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A function f(x,y) is separately continuous if at any point the restricted functions
fx(y) and fy(x) are continuous as functions of one variable. In this paper, we
use several results which have been obtained for other generalized continuities
and apply them to functions which are separately continuous.
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1. Introduction. In this paper, we work with functions f from R×R into R,

but note here that many of the definitions and results can be suitably gener-

alized in case if the domain space of f is Rn. Cauchy, in 1821, wrote that a

function of several variables which is continuous in each variable separately is

continuous as a function of all the variables. This is, of course, false, the first

counterexample appearing in 1873 is as follows.

Example 1.1. Let f :R×R be defined by

f(x,y)=



2xy
x2+y2

, (x,y)≠ (0,0),

0, (x,y)= (0,0).
(1.1)

This function is continuous everywhere except (0,0), where it is continuous

along the lines x = 0 and y = 0.

The fact that this is continuous when reduced to a one-variable function,

but not as a function of two variables, leads us to the following definition.

Definition 1.2. Let f : R×R → R. For every fixed x ∈ R, the function

fx :R→R defined by

fx(y)= f(x,y) (1.2)

is called an x-section of f . The y-section is similarly defined.

We say f : R×R → R is separately continuous if each x-section and each

y-section is a continuous function.
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So our first example tells us that a function which is separately continuous in

both variables is not the same as a continuous function. In this paper, we also

work with another generalization of continuous functions called quasicontin-

uous functions and some variations of that notion. We state their definitions

here.

Definition 1.3. Let f :R×R→R. Then

(1) f is quasicontinuous at (x,y) if for eachU andV open inRwith (x,y)∈
U ×V and open set W ⊂ R, where f(x,y) ∈ W , there is an open set

U ′ ⊂U and an open set V ′ ⊂ V such that

f(U ′ ×V ′)⊂W ; (1.3)

(2) f is quasicontinuous with respect to x (alternatively y) if we also insist

x ∈U ′ (y ∈ V ′);
(3) f is symmetrically quasicontinuous if it is quasicontinuous with respect

to x and y .

The relationships between these various notions are summarized in the fol-

lowing diagram where C represents the continuous functions, SC the sepa-

rately continuous functions, QC the quasicontinuous functions, SQC the sepa-

rately quasicontinuous functions, and SymQC the symmetrically quasicontin-

uous functions:

C

SymQC SC QC .

SQC

(1.4)

There is an abundance of examples to show that none of these arrows may be

reversed.

We note here that a major difference between separately continuous and

quasicontinuous functions is the so-called Sierpiński property [7]. The prop-

erty concerns the ability of a function to be uniquely based on its values on a

dense set in the domain.

Sierpiński property. Any real-valued separately continuous function is

determined by its values on any dense subset of the domain space. That is, if

f and g are separately continuous and agree on a dense set D in the domain

space, then f and g agree everywhere.

The following example shows that the Sierpiński property does not hold

even for symmetrically quasicontinuous functions.
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Example 1.4. Let f and g from R×R into R be defined by

f(x,y)=



sin
(

1
x2+y2

)
, (x,y)≠ (0,0),

1, (x,y)= (0,0),

g(x,y)=



sin
(

1
x2+y2

)
, (x,y)≠ (0,0),

0, (x,y)= (0,0).

(1.5)

Then g and f are symmetrically quasicontinuous and agree on the dense set

R2\{0}, but they are not equal.

In this paper, we look at several different types of results for functions hav-

ing various generalizations of continuity and reformulate them in terms of

separately continuous functions. Various examples are also given to show that

separate continuity is an important ingredient in the hypotheses.

2. Approximations. Many papers have been written concerning approxi-

mating a function as a pointwise limit. Probably the most well-known class

of pointwise limits are the Baire-one functions, the functions which are the

pointwise limit of continuous functions. In this section, we show that sepa-

rately continuous functions from R2 to R are a pointwise limit of what we

call planar approximation functions. The main motive behind this section was

the following result from [8] concerning a type of almost continuous func-

tion. A function f : [0,1] → R is called almost continuous (in the sense of

Stallings) if for every open set U containing the graph of f , there is a continu-

ous g : [0,1]→R whose graph is contained in U .

Theorem 2.1. Every almost continuous (in the sense of Stallings) function

f : [0,1]→R is polygonally almost continuous.

Another way of saying this is, for every open set U containing the graph of

f , there is in U the graph of a polygonal function g : [0,1]→R whose vertices

lie on the graph of f . Our way of considering at this is that there is a sequence

of polygonal functions converging pointwise to f . We wish to redo this result

in terms of functions whose domain is the unit square.

Instead of approximations by line segments, we approximate by pieces of a

plane. Let f : [0,1]×[0,1]→R. We define Pn(x,y), the planar approximations

to f , as follows: for n = 0, we start with the unit square and divide it into

two triangles by splitting it along the diagonal joining (1,0) and (0,1). So our

first triangle has corners (0,0), (1,0), and (0,1) while the second triangle has

corners (1,0), (0,1), and (1,1). For each triangle, we find the image of the

corner points and, using the triples (x,y,f (x,y)), we create a planar region

through these triples. Adjoining the two planar regions, we obtain our first

planar approximation, P0(x,y).
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At stage n, divide the unit square into 2n subsquares of side length 1/2n.

Then divide each square into two triangles for a total of 2n+1 triangles. So each

triangle has vertices (x1,y1), (x2,y2), and (x3,y3) and we use (xi,yi,f (xi,
yi)), i = 1,2,3, to create a section of a plane in R3. Joining these sections

together gives Pn(x,y), where for a given (x,y), Pn(x,y) is the z-value of the

plane section above that point. We note here (for later use) that the collection

of all the corner points of the triangles used in the approximations is dense in

the unit square and will be denoted by T .

For some f we cannot recover the function using these Pn. By this we mean

Pn(x,y)� f(x,y) for some point (x,y). We now show that separately con-

tinuous functions are planar approximable. That is, if f(x,y) is separately

continuous, then the planar approximation of f converges pointwise to f .

Theorem 2.2. If f(x,y) is separately continuous, then Pn(x,y) converges

pointwise to f(x,y).

Proof. First, if (x,y) is a corner point of a triangle, the conclusion is ob-

vious.

Second, if (x,y) is a part of a horizontal or vertical boundary for a triangle

(without loss of generality, assume that (x,y) is part of a horizontal boundary),

but not a corner point, then (x,y) is a bilateral limit of corner points (xn,yn)r
and (xn,yn)l where r and l refer to left and right sides, respectively, of thenth

triangle containing (x,y) in its boundary. Since f is separately continuous,

Pn
(
xn,yn

)= f (xn,yn) �→ f(x,y) (2.1)

for both the left and right sides. This result coupled with the fact that the

boundary of the pieces of the planar approximation are found using linear

interpolation between the corners leads us to

Pn(x,y) �→ f(x,y). (2.2)

Finally, at any other point (x,y) in the unit square, the denseness of the

horizontal and vertical boundaries of the triangles along with the same combi-

nation of separate continuity of f and linear interpolation in the approximating

give us Pn(x,y) wich converges to f(x,y).

In order to recover the original function, it is not necessary that f be sepa-

rately continuous. The following example shows this.

Example 2.3. Let f(x,y)= χ{(0,0)}, the characteristic function of (0,0). Be-

cause the origin is one of the corners for a triangle, the pointwise limit of

the planar approximations gives us back the original f . This function is not

separately continuous.

Our next concern is about the set � of functions which are the pointwise limit

of these Pn. The previous example shows that � contains more than just the
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separately continuous functions. The following examples show that although

some Baire-one functions and symmetrically quasicontinuous functions are in

�, these classes are not contained in �.

Example 2.4. Let a be a point not in T , then χ{a} (which is obviously Baire-

one) is not planar approximable.

Example 2.5. Pick (x0,y0) so that (x0,y0) is not a point on the boundary

of any triangle. So there exists a chain of triangles

T1 ⊃ T2 ⊃ T3 ⊃ ··· (2.3)

from our development of T with (x0,y0)∈ Ti for all i. Define f : [0,1]×[0,1]→
R by

f
(
x0,y0

)= 0,

f ≡ 1 on the boundary of Ti if i is even,

f ≡ 0 on the boundary of Ti if i is odd,

(2.4)

and between the triangles everything is connected continuously. Then f is sym-

metrically quasicontinuous, but the planar approximations at (x0,y0) jump

between 0 and 1. Thus, f is not planar approximable.

So we know that the separately continuous functions are proper subsets

of � and that � is a proper subset of the Baire-one function. This gives the

following open question.

Problem 2.6. Does there exist a complete description of the functions in

�?

3. Restrictions. In 1922, Blumberg proved the following theorem [1].

Theorem 3.1. Let f : [0,1]→R be an arbitrary function, then there exists a

set D, dense in [0,1], such that the restriction of f to D, f |D , is continuous.

Since then, many “Blumberg type” theorems have been produced. These all

have the form if X is a certain type of space and f : X → R, then there is a

type of dense set X0 ⊆ X such that the restriction of f to X0 is some type of

generalized continuity. A specific example, which is taken from [2], illustrating

how “large” the set X0 can be, is given in our Theorem 3.2 below. A function f
is pointwise discontinuous on X (f ∈ PWD(X)) if the set of continuity points

is dense in X.

Theorem 3.2. If X is a complete metric space dense in itself, then for every

f :X →R, there exists a c-dense X0 ⊂X such that f |X0 ∈ PWD(X0).
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Our “Blumberg type” theorem also tightens the dense set by making it a

c-dense set and the conclusion is changed to the restricted function being

separately continuous.

Theorem 3.3. For every f : R2 → R, there exists a c-dense set D ⊂ R2 such

that f |D is separately continuous.

Proof. This can be shown by using either [6] or [3]. The former contains a

construction of a c-dense set where every horizontal and vertical line intersects

at most one point. The latter refers to modifying a result by Mazurkiewicz [4]

so that, for any positive integer n ≥ 2, there is a set in R2 which meets every

line in exactly n points. In either case, there is a c-dense subset D in the plane.

For any (a,b)∈D, the horizontal and vertical lines x = a and y = b intersect

D at finitely many points. So for ε small enough, the only points in (a±ε,b)
and (a,b± ε) intersected with D will be (a,b). Thus, f |D will be separately

continuous at (a,b).

4. Extensions. The results for this section have to do with extending a sepa-

rately continuous function defined on a subset of the plane. Our work is based

on the following theorem from [5].

Theorem 4.1. Let H ⊂ [0,1] and let f :H → R be continuous and bounded

on H. Then there exists h : [0,1]→R such that

(1) h is quasicontinuous on [0,1],
(2) f = h on H,

(3) H ⊂�(h)where �(h) is the set of points in [0,1] at whichh is continuous.

We begin by changing the domain from the unit interval into the unit square

and then show that we can relax the condition on f to a separately continuous

function. We then use extra conditions to achieve some corollaries.

Theorem 4.2. Let H ⊂ [0,1]×[0,1] and let f :H →R be separately contin-

uous and bounded on H. Then there exists h : [0,1]×[0,1]→R such that

(1) h is quasicontinuous on [0,1]×[0,1],
(2) f = h on H,

(3) H ⊂�(h) where �(h) is the set of points interior to [0,1]×[0,1] at which

h is separately continuous.

Proof. All we really need to do is to illustrate how f(x,y) is to be defined

for (x,y) on the boundary of H where there are horizontal and/or vertical

lines in H approaching the point, and then how to extend it to any points

in [0,1]× [0,1]\H. It will then be obvious that properties (1), (2), and (3) are

true. From the separate continuity of f we should approach a point on the

boundary of H from either a horizontal or vertical direction. What we really

need to determine is which direction we choose.
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For every (x,y) where f is defined on both the horizontal and vertical line

through (x,y), let

f(x,y)= liminf
t→y

(x,t)∈H
f(x,t). (4.1)

For every (x,y) where f is defined on the vertical line through (x,y), but not

the horizontal line through the point, then

f(x,y)= liminf
t→y

(x,t)∈H
f(x,t). (4.2)

Finally, for every (x,y) in the boundary ofH to which f has not been extended

we define f on the horizontal line through (x,y), but not on the vertical line

through the point, then

f(x,y)= liminf
s→x

(s,y)∈H
f(s,y). (4.3)

Now, f is defined on H. If [0,1]×[0,1]\H is nonempty, we can use contin-

uous x-sections to finish defining f .

Example 4.3. In general, we cannot replace Theorem 4.2(1) with “h is sym-

metrically quasicontinuous on [0,1]×[0,1].”
Proof. Let H =H1∪H2∪H3∪H4, where

H1 = [0,1/2)×[0,1/2), H3 = (1/2,1]×[0,1/2)
H2 = [0,1/2)×(1/2,1], H4 = (1/2,1]×(1/2,1]. (4.4)

Define f to be 0 on H1 and H4 while f is 1 on H2 and H3. It is impossible to

extend f to the point (1/2,1/2) and have it be symmetrically quasicontinuous

there.

Corollary 4.4. If H = ∪Hi where the Hi are pairwise disjoint, then the

extension of f is symmetrically quasicontinuous.

Proof. Because the Hi are pairwise disjoint, the set [0,1]× [0,1]\∪Hi is

an open set and then h can be extended to be continuous on this open set.

Any function which is separately continuous must also be a Baire-one func-

tion. The proof of this is due to Lebesgue and is quite elegant. From the Baire-

one property we obtain the following corollary.

Corollary 4.5. If H =∪Hi where the Hi are pairwise disjoint, then since f
is Baire-one the extension is Baire-one.

Proof. This is an immediate consequence of h being continuous on [0,1]×
[0,1]\∪Hi and f being Baire-one on H.
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5. Linear, not separate, continuity. Related to the separately continuous

functions are the linearly continuous functions. A function f is linearly con-

tinuous at (x,y) if it is continuous with respect to every line l passing through

the point. An early example of a function which is linearly continuous, but not

continuous, at the origin was given by W. H. Young and G. C. Young in [9]. We

repeat their example.

Example 5.1. We will define the function f : R2 → R for the first quadrant

only. The other quadrants will then be determined by reflection about the axes.

Let P represent the parabola y = x2. On both the x-axis and y-axis, define f
to be zero. Between the y-axis and the graph of P , let f(x,y)= x2/y . Between

the graph of P and the x-axis, let f(x,y)=y/x2. Finally, on the parabola itself

(except at the origin, where f is zero), set f(x,y) = 1. It is obvious that f is

continuous at every point except the origin. However, for any line y =mx in

the first quadrant, we eventually have

f(x,y)= x
2

y
= x
m
, (5.1)

which is continuous at the origin.

We note that W. H. Young and G. C. Young did more than just giving this one

example. They took this result and created several more examples, culminating

in a function which is linearly continuous, but is discontinuous at uncountably

dense many points.

Our result is another one about extensions in the flavor of [5]. This time f
begins as linearly continuous and is linearly continuous in the conclusion.

Theorem 5.2. Let f :H ⊂ [0,1]×[0,1]→R be a bounded, linearly continu-

ous function. If H =∪ni=1Hi, where Hi are pairwise disjoint, then there exists an

extension h : [0,1]×[0,1]→R such that h is linearly continuous.

Proof. Since there are only finitely many Hi, we can achieve linearly con-

tinuity after extending f to each boundary of Hi. For an arbitrary point (x,y)
on the boundary of Hi we can define f(x,y) to be

lim
(s,t)→(x,y)
(s,t)∈l

f (s,t), (5.2)

where l is any line segment in the interior of Hi with (x,y) as an endpoint.

The next example shows that without additional assumptions, it is necessary

to have only finitely many Hi in order to achieve linear continuity.

Example 5.3. This will not necessarily work if H =∪∞i=1Hi.
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Proof. Define Hi as [2−2i−2,2−2i−1]×[0,1] and define f on Hi to be 1 if i
is odd and 0 if i is even. There is no way to define f(0,0) so that it is linearly

continuous at the origin with respect to the line y = 0.

Theorem 5.4. If, instead of having finitely many Hi, we have H = ∪∞i=1Hi,
Hi are pairwise disjoint, and no line intersects infinitely many H =Hi, then we

can make the function h to be linearly continuous.

Proof. This holds since for a small enough neighborhood of the point

(x,y) in the boundary of Hi only finitely many Hj , j ≠ i, can be contained.

We conclude by noting that our earlier section on restrictions can also be

applied to linearly continuous functions. This is because Mauldin’s result [3]

concerns a c-dense set which meets any line in at most n places.
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arately continuous functions, Questions Answers Gen. Topology 15 (1997),
no. 1, 15–19.
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