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Some variants of one-dimensional and two-dimensional integral inequalities of the
Volterra type are applied to study the behaviour properties of the solutions to var-
ious boundary value problems for partial differential equations of the hyperbolic
type. Moreover, new types of integral inequalities for one and two variables, being
a generalization of the Gronwall inequality, are presented and used in the theory
of nonlinear hyperbolic differential equations.
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1. Introduction. In this paper, the inequalities of the Volterra type are used

to study the behaviour properties of the solutions to boundary value prob-

lems for various types of hyperbolic equations. Section 2 is concerned with

fundamental remarks for one-dimensional Volterra integral equations based

on the theory integral equations. The presented estimates given under weaker

assumptions are applied in Section 3 to study a boundedness of solutions for

linear hyperbolic equations. In Section 4, new integral inequalities of the spe-

cial type are considered and applied in Section 5 to boundary value problems

for nonlinear partial differential equations of the hyperbolic type.

2. Note on one-dimensional integral inequalities. Consider the following

integral inequality of the Volterra type:

u(x)≤ f(x)+
∫ x

0
k(x,s)u(s)ds. (2.1)

The purpose of this section is to estimate various variants to the considered

inequality if the continuous functions f andu are assumed arbitrary (generally

they are supposed to be nonnegative [1, 3, 5]).

Using theory of Volterra integral equations (see [2, 5]), we can get the fol-

lowing known results. We denote R+ = [0,∞) and T = {(x,s) : 0≤ s ≤ x <∞}.
Lemma 2.1. Let f and k be continuous functions on R+ and T , respectively.

If k is a nonnegative function in T , then for a continuous function u in R+
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satisfying inequality (2.1), one of the estimates

u(x)≤ f(x)+
∫ x

0
r(x,s)f (s)ds,

u(x)≤ f̄ (x)
[

1+
∫ x

0
r(x,s)ds

]
,

(2.2)

follows, where

f̄ (x)= sup
0≤s≤x

f(s) (2.3)

and r is a resolvent kernel of the form

r(x,s)=
∞∑
n=1

k(n)(x,s), (2.4)

where k(n) are iterated kernels constructed by the formulas

k(n)(x,s)=
∫ x
s
k(1)(x,ξ)k(n−1)(ξ,s)dξ

=
∫ x
s
k(n−1)(x,ξ)k(1)(ξ,s)dξ, n= 2,3, . . . ,

k(1)(x,s)= k(x,s).

(2.5)

If f is a nondecreasing function, then

u(x)≤ f(x)
[

1+
∫ x

0
r(x,s)ds

]
. (2.6)

Lemma 2.2. If a is continuous in R+, then

1+
∫ x

0
a(s)exp

[∫ x
s
a(τ)dτ

]
ds = exp

[∫ x
0
a(s)ds

]
. (2.7)

Proof. Let

F(s)= exp
[∫ x

s
a(τ)dτ

]
for arbitrary x ∈R+, (2.8)

we notice that

F(x)= 1, F(0)= exp
[∫ x

0
a(τ)dτ

]
,

dF
ds

= exp
[∫ x

s
a(τ)dτ

]
d
ds

[∫ x
s
a(τ)dτ

]

= F(s)[a(s)(−1)+a(x)0]=−a(s)F(s).
(2.9)
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Integrating equality (2.9) over the interval [0,x], we obtain∫ x
0

dF
ds
ds =−

∫ x
0
a(s)F(s)ds,

F(x)−F(0)=−
∫ x

0
a(s)exp

[∫ x
s
a(τ)dτ

]
ds.

(2.10)

Hence,

1−exp
[∫ x

0
a(τ)dτ

]
=−

∫ x
0
a(s)exp

[∫ x
s
a(τ)dτ

]
ds,

1+
∫ x

0
a(s)exp

[∫ x
s
a(τ)dτ

]
ds = exp

[∫ x
0
a(τ)dτ

]
.

(2.11)

Theorem 2.3. Let b, f , and u be continuous in R+. If b is nonnegative and

u satisfies the inequality

u(x)≤ f(x)+
∫ x

0
b(s)u(s)ds, (2.12)

then

u(x)≤ f(x)+
∫ x

0
b(s)exp

[∫ x
s
b(τ)dτ

]
f(s)ds (2.13)

or

u(x)≤ f̄ (x)exp
[∫ x

0
b(s)ds

]
. (2.14)

Moreover, if f is nondecreasing, then

u(x)≤ f(x)exp
[∫ x

0
b(s)ds

]
. (2.15)

Proof. It follows from Lemma 2.1 that if k(x,s)= b(s), we get (see [3, 5])

r(x,s)= b(s)exp
[∫ x

s
b(τ)dτ

]
. (2.16)

Using Lemma 2.2, the proof is finished.

Theorem 2.4. Let a, b be continuous and nonnegative functions in T . If a

continuous function u in R+ satisfies the inequality

u(x)≤ f(x)+
∫ x

0
a(x)b(s)u(s)ds, (2.17)

then for a continuous function f in R+, one of the following estimates hold:

u(x)≤ f(x)+
∫ x

0
a(x)b(s)exp

[∫ x
s
a(τ)b(τ)dτ

]
f(s)ds, (2.18)

u(x)≤ f̄ (x)
[

1+
∫ x

0
a(x)b(s)exp

[∫ x
s
a(τ)b(τ)dτ

]
ds
]
. (2.19)
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Proof. Putting k(x,s)= a(x)b(s)≥ 0 in (2.1), we obtain (see [3, 5])

r(x,s)= a(x)b(s)exp
[∫ x

0
a(τ)b(τ)dτ

]
. (2.20)

Then by virtue of Lemma 2.1, we get estimates (2.18) or (2.19).

Proposition 2.5. If additionally f is nonnegative and a is nonincreasing,

then the Gronwall inequality

u(x)≤ f̄ (x)exp
[∫ x

0
a(s)b(s)ds

]
(2.21)

follows. If f is nondecreasing, then

u(x)≤ f(x)exp
[∫ x

0
a(s)b(s)ds

]
. (2.22)

Proof. If, moreover, f is nonnegative and a is nonincreasing, then

1+
∫ x

0
a(x)b(s)exp

[∫ x
s
a(τ)b(τ)dτ

]
ds

≤ 1+
∫ x

0
a(s)b(s)exp

[∫ x
s
a(τ)b(τ)dτ

]
ds

= exp
[∫ x

0
a(s)b(s)ds

]
.

(2.23)

From here we can write estimates (2.18) and (2.19) in the forms (2.21) and

(2.22), respectively.

Theorem 2.6. Let the assumptions of Theorem 2.4 be satisfied. If a is posi-

tive, then inequality (2.17) implies

u(x)≤ a(x)
(
f̄
a

)
(x)exp

[∫ x
0
a(s)b(s)ds

]
. (2.24)

If additionally f/a is nondecreasing, then inequality (2.22) holds.

Proof. From (2.17), we have

u(x)
a(x)

≤ f(x)
a(x)

+
∫ x

0
a(s)b(s)

u(s)
a(s)

ds. (2.25)

By Theorem 2.3, we obtain (2.24) and the estimate

u(x)
a(x)

≤
(
f̄
a

)
(x)

∫ x
0
a(s)b(s)ds. (2.26)
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If f/a is nondecreasing, then(
f̄
a

)
(x)=

(
f
a

)
(x) (2.27)

and estimate (2.22) follow.

Conclusion 2.7. Theorems 2.3, 2.4, and 2.6 are obtained for negative val-

ues of f and u too, but are not allowed in literature (see [1, 5]). In the two-

dimensional case, the presented theorems are true only for nonnegative values

of f (see [1, 2, 4]).

3. Applications of one-dimensional Volterra integral equations. The esti-

mates (2.22) and (2.24) can be used to study the boundedness of solutions for

boundary value problems of special types to hyperbolic equations.

3.1. Consider the following equation:

uxy(x,y)=
(
a(x,y)u(x,y)

)
y+g(x,y), (3.1)

with boundary value conditions

u(x,0)=α(x), u(0,y)= β(y), (3.2)

which is equivalent to the integral equation

u(x,y)= f1(x,y)+
∫ x

0
a(s,y)u(s,y)ds, (3.3)

where

f1(x,y)=α(x)+β(y)−u(0,0)−
∫ x

0
a(s,0)α(s)ds+

∫ x
0

∫ y
0
g(s,t)dtds,

(3.4)

with continuous functions α, β and a, g in R+ and R2+, respectively.

To estimate a solution to (3.3), we get

∣∣u(x,y)∣∣≤ ∣∣f1(x,y)
∣∣+

∫ x
0

∣∣a(s,y)∣∣∣∣u(s,y)∣∣ds. (3.5)

Treating it as a one-dimensional integral inequality with respect to the vari-

able x and using Theorem 2.3 for every y ∈R+, we obtain

∣∣u(x,y)∣∣≤ f 1(x,y)exp
[∫ x

0

∣∣a(s,y)∣∣ds], (3.6)

where

f 1(x,y)= sup
0≤s≤x

{∣∣f1(s,y)
∣∣} for y ∈R+. (3.7)

Corollary 3.1. If f 1 is bounded in R2+ and
∫∞
0 |a(s,y)|ds < ∞ for every

y ∈R+, then a solution of boundary value problem (3.1), (3.2) is bounded.
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3.2. Similarly, the equation

uxy(x,y)=
(
a(x,y)u(x,y)

)
x+g(x,y), (3.8)

with

u(x,0)=α(x), u(0,y)= β(y), (3.9)

is reduced to the following integral equation:

u(x,y)= f2(x,y)+
∫ y

0
a(x,t)u(x,t)dt, (3.10)

where

f2(x,y)=α(x)+β(y)−u(0,0)−
∫ y

0
a(0, t)β(t)dt+

∫ x
0

∫ y
0
g(s,t)dsdt,

(3.11)

with continuous functions α, β and a, g in R+ and R2+, respectively. For esti-

mation of solution of (3.10), we obtain the following inequality:

∣∣u(x,y)∣∣≤ ∣∣f2(x,y)
∣∣+

∫ y
0

∣∣a(x,t)∣∣∣∣u(x,t)∣∣dt. (3.12)

Treating it as a one-dimensional Volterra inequality with respect to the variable

y and using Theorem 2.3 for every x ∈R+, we get the estimate

∣∣u(x,y)∣∣≤ f 2(x,y)exp
[∫ x

0

∣∣a(s,y)∣∣ds], (3.13)

where

f 2(x,y)= sup
0≤t≤y

{∣∣f2(x,t)
∣∣} for x ∈R+. (3.14)

If |f2| is nondecreasing with respect to y , then we have

f 2(x,y)= ∣∣f2(x,y)
∣∣. (3.15)

Corollary 3.2. If f 2 is bounded in R2+ and
∫∞
0 |a(x,t)|dt < ∞ for every

x ∈R+, then a solution of boundary value problem (3.8), (3.9) is bounded.

4. New types of integral inequalities for one and two variables. Consider

the following integral inequalities:

u(x,y)≤ g(x,y)+a(x,y)
∫ x

0
p(s,y)u(s,y)ds+

∫ x
0

∫ y
0
q(s,t)u(s,t)dtds,

(4.1)

u(x,y)≤ g(x,y)+a(x,y)
∫ y

0
p(x,t)u(x,t)dt+

∫ x
0

∫ y
0
q(s,t)u(s,t)dtds,

(4.2)
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for x,y ∈R+ with D = {(x,y) : x,y ≥ 0} and the following assumptions:

(A1) the functions g, p, and q are nonnegative and continuous in D,

(A2) a is nonincreasing, nonnegative, and continuous in D.

Theorem 4.1. Let assumptions (A1) and (A2) be satisfied. If a nonnegative

and continuous function u satisfies inequality (4.1), then the inequality of the

Gronwall type

u(x,y)≤ g(x,y)Ap(x,y)exp
(∫ x

0

∫ y
0
q(s,t)Ap(s,t)dsdt

)
(4.3)

holds, where

g(x,y)= sup
{
g(s,t) : 0≤ s ≤ x, 0≤ t ≤y}, (4.4)

AP(x,y)= exp
[∫ x

0
a(s,y)p(s,y)ds

]
. (4.5)

Proof. Denote a function

r(x,y)=
∫ x

0

∫ y
0
q(s,t)u(s,t)dsdt, (4.6)

which, by assumptions, is nonnegative, nondecreasing, and continuous in D.

Then inequality (4.1) can be written in the form

u(x,y)≤ g(x,y)+r(x,y)+a(x,y)
∫ x

0
p(s,y)u(s,y)ds. (4.7)

Treating (4.7) as a one-dimensional integral inequality for any fixed y ∈R+
and using a suitable inequality, (2.21), yield

u(x,y)≤ [g(x,y)+r(x,y)]AP(x,y). (4.8)

Hence, we get the following two-dimensional Volterra integral inequality:

u(x,y)
AP(x,y)

≤ g(x,y)+
∫ x

0

∫ y
0
q(s,t)AP(s,t)

u(s,t)
AP(s,t)

dsdt. (4.9)

Using classical Gronwall inequality (see [1, 2, 4]), we obtain

u(x,y)
AP(x,y)

≤ g(x,y)exp
[∫ x

0

∫ y
0
q(s,t)AP(s,t)

u(s,t)
AP(s,t)

dsdt
]

(4.10)

and next we obtain inequality (4.3).

Similarly, the following theorem can be proved.

Theorem 4.2. If the assumptions of Theorem 4.1 are fulfilled, then inequal-

ity (4.2) implies

u(x,y)≤ g(x,y)PA(x,y)exp
(∫ x

0

∫ y
0
q(s,t)PA(s,t)dsdt

)
, (4.11)
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where g is defined by (4.4) and

PA(x,y)= exp
[∫ y

0
a(x,t)p(x,t)dt

]
. (4.12)

Proof. Introducing a function r , similarly as in the proof of Theorem 4.1,

inequality (4.2) can be replaced by

u(x,y)≤ g(x,y)+r(x,y)+a(x,y)
∫ y

0
p(x,t)u(x,t)dt. (4.13)

Treating it as a one-dimensional integral inequality for any fixed x ∈ R+ and

using Proposition 2.5, we get

u(x,y)≤ [g(x,y)+r(x,y)]PA(x,y), (4.14)

which can be reduced to the following two-dimensional inequality of the Volt-

erra type

u(x,y)
PA(x,y)

≤ g(x,y)+
∫ x

0

∫ y
0
q(s,t)PA(s,t)

u(s,t)
PA(s,t)

dsdt. (4.15)

By Gronwall inequality (see [1, 2, 4]), we obtain inequality (4.2).

5. Applications. Particular cases of the considered inequalities will be ap-

plied to study the behaviour properties of the solutions for the boundary val-

ues problems to nonlinear differential equations of the hyperbolic type.

Consider the following differential equations of the hyperbolic type:

uxy(x,y)= f(x,y)+
(
p(x,y)u(x,y)

)
y+F

[
x,y,u(x,y)

]
, (5.1)

uxy(x,y)= f(x,y)+
(
p(x,y)u(x,y)

)
x+F

[
x,y,u(x,y)

]
, (5.2)

with boundary conditions

u(x,0)=α(x), u(0,y)= β(y), (5.3)

under the assumptions

(H1) f and p are continuous in D;

(H2) F is continuous in Θ= {(x,y,u) : x,y ≥ 0, |u|<∞} and satisfying one

of the following conditions:

∣∣F(x,y,ū)−F(x,y, ¯̄u)∣∣≤ϕ(x,y)∣∣ū− ¯̄u
∣∣ in Θ, (5.4)∣∣F(x,y,u)∣∣≤ϕ(x,y)|u| in Θ, (5.5)

for nonnegative and continuous function ϕ in D;

(H3) the functions α and β are continuous in D.



APPLICATIONS OF ONE- AND TWO-DIMENSIONAL VOLTERRA . . . 3381

Boundary value problem (5.1), (5.3) is equivalent to the integral equation

u(x,y)= g(x,y)+
∫ x

0
p(s,y)u(s,y)ds+

∫ x
0

∫ y
0
F
[
s,t,u(s,t)

]
dsdt, (5.6)

where

g(x,y)=α(x)+β(y)−u(0,0)−
∫ y

0
p(s,o)α(s)ds+

∫ x
0

∫ y
0
f(s,t)dsdt.

(5.7)

From (5.7), we get

∣∣u(x,y)∣∣≤∣∣g(x,y)∣∣+
∫ x

0

∣∣p(s,y)∣∣∣∣u(s,y)∣∣ds+
∫ x

0

∫ y
0

∣∣F[s,t,u(s,t)]∣∣dsdt.
(5.8)

Using (5.5), we obtain

∣∣u(x,y)∣∣≤∣∣g(x,y)∣∣+
∫ x

0

∣∣p(s,y)∣∣∣∣u(s,y)∣∣ds+
∫ x

0

∫ y
0
ϕ(s,t)

∣∣u(s,t)∣∣dsdt.
(5.9)

Applying Theorem 4.1, we have

∣∣u(x,y)∣∣≤G(x,y)P(x,y)exp
[∫ x

0

∫ y
0
ϕ(s,t)P(s,t)dsdt

]
, (5.10)

where

P(x,y)= exp
(∫ x

0

∣∣p(s,y)∣∣ds),
G(x,y)= sup

{∣∣g(s,t)∣∣ : 0≤ s ≤ x, 0≤ t ≤y}. (5.11)

In this way the following theorem is proved.

Theorem 5.1. Suppose (H1), (H2)(5.5), and (H3) are true. If G and P are

bounded in D and ∫∞
0

∫∞
0
ϕ(s,t)P(s,t)dsdt <∞, (5.12)

then a solution of problem (5.1), (5.3) is bounded in D and estimated by (5.10).

Similarly, we can prove the following theorem.

Theorem 5.2. Suppose assumptions (H1), (H2)(5.5), and (H3) are true. If H
and Q are bounded in D and∫∞

0

∫∞
0
ϕ(s,t)Q(s,t)dsdt <∞, (5.13)

then a solution of problems (5.2) and (5.3) are bounded in D and it satisfies the

inequality

∣∣u(x,y)∣∣≤H(x,y)Q(x,y)exp
[∫ x

0

∫ y
0
ϕ(s,t)Q(s,t)dsdt

]
, (5.14)
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where

Q(x,y)= exp
(∫ y

0

∣∣p(x,t)∣∣dt),
H(x,y)= sup

{∣∣h(s,t)∣∣ : 0≤ s ≤ x, 0≤ t ≤y} (5.15)

with

h(x,y)=α(x)+β(y)−u(0,0)−
∫ x

0
p(0, t)β(t)dt+

∫ x
0

∫ y
0
f(s,t)dsdt.

(5.16)

Proof. We notice that problem (5.1), (5.3) is equivalent to the integral equa-

tion

u(x,y)= h(x,y)+
∫ y

0
p(x,t)u(x,t)dt+

∫ x
0

∫ y
0
F
[
s,t,u(s,t)

]
dsdt. (5.17)

To estimate a solution of this equation, we get the following inequality:

∣∣u(x,y)∣∣≤∣∣h(x,y)∣∣+
∫ y

0

∣∣p(x,t)∣∣∣∣u(x,t)∣∣dt+
∫ x

0

∫ y
0

∣∣F[s,t,u(s,t)]∣∣dsdt,
(5.18)

which by (5.5) reduces to the integral inequality of one and two variables

∣∣u(x,y)∣∣≤∣∣h(x,y)∣∣+
∫ y

0

∣∣p(x,t)∣∣∣∣u(x,t)∣∣dt+
∫ x

0

∫ y
0
ϕ(s,t)

∣∣u(s,t)∣∣dsdt.
(5.19)

Then Theorem 5.1 yields (5.14).

Corollary 5.3. Existence and uniqueness of value boundary conditions (5.3)

for differential equations (5.1) and (5.2) follow from assumptions (H1), (H2)(5.4),

and (H3).

Proof. Let u1 and u2 be solutions of the presented problems. Then from

(5.6) and (5.17), the following integral inequalities hold:

∣∣u1(x,y)−u2(x,y)
∣∣≤

∫ x
0

∣∣p(s,y)∣∣∣∣u1(s,y)−u2(s,y)
∣∣ds

+
∫ x

0

∫ y
0
ϕ(s,t)

∣∣u1(s,t)−u2(s,t)
∣∣dsdt,

∣∣u1(x,y)−u2(x,y)
∣∣≤

∫ y
0

∣∣p(x,t)∣∣∣∣u1(x,t)−u2(x,t)
∣∣dt

+
∫ x

0

∫ y
0
ϕ(s,t)

∣∣u1(s,t)−u2(s,t)
∣∣dsdt.

(5.20)

Using Theorems 4.1 and 4.2, respectively, we get uniqueness

u1(x,y)=u2(x,y). (5.21)
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Corollary 5.4 (stability of solutions). Suppose that (H1), (H2)(5.4), and (H3)

are true. Then solutions of value boundary problems (5.1), (5.3) and (5.2), (5.3)

are stable.

Proof. Let g1 and g2 be continuous functions of the form (5.7) which are

depended on the boundary conditions (5.3) for solutions u1 and u2 to (5.6),

respectively, such that |g1(x,y)−g2(x,y)|< ε in D for every ε > 0. Then, we

get

∣∣u1(x,y)−u2(x,y)
∣∣≤ ε+

∫ x
0

∣∣p(s,y)∣∣∣∣u1(s,y)−u2(s,y)
∣∣ds

+
∫ x

0

∫ y
0
ϕ(s,t)

∣∣u1(s,t)−u2(s,t)
∣∣dsdt,

∣∣u1(x,y)−u2(x,y)
∣∣≤ εexp

[∫ x
0

∫ y
0
ϕ(s,t)P(s,t)dsdt

]
.

(5.22)

Similarly, for the functions h1 and h2 corresponding to different boundary

conditions of problems (5.2) and (5.3), the following estimate holds:

∣∣u1(x,y)−u2(x,y)
∣∣≤ εexp

[∫ x
0

∫ y
0
ϕ(s,t)P(s,t)dsdt

]
. (5.23)
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