$ equipped with the Luxemburg norm is $k$-NUC for $k \geq 2$, so it is $k R$ and (NUC).

Throughout this paper, we assume that $p=\left(p_{n}\right)$ is bounded with

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \inf p_{n}>1 \tag{1.18}
\end{equation*}
$$

and that $M=\sup _{n} p_{n}$.

## 2. Main results

Proposition 2.1. For $x \in \operatorname{ces}(p)$, the modular $\rho$ on $\operatorname{ces}(p)$ satisfies the following properties:
(1) if $0<a<1$, then $a^{M} \rho(x / a) \leq \rho(x)$ and $\rho(a x) \leq a \rho(x)$,
(2) if $a \geq 1$, then $\rho(x) \leq a^{M} \rho(x / a)$,
(3) if $a \geq 1$, then $\rho(x) \leq a \rho(x) \leq \rho(a x)$.

Proof. All assertions are clearly obtained by the definition and convexity of $\rho$.

Proposition 2.2. For any $x \in \operatorname{ces}(p)$,
(1) if $\|x\| \leq 1$, then $\rho(x) \leq\|x\|$,
(2) if $\|x\|>1$, then $\rho(x) \geq\|x\|$,
(3) $\|x\|=1$ if and only if $\rho(x)=1$.

Proof. (1) Suppose that $\|x\| \leq 1$. If $x=0$, then $\rho(x)=\|x\|=0$. Suppose $x \neq 0$. By the definition of $\|\cdot\|$, there is a sequence $\left(\epsilon_{n}\right)$ with $\epsilon_{n} \downarrow\|x\|$ such that $\rho\left(x / \epsilon_{n}\right) \leq 1$. This implies that $\rho(x /\|x\|) \leq 1$. By Proposition 2.1(1), we have

$$
\begin{equation*}
\rho(x)=\rho\left(\frac{\|x\| \cdot x}{\|x\|}\right) \leq\|x\| \rho\left(\frac{x}{\|x\|}\right) \leq\|x\| . \tag{2.1}
\end{equation*}
$$

(2) Suppose that $\|x\|>1$. Then for $\epsilon \in(0,(\|x\|-1) /\|x\|)$, we have ( $1-$ $\epsilon)\|x\|>1$. By Proposition 2.1(1), we have

$$
\begin{equation*}
1<\rho\left(\frac{x}{(1-\epsilon)\|x\|}\right) \leq \frac{\rho(x)}{(1-\epsilon)\|x\|}, \tag{2.2}
\end{equation*}
$$

so that $(1-\epsilon)\|x\|<\rho(x)$. By taking $\epsilon \rightarrow 0$, we have $\rho(x) \geq\|x\|$.
(3) It follows from Theorem 1.2(1) because $\rho \in \delta_{2}^{s}$.

Proposition 2.3. For any $L>0$ and $\varepsilon>0$, there exists $\delta>0$ such that

$$
\begin{equation*}
|\rho(u+v)-\rho(u)|<\varepsilon \tag{2.3}
\end{equation*}
$$

whenever $u, v \in \operatorname{ces}(p)$ with $\rho(u) \leq L$ and $\rho(v) \leq \delta$.
Proof. Since $p=\left(p_{n}\right)$ is bounded, it is easy to see that $\rho \in \delta_{2}^{s}$. Hence, the proposition is obtained directly from Theorem 1.1.

Proposition 2.4. For every sequence $\left(x_{n}\right) \in \operatorname{ces}(p),\left\|x_{n}\right\| \rightarrow 0$ if and only if $\rho\left(x_{n}\right) \rightarrow 0$.

Proof. It follows directly from Theorem 1.2(2) because $\rho \in \delta_{2}^{s}$.
Theorem 2.5. For any $x \in \operatorname{ces}(p)$ and $\epsilon \in(0,1)$, there exists $\delta \in(0,1)$ such that $\rho(x) \leq 1-\epsilon$ implies $\|x\| \leq 1-\delta$.

Proof. Since $\rho \in \delta_{2}^{s}$, the theorem is obtained directly from Theorem 1.3.

Theorem 2.6. The space ces $(p)$ is $k$-NUC for any integer $k \geq 2$.
Proof. Let $\epsilon>0$ and $\left(x_{n}\right) \subset B(\operatorname{ces}(p))$ with $\operatorname{sep}\left(x_{n}\right) \geq \epsilon$. For each $m \in \mathbb{N}$, let

$$
\begin{equation*}
x_{n}^{m}=(\underbrace{0,0, \ldots, 0}_{m-1}, x_{n}(m), x_{n}(m+1), \ldots) . \tag{2.4}
\end{equation*}
$$

Since for each $i \in \mathbb{N},\left(x_{n}(i)\right)_{n=1}^{\infty}$ is bounded, by using the diagonal method, we have that for each $m \in \mathbb{N}$, we can find a subsequence $\left(x_{n_{j}}\right)$ of ( $x_{n}$ ) such that ( $x_{n_{j}}(i)$ ) converges for each $i \in \mathbb{N}, 1 \leq i \leq m$. Therefore, there exists an increasing sequence of positive integer $\left(t_{m}\right)$ such that $\operatorname{sep}\left(\left(x_{n_{j}}^{m}\right)_{j>t_{m}}\right) \geq \epsilon$. Hence, there is a sequence of positive integers $\left(r_{m}\right)_{m=1}^{\infty}$ with $r_{1}<r_{2}<r_{3}<\cdots$ such that $\left\|x_{r_{m}}^{m}\right\| \geq \epsilon / 2$ for all $m \in \mathbb{N}$. Then by Proposition 2.4 , we may assume that there exists $\eta>0$ such that

$$
\begin{equation*}
\rho\left(x_{r_{m}}^{m}\right) \geq \eta \quad \forall m \in \mathbb{N} . \tag{2.5}
\end{equation*}
$$

Let $\alpha>0$ be such that $1<\alpha<\lim _{n \rightarrow \infty} \inf p_{n}$. For fixed integer $k \geq 2$, let $\epsilon_{1}=$ $\left(\left(k^{\alpha-1}-1\right) /(k-1) k^{\alpha}\right)(\eta / 2)$. Then by Proposition 2.3, there is a $\delta>0$ such that

$$
\begin{equation*}
|\rho(u+v)-\rho(u)|<\epsilon_{1} \tag{2.6}
\end{equation*}
$$

whenever $\rho(u) \leq 1$ and $\rho(v) \leq \delta$.
Since by Proposition 2.2(1) $\rho\left(x_{n}\right) \leq 1$ for all $n \in \mathbb{N}$, there exist positive integers $m_{i}(i=1,2, \ldots, k-1)$ with $m_{1}<m_{2}<\cdots<m_{k-1}$ such that $\rho\left(x_{i}^{m_{i}}\right) \leq \delta$ and $\alpha \leq p_{j}$ for all $j \geq m_{k-1}$. Define $m_{k}=m_{k-1}+1$. By (2.5), we have $\rho\left(x_{r_{m_{k}}}^{m_{k}}\right) \geq$ $\eta$. Let $s_{i}=i$ for $1 \leq i \leq k-1$ and $s_{k}=r_{m_{k}}$.

Then in virtue of (2.5), (2.6), and convexity of function $f_{i}(u)=|u|^{p_{i}}(i \in \mathbb{N})$, we have

$$
\begin{aligned}
& \rho\left(\frac{x_{s_{1}}+x_{s_{2}}+\cdots+x_{s_{k}}}{k}\right) \\
& \quad=\sum_{n=1}^{\infty}\left(\frac{1}{n} \sum_{i=1}^{n}\left|\frac{x_{s_{1}}(i)+x_{s_{2}}(i)+\cdots+x_{s_{k}}(i)}{k}\right|\right)^{p_{n}}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{n=1}^{m_{1}}\left(\frac{1}{n} \sum_{i=1}^{n}\left|\frac{x_{s_{1}}(i)+\cdots+x_{s_{k}}(i)}{k}\right|\right)^{p_{n}} \\
& +\sum_{n=m_{1}+1}^{\infty}\left(\frac{1}{n} \sum_{i=1}^{n}\left|\frac{x_{s_{1}}(i)+x_{s_{2}}(i)+\cdots+x_{s_{k}}(i)}{k}\right|\right)^{p_{n}} \\
& \leq \sum_{n=1}^{m_{1}}\left(\frac{1}{n} \sum_{i=1}^{n}\left|\frac{x_{s_{1}}(i)+\cdots+x_{s_{k}}(i)}{k}\right|\right)^{p_{n}} \\
& +\sum_{n=m_{1}+1}^{\infty}\left(\frac{1}{n} \sum_{i=1}^{n}\left|\frac{x_{s_{2}}(i)+x_{s_{3}}(i)+\cdots+x_{s_{k}}(i)}{k}\right|\right)^{p_{n}}+\epsilon_{1} \\
& \leq \sum_{n=1}^{m_{1}} \frac{1}{k} \sum_{j=1}^{k}\left(\frac{1}{n} \sum_{i=1}^{n}\left|x_{s_{j}}(i)\right|\right)^{p_{n}} \\
& +\sum_{n=m_{1}+1}^{m_{2}}\left(\frac{1}{n} \sum_{i=1}^{n}\left|\frac{x_{s_{2}}(i)+x_{s_{3}}(i)+\cdots+x_{s_{k}}(i)}{k}\right|\right)^{p_{n}} \\
& +\sum_{n=m_{2}+1}^{\infty}\left(\frac{1}{n} \sum_{i=1}^{n}\left|\frac{x_{s_{2}}(i)+x_{s_{3}}(i)+\cdots+x_{s_{k}}(i)}{k}\right|\right)^{p_{n}}+\epsilon_{1} \\
& \leq \sum_{n=1}^{m_{1}} \frac{1}{k} \sum_{j=1}^{k}\left(\frac{1}{n} \sum_{i=1}^{n}\left|x_{s_{j}}(i)\right|\right)^{p_{n}} \\
& +\sum_{n=m_{1}+1}^{m_{2}}\left(\frac{1}{n} \sum_{i=1}^{n}\left|\frac{x_{s_{2}}(i)+x_{s_{3}}(i)+\cdots+x_{s_{k}}(i)}{k}\right|\right)^{p_{n}} \\
& +\sum_{n=m_{2}+1}^{\infty}\left(\frac{1}{n} \sum_{i=1}^{n}\left|\frac{x_{s_{3}}(i)+x_{s_{4}}(i)+\cdots+x_{s_{k}}(i)}{k}\right|\right)^{p_{n}}+2 \epsilon_{1} \\
& \leq \sum_{n=1}^{m_{1}} \frac{1}{k} \sum_{j=1}^{k}\left(\frac{1}{n} \sum_{i=1}^{n}\left|x_{s_{j}}(i)\right|\right)^{p_{n}} \\
& +\sum_{n=m_{1}+1}^{m_{2}} \frac{1}{k} \sum_{j=2}^{k}\left(\frac{1}{n} \sum_{i=1}^{n}\left|x_{s_{j}}(i)\right|\right)^{p_{n}} \\
& +\sum_{n=m_{2}+1}^{m_{3}} \frac{1}{k} \sum_{j=3}^{k}\left(\frac{1}{n} \sum_{i=1}^{n}\left|x_{s_{j}}(i)\right|\right)^{p_{n}} \\
& +\cdots+\sum_{n=m_{k-1}+1}^{m_{k}} \frac{1}{k} \sum_{j=k-1}^{k}\left(\frac{1}{n} \sum_{i=1}^{n}\left|x_{s_{j}}(i)\right|\right)^{p_{n}} \\
& +\sum_{n=m_{k}+1}^{\infty}\left(\frac{1}{n} \sum_{i=1}^{n}\left|\frac{x_{s_{k}}(i)}{k}\right|\right)^{p_{n}}+(k-1) \epsilon_{1}
\end{aligned}
$$

$$
\begin{align*}
\leq & \frac{\rho\left(x_{s_{1}}\right)+\cdots+\rho\left(x_{s_{k-1}}\right)}{k}+\frac{1}{k} \sum_{n=1}^{m_{k}}\left(\frac{1}{n} \sum_{i=1}^{n}\left|x_{s_{k}}(i)\right|\right)^{p_{n}} \\
& +\sum_{n=m_{k}+1}^{\infty}\left(\frac{1}{n} \sum_{i=1}^{n}\left|\frac{x_{s_{k}}(i)}{k}\right|\right)^{p_{n}}+(k-1) \epsilon_{1} \\
\leq & \frac{k-1}{k}+\frac{1}{k} \sum_{n=1}^{m_{k}}\left(\frac{1}{n} \sum_{i=1}^{n}\left|x_{s_{k}}(i)\right|\right)^{p_{n}} \\
& +\frac{1}{k^{\alpha}} \sum_{n=m_{k}+1}^{\infty}\left(\frac{1}{n} \sum_{i=1}^{n}\left|x_{s_{k}}(i)\right|\right)^{p_{n}}+(k-1) \epsilon_{1} \\
\leq & 1-\frac{1}{k}+\frac{1}{k}\left[1-\sum_{n=m_{k}+1}^{\infty}\left(\frac{1}{n} \sum_{i=1}^{n}\left|x_{s_{k}}(i)\right|\right)^{p_{n}}\right] \\
& +\frac{1}{k^{\alpha}} \sum_{n=m_{k}+1}^{\infty}\left(\frac{1}{n} \sum_{i=1}^{n}\left|x_{s_{k}}(i)\right|\right)^{p_{n}}+(k-1) \epsilon_{1} \\
\leq & 1+(k-1) \epsilon_{1}-\left(\frac{k^{\alpha-1}-1}{k^{\alpha}}\right) \sum_{n=m_{k}+1}^{\infty}\left(\frac{1}{n} \sum_{i=1}^{n}\left|x_{s_{k}}(i)\right|\right)^{p_{n}} \\
\leq & 1+(k-1) \epsilon_{1}-\left(\frac{k^{\alpha-1}-1}{k^{\alpha}}\right) \eta \\
= & 1-\left(\frac{k^{\alpha-1}-1}{k^{\alpha}}\right)\left(\frac{\eta}{2}\right) . \tag{2.7}
\end{align*}
$$

By Theorem 2.5, there exist $\gamma>0$ such that $\left\|\left(x_{s_{1}}+x_{s_{2}}+\cdots+x_{s_{k}}\right) / k\right\|<1-\gamma$. Therefore, $\operatorname{ces}(p)$ is $k$-NUC.

Since $k$-NUC implies $k R$ and $k R$ implies $R$ and reflexivity holds, and $k$-NUC implies NUC and NUC implies property (H) and reflexivity holds, by Theorem 2.6, the following results are obtained.

Corollary 2.7. The space $\operatorname{ces}(p)$ is $k R, N U C$, and has a drop property.
Corollary 2.8. For $1<p<\infty$, the space $\operatorname{ces}_{p}$ is $k$-NUC.
Corollary 2.9. For $1<p<\infty$, the space $\operatorname{ces}_{p}$ is $k R$ and NUC.
Corollary 2.10. For $1<p<\infty$, the space $\operatorname{ces}_{p}$ has the drop property.
Acknowledgments. Suthep Suantai would like to thank the Thailand Research Fund for the financial support and the referee for pointing out the work of Cui and Hudzik [2]. Winate Sanhan was supported by The Royal Golden Jubilee Project.

## References

[1] J. A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), no. 3, 396-414.
[2] Y. Cui and H. Hudzik, On the uniform Opial property in some modular sequence spaces, Funct. Approx. Comment. Math. 26 (1998), 93-102.
[3] Y. Cui, C. Meng, and R. Płuciennik, Banach-Saks property and property ( $\beta$ ) in Cesàro sequence spaces, Southeast Asian Bull. Math. 24 (2000), no. 2, 201210.
[4] J. Daneš, A geometric theorem useful in nonlinear functional analysis, Boll. Un. Mat. Ital. (4) 6 (1972), 369-375.
[5] K. Fan and I. Glicksberg, Fully convex normed linear spaces, Proc. Nat. Acad. Sci. U.S.A. 41 (1955), 947-953.
[6] R. Huff, Banach spaces which are nearly uniformly convex, Rocky Mountain J. Math. 10 (1980), no. 4, 743-749.
[7] D. Kutzarova, $k-\beta$ and $k$-nearly uniformly convex Banach spaces, J. Math. Anal. Appl. 162 (1991), no. 2, 322-338.
[8] P. Y. Lee, Cesàro sequence spaces, Math. Chronicle 13 (1984), 29-45.
[9] Y. Q. Lui, B. E. Wu, and P. Y. Lee, Method of Sequence Spaces, Guangdong of Science and Technology Press, 1996 (Chinese).
[10] L. Maligranda, Orlicz Spaces and Interpolation, Seminars in Mathematics, vol. 5, Polish Academy of Science, 1989.
[11] V. Montesinos, Drop property equals reflexivity, Studia Math. 87 (1987), no. 1, 93-100.
[12] S. Rolewicz, On drop property, Studia Math. 85 (1986), no. 1, 27-35 (1987).
[13] , On $\Delta$-uniform convexity and drop property, Studia Math. 87 (1987), no. 2, 181-191.
[14] J.-s. Shiue, On the Cesàro sequence spaces, Tamkang J. Math. 1 (1970), no. 1, 19-25.

Winate Sanhan: Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand

E-mail address: winate_s@yahoo.com
Suthep Suantai: Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand

E-mail address: scmti005@chiangmai.ac.th

