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We study the hp version of three families of Eulerian-Lagrangian mixed discon-
tinuous finite element (MDFE) methods for the numerical solution of advection-
diffusion problems. These methods are based on a space-time mixed formulation
of the advection-diffusion problems. In space, they use discontinuous finite ele-
ments, and in time they approximately follow the Lagrangian flow paths (i.e., the
hyperbolic part of the problems). Boundary conditions are incorporated in a natu-
ral and mass conservative manner. In fact, these methods are locally conservative.
The analysis of this paper focuses on advection-diffusion problems in one space
dimension. Error estimates are explicitly obtained in the grid size h, the polyno-
mial degree p, and the solution regularity; arbitrary space grids and polynomial
degree are allowed. These estimates are asymptotically optimal in both h and p
for some of these methods. Numerical results to show convergence rates in h and
p of the Eulerian-Lagrangian MDFE methods are presented. They are in a good
agreement with the theory.
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1. Introduction. The development of discontinuous Galerkin finite element

methods for the numerical solution of partial differential equations dates back

to the early 1970s. They were first introduced in [34] for the neutron transport

equation (a first-order linear differential equation). Their extensions, stability,

and convergence analyses were later carried out by many researchers [19, 26,

27, 28, 29, 35].

Discontinuous Galerkin methods have also been developed for second-order

elliptic problems. A discontinuous method for these problems, the so-called

global element method, was introduced in [21]. The matrix arising from the

space discretization of diffusion terms by this method is indefinite. Also, its

stability and convergence properties are not available. The interior penalty

method in [2, 22, 37] used the bilinear form of the global element method aug-

mented with an interior penalty term. The drawback of this penalty method

is that its stability and convergence depend on penalty parameters. The penalty

idea was introduced in [31] by replacing boundary multipliers by normal

fluxes for the finite element solution of elliptic problems. Similar approaches

were utilized in [4, 5] for fourth-order differential problems.
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A slightly different discontinuous Galerkin method has recently been intro-

duced in [32]. Their method is different from the global element method in

that the sign in front of the so-called symmetric term was altered. The disad-

vantage of this method is that the bilinear form is nonsymmetric even for a

symmetric differential problem. Also, only suboptimal error estimates in the

L2-norm for numerical solutions can be obtained. This method and its penal-

ized versions have been studied in [36]. For the relationship between all the

existing discontinuous Galerkin methods, we refer to [13].

There have been a lot of applications of the above two families of discon-

tinuous Galerkin methods and their stabilized versions to practical problems.

Among them are the applications to fluid flows in porous media [11, 17], to

the Euler equations [7], to nonlinear acoustic waves [30], and to semiconductor

device modeling [15, 16], for example.

Discontinuous finite element methods in mixed form were utilized in [15,

16] and also developed in [6]. While the lowest-order Raviart-Thomas space

[33] was used in [15, 16], Lagrange multipliers on interior boundaries were

exploited to relax the continuity of normal derivatives of functions in the vector

space, so all finite elements are discontinuous. These methods in mixed form

have been recently studied in [20] for the convection-diffusion equations and

in [8] for the Laplace equation.

The objective of this paper is to study the hp version of the three families

of Eulerian-Lagrangian mixed discontinuous finite element (MDFE) methods

and their equivalent Galerkin versions for the numerical solution of advection-

diffusion problems. These methods are based on a space-time mixed formu-

lation of the advection-diffusion problems. In space, they use discontinuous

finite elements, and in time, they approximately follow the Lagrangian flow

paths (i.e., the hyperbolic part of the problems). Boundary conditions are in-

corporated in a natural and mass conservative manner. In fact, these meth-

ods are locally conservative. A characteristic treatment to handle the advec-

tion term in time is similar to those exploited in [1, 10]; it is known that this

technique is suitable for advection-dominated problems. Also, the stationary

version of the MDFE methods (i.e., as the MDFE methods applied to elliptic

problems) has been studied in [12]. The first family (see (3.1)) was developed

in [13, 14] and extends the mixed discontinuous methods originally proposed

in [6, 15, 16, 20], the second family (see (4.2)) is a generalization of the local

discontinuous Galerkin method in [9] (which is a particular case of the local

discontinuous method introduced in [20]), and the third family (see (5.1)) is a

modification of the second family.

The analysis of this paper focuses on advection-diffusion problems in one

space dimension. Error estimates are explicitly obtained in the grid size h,

the polynomial degree p, and the solution regularity; arbitrary space grids

and polynomial degree are allowed. For the first family, a suboptimal rate of

convergence in the L2-norm for both the solution and its derivative in space



THE hp VERSION OF EULERIAN-LAGRANGIAN MDFE METHODS . . . 3387

is obtained for odd p and an optimal rate is derived for even p, see Theorems

3.2 and 3.3. For the second and third families, the optimal rate of convergence

can be achieved for certain boundary conditions or by choosing appropriately a

parameter at the boundary of the domain, see Theorems 4.2 and 5.2. Numerical

results to show convergence rates of the Eulerian-Lagrangian MDFE methods

in p and h are presented. They are in a good agreement with the obtained

theoretical results.

As observed in [13, 14], when discontinuous finite element methods are de-

fined in a mixed form, they not only preserve good features of these methods,

but also have some advantages over the classical Galerkin form such as they

are more stable and more accurate (in space). While an auxiliary variable is

introduced in the mixed formulation, the MDFE methods can be reduced to

the Galerkin version in one of the two variables because of their local property

and can be implemented (if desired) in nonmixed form [13, 14].

The rest of the paper is outlined as follows. In Section 2, we describe the con-

tinuous problem and its mixed weak formulation. The first, second, and third

families of the Eulerian-Lagrangian MDFE methods are defined and discussed

in Sections 3, 4, and 5, respectively. The proof of the convergence results is

presented in Section 6. Some generalizations of these methods are mentioned

in Section 7. Numerical experiments for showing convergence rates in both p
and h are presented in Section 8.

2. The continuous problem. We consider the advection-diffusion equation

for u on a bounded interval I = (c,d) with boundary ∂I = ΓD∪ΓN , ΓD∩ΓN =∅:

∂(φu)
∂t

+ ∂
∂x

(
bu−a∂u

∂x

)
= f in I×J,

u= gD, on ΓD×J,(
bu−a∂u

∂x

)
νI = gN, on ΓN×J,

u(x,0)=u0(x) in I,

(2.1)

where J = (0,T ] (T > 0), a(x,t), b(x,t),φ(x,t) ∈ L∞(I), gD(x,t) ∈ L∞(ΓD),
gN(x,t)∈ L∞(ΓN), f(x,t)∈ L2(I) (for each t ∈ J), and u0(x)∈ L2(I) are given

functions (the standard Sobolev spaces Hk(I)=Wk,2(I) with the usual norms

are used in this paper), and νI is the outer unit normal to ∂I (while we call it a

normal, it is, in fact, a scalar in one dimension; i.e., it is 1 or −1). To define the

mixed weak formulation, we rewrite this equation as follows:

∂(φu)
∂t

+ ∂
∂x
(bu−σ)= f in I×J,

σ = a∂u
∂x

in I×J,
u= gD, on ΓD×J,

(bu−σ)νI = gN, on ΓN×J,
u(x,0)=u0(x) in I.

(2.2)
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Figure 2.1. An illustration of the unit normal ν .

Namely, an auxiliary variable σ is introduced, which has a physical meaning

in applications such as the electric field in semiconductor modeling [15, 16]

or the velocity field in petroleum simulation [23, 25], as mentioned in the in-

troduction. In the next four sections, we study the case where the following

assumption holds:

a∗ ≥ a(x,t)≥ a∗ > 0 in I×J, (2.3)

with a∗ and a∗ being constants. The situation without this assumption will

be addressed in Section 7. Also, to demonstrate the idea of the proposed ap-

proximation scheme, we consider the case where φ and b are constants; the

nonconstant case will be addressed in Section 7 as well.

For h > 0, let Ih be a partition of I into subintervals Ii = (xi−1,xi), i =
1, . . . ,M , with length hi = xi−xi−1 ≤ h. Let �oh denote the set of all interior

nodes of Ih, �bh the set of the end points on ∂I, and �h = �oh∪�bh. We tacitly

assume that �oh �= ∅.

For l≥ 0, define

Hl(Ih)= {v ∈ L2(I) : v|Ii ∈Hl(Ii), i= 1, . . . ,M
}
. (2.4)

With each xi ∈ �h, we associate a unit normal ν . For xi ∈ �bh, ν = νxi is just

the outer unit normal to ∂I; that is, for the left end, ν = −1 and for the right

end, ν = 1. For xi ∈ �oh, it is chosen pointing to the element with lower index

(see Figure 2.1); that is, ν =−1 at all interior points. This is just for notational

convenience; other choices are possible.

For v ∈ Hl(Ih) with l > 1/2, we define its average and jump at xi ∈ �oh as

follows (see Figure 2.2):

{v}(xi)= 1
2

((
v|Ii

)(
xi
)+(v|Ii+1

)(
xi
))
, [v]

(
xi
)= (v|Ii+1

)(
xi
)−(v|Ii)(xi).

(2.5)

At xi ∈ �bh, the following convention is used (from inside I):

{v}(xi)= v(xi), [v]
(
xi
)=


v

(
xi
)
, if xi ∈ ΓD,

0, if xi ∈ ΓN.
(2.6)

For each positive integer �, let 0 = t0 < t1 < ··· < t� = T be a partition of

J into subintervals Jn = (tn−1, tn], with length ∆tn = tn−tn−1, 1 ≤ n ≤�. Set
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• • •
xi

Ii Ii+1

Figure 2.2. An illustration for the jump definition.

vn = v(·, tn) and

∆t = max
1≤n≤�

∆tn. (2.7)

The origin of our approximation scheme can be seen by considering (2.2) in

a space-time framework. For any x ∈ I and two times 0 ≤ tn−1 < tn ≤ T , the

hyperbolic part of problem (2.1), φ∂u/∂t+b∂u/∂x, defines the characteristic

x̌n(x,t) along the interstitial velocity ϕ = b/φ (it emanates backward from x
at tn, see Figure 2.3):

x̌n(x,t)= x−ϕ
(
tn−t), t ∈ [ť(x),tn], (2.8)

where ť(x) = tn−1 if x̌n(x,t) does not backtrack to the boundary ∂I for t ∈
[tn−1, tn]; ť(x)∈ (tn−1, tn] is the time instant when x̌n(x,t) intersects ∂I, that

is, x̌n(x, ť(x))∈ ∂I, otherwise. If b > 0, the characteristic at the right boundary

(x = d,t ∈ Jn) is defined by

x̌n(d,t)= d−ϕ(t−θ), θ ∈ [tn−1, t
]
. (2.9)

Similarly, we can modify the characteristic at the left boundary (x = c, t ∈ Jn)
if b < 0.

For some element Ii ∈ Ih, let Ǐi(t) indicate the traceback of Ii to time t,
t ∈ Jn:

Ǐi(t)=
{
x ∈ I : x = x̌n(y,t) for some y ∈ Ii

}
. (2.10)

Also, let Ini be the space-time region that follows the characteristics:

Ini =
{
(x,t)∈ I×J : t ∈ Jn, x ∈ Ǐi(t)

}
. (2.11)

For an element on either the boundary (x = c, t ∈ Jn) (if b < 0) or the boundary

(x = d, t ∈ Jn) (if b > 0), an analogous definition can be given (see Figure 2.3).

Let (·,·)S denote the L2(S) inner product (we omit S if S = I). Multiplying

the first equation of (2.2) by v ∈H1(Ini ), integrating the resulting equation on

Ini , and using Green’s formula, we see that

(
φun,vn

)
Ii−

(
φun−1,vn−1)

Ǐi(tn−1)
+
∫
Jn

((
σ,
∂v
∂x

)
Ǐi(t)
−(σνǏi(t),v)∂Ǐi(t)

)
dt

= (f ,v)Ini −
(
ubνI,v

)
∂Ini ∩(∂I×Jn)+

(
u,φ

∂v
∂t
+b∂v

∂x

)
Ini
,

(2.12)
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tn

tn−1

ť1

x0 xi−1 xi xi+1 xM

x̌n(xi,tn−1)

ťM+1 ≡ xM+1

x̌n(xi,t)
ν

Figure 2.3. An illustration of characteristics.

where we use the fact that (b,φ) ·ν = 0 on the space-time sides (∂Ini ∩Jn)\(
∂Ini ∩(∂I×Jn)

)
and νǏi(t) is the unit normal outward to Ǐi(t).

We denote the inverse of x̌n(·, t) by x̂n(·, t). For a function v(x,t), if t ∈ Jn,

define

v̂(x,t)= v(x̂n(x,t),tn). (2.13)

Note that v̂(x,tn−1,+) = v̂n−1,+(x) follows the characteristics forward from

tn−1 to tn to become vn(x). If we use this type of test functions in (2.12), the

last term in the right-hand side of (2.12) becomes zero. With this, summing the

resulting equation over Ii ∈ Ih, applying the boundary condition in (2.2), and

assuming the continuity of σ in I, we see that

(
φun,vn

)−(φun−1, v̂n−1,+)+∑
i

(
σ,
∂v̂
∂x

)
Ini
−
∑
j

∫
Jn
σν[v̂]|x̌n(xj ,t)dt

=
∫
Jn


(f ,v̂)− ∑

x∈ΓN
gNv̂|x−

∑
x∈ΓD

gDbνv̂|x

dt, v ∈H1(Ih),

(2.14)

where with each characteristic a unit normal ν is associated, the characteris-

tic x̌n(xj,t) emanates back from the boundary (c or d, t ∈ Jn) if j ≥ M +1

(see Figure 2.3), and v is extended by zero outside Ī. Note that we can formally

write

∑
i

(
σ,
∂v̂
∂x

)
Ini
=
∫
Jn

(
σ,
∂v̂
∂x

)
dt, (2.15)

and
∑
j
∫
Jn σν[v̂]|x̌n(xj ,t)dt represent the jumps across the characteristics.

Now, invert a in the second equation of (2.2), multiply by τ ∈H1(Ih), inte-

grate on Ii ∈ Ih, and sum the resulting equation at tn over all Ii ∈ Ih to see

that

M∑
i=1

((
a−1)nσn− ∂un

∂x
,τ
)
Ii
= 0. (2.16)
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Assuming that u is continuous in I (so [u](xi) = 0, xi ∈ �oh) and using the

Dirichlet boundary condition in (2.2), (2.16) becomes

M∑
i=1

((
a−1)nσn− ∂un

∂x
,τ
)
Ii
+

M∑
i=0

[
un
]{τν}|xi = ∑

x∈ΓD
gnDτν|x, τ ∈H1(Ih).

(2.17)

From (2.14) and (2.17), we have the weak formulation on which the discontin-

uous methods are based. Thus, we see that if (σ ,u) is a solution of (2.2), then

it satisfies (2.14) and (2.17); the converse also holds if u is sufficiently smooth

(e.g., u ∈ H1(Ω)∩H2(Ih)). Namely, (2.14) and (2.17) are consistent with (2.2).

The jump terms in the left-hand side of (2.14) are called the consistent terms

(which come from the Green formula), while the corresponding terms in (2.17)

are termed the symmetric terms (which are added). Finally, notice that the

strips Ini are oriented along the Lagrangian flow paths (i.e., the characteristic

paths), and a fixed partition is utilized at the time level tn. These features

suggest the name Eulerian-Lagrangian method [1, 10].

3. The first mixed discontinuous method

3.1. The definition. Let Vh×Wh be the finite element spaces for the approxi-

mation ofσ andu, respectively. They are finite dimensional and defined locally

on each element Ii ∈ Ih, so let Vh(Ii) = Vh|Ii and Wh(Ii) = Wh|Ii , i = 1, . . . ,M .

Neither continuity constraint nor boundary values are imposed on Vh×Wh.

Based on (2.14) and (2.17), the first Eulerian-Lagrangian mixed discontinuous

method for (2.1) is: find (σh,uh) : {t1, . . . , t�} → Vh×Wh such that

(
φunh,v

)−(φun−1
h ,v̂n−1,+)+ M∑

i=1

(
σnh ,

∂v
∂x

)
Ii
∆tn−

M∑
i=0

{
σnh ν

}
[v]|xi∆tn

=
∫
Jn


(f ,v̂)− ∑

x∈ΓN
gNv̂|x−

∑
x∈ΓD

gDbνv̂|x

dt, v ∈Wh,

M∑
i=1

((
a−1)nσnh − ∂u

n
h

∂x
,τ
)
Ii

+
M∑
i=0

[
unh
]{τν}|xi = ∑

x∈ΓD
gnDτν|x, τ ∈ Vh,

(3.1)

where v is extended by zero outside Ī. The initial approximation is given by

u0
h =�hu0, (3.2)

where �h denotes the L2-projection into Wh. That is,

(
v−�hv,w

)= 0 ∀w ∈Wh. (3.3)
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We define the bilinear forms

An
(
τ1,τ2

)= M∑
i=1

((
a−1)nτ1,τ2

)
Ii∆t

n, τ1,τ2 ∈ Vh,

Bn(τ,v)=
M∑
i=1

(
τ,
∂v
∂x

)
Ii
∆tn−

M∑
i=0

{τν}[v]|xi∆tn, τ ∈ Vh, v ∈Wh.
(3.4)

Then system (3.1) is of the form

(
φunh,v

)−(φun−1
h ,v̂n−1,+)+Bn(σnh ,v)

=
∫
Jn

(
(f ,v̂)−

∑
x∈ΓN

gNv̂|x−
∑
x∈ΓD

gDbνv̂|x
)
dt, v ∈Wh,

An
(
σnh ,τ

)−Bn(τ,unh)= ∑
x∈ΓD

gnDτν|x∆tn, τ ∈ Vh.
(3.5)

It can be seen [14] that the stiffness matrix arising from this system is positive

definite for any Vh andWh. Also, this system is symmetric after changing a sign

in either of the two equations. But this would alter the positive definiteness.

As seen in the subsequent analysis, if (3.1) is written in a nonmixed form (or

the standard Galerkin version), the positive definiteness and symmetry can be

preserved simultaneously. Thus, in terms of implementation, it is desirable to

write (3.1) in a nonmixed form. However, as pointed out in the introduction, we

emphasize that the mixed formulation naturally stabilizes the discontinuous

finite element method, see Section 3.4. That is why we start with the mixed

discontinuous method. For the advantages of the present mixed discontinuous

methods over the classical mixed finite element methods, see [13, 14].

Let Ii ∈ Ih be any element. Take v = 1 on Ii and zero elsewhere in the first

equation of (3.1) to see that

(
φunh,1

)
Ii−

(
φun−1

h ,1
)
Ǐi(tn−1)−

∑
x∈∂Ii

{
σnh νIi

}∣∣
x∆t

n

=
∫
Jn


(f ,1)Ǐi(t)−

∑
x∈ΓN∩∂Ǐi(t)

gN|x−
∑

x∈ΓD∩∂Ǐi(t)
gnDbν|x


dt.

(3.6)

This equation expresses local conservation of mass along the characteristics

if the flux across ∂Ii is defined as {σh ·ν}. This is one of the advantages of

the Eulerian-Lagrangian approach over the classical modified method of char-

acteristics [14, 24], which has an inherent difficulty in conserving mass locally.

3.2. Existence and uniqueness. Stability in terms of data for (3.1) has been

considered in [14]. For completeness, we state existence and uniqueness of

the solution to (3.1). Below, C (with or without a subscript) indicates a generic

constant independent of h and p (the polynomial degree), which may take on

different values in different occurrences.
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Proposition 3.1. System (3.1) has a unique solution under (2.3).

Proof. Since (3.1) is a finite system, it suffices to show the uniqueness of

the solution. Setting f = gD = gN =u0 = 0, it follows from (3.1) that

(
φunh,v

)−(φun−1
h ,v̂n−1,+)

+
M∑
i=1

(
σnh ,

∂v
∂x

)
Ii
∆tn−

M∑
i=0

{
σnh ν

}
[v]|xi∆tn = 0, v ∈Wh,

M∑
i=1

((
a−1)nσnh − ∂u

n
h

∂x
,τ
)
Ii
∆tn+

M∑
i=0

[
unh
]{τν}|xi∆tn = 0, τ ∈ Vh.

(3.7)

We complete the proof by an induction argument. Note that u0
h = 0 by assump-

tion and by (3.2). Let un−1
h = 0. The addition of the two equations in (3.7) with

v =unh and τ = σnh yields

(
φunh,u

n
h
)+((a−1)nσnh ,σnh )∆tn = 0, (3.8)

which implies, by (2.3), that σnh =unh = 0. Thus, the desired result follows.

3.3. Convergence. From now on, let

Vh
(
Ii
)=Wh(Ii)= Ppi(Ii), Ii ∈ Ih, pi ≥ 0, (3.9)

where Ppi(Ii) is the set of polynomials of degree at most pi on Ii. Note that pi
can be different on different elements.

For v ∈ Hl(Ii), l ≥ 0, there exists vh ∈ Ppi(Ii) and a positive constant C
dependent on l but independent of v , h, and pi such that [3]

∥∥v−vh∥∥Hr (Ii) ≤ C(l)h
min(l,pi)+1−r
i

max
(
1,pi

)l+1−r ‖v‖Hl+1(Ii), r = 0,1,

∣∣(v−vh)(x)∣∣≤ C(l)h
min(l,pi)+1/2
i

max
(
1,pi

)l+1/2 ‖v‖Hl+1(Ii), x ∈ ∂Ii.
(3.10)

We now state error estimates which will be shown in Section 6. Set

p =max
(
pi, Ii ∈ Ih, i= 1, . . . ,M

)
. (3.11)
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For v ∈H1(I×J), we define

∂
∂z
v
(
x̌n(x,t),t

)= ∂
∂t
v
(
x̌n(x,t),t

)+ϕ ∂
∂x
v
(
x̌n(x,t),t

)
, t ∈ Jn. (3.12)

Theorem 3.2. Under (2.3), if (σ ,u) and (σh,uh) are the respective solutions

to (2.2) and (3.1), then, for ∆t sufficiently small,

max
1≤n≤�

∥∥un−unh∥∥2
L2(I)+

�∑
n=1

∥∥σn−σnh ∥∥2
L2(I)∆t

n

≤C(l)
M∑
i=1

(
h2min(l,p)

max(1,p)2l−3

(∥∥∥∥∂u∂t
∥∥∥∥

2

L2(J;Hl(Ii))
+‖u‖2

L2(J;Hl+1(Ii))
+‖u‖2

L∞(J;Hl(Ii))

+
∥∥∥∥∂u∂z

∥∥∥∥
2

L2(J;Hl(Ii))
+‖σ‖2

L2(J;Hl+1(Ii))

)

+
�∑
n=1

(∥∥∥∥∂σ∂x
∥∥∥∥

2

L2(Ii×Jn)
+
∥∥∥∥ ∂2σ
∂z∂x

∥∥∥∥
2

L2(Ii×Jn)
+
∥∥∥∥∂σ∂t

∥∥∥∥
2

L2(Ii×Jn)

)
(∆t)2

)
, l≥0.

(3.13)

Note that the estimate in Theorem 3.2 gives a suboptimal order in h of con-

vergence, but it is sharp for (3.1) in the general case, as indicated by numerical

experiments. In the case wherepi for all Ii ∈ Ih is even, we can prove an optimal

order in h of convergence for (3.1).

Theorem 3.3. Under (2.3), if (σ ,u) and (σh,uh) are the respective solutions

to (2.2) and (3.1) and if pi is even for all Ii ∈ Ih, then, for ∆t sufficiently small,

max
1≤n≤�

∥∥un−unh∥∥2
L2(I)+

�∑
n=1

∥∥σn−σnh ∥∥2
L2(I)∆t

n

≤ C(l)
M∑
i=1

(
h2min(l,p)+2

max(1,p)2l−1

(∥∥∥∥∂u∂t
∥∥∥∥

2

L2(J;Hl+1(Ii))
+‖u‖2

L2(J;Hl+2(Ii))
+‖u‖2

L∞(J;Hl+1(Ii))

+
∥∥∥∥∂u∂z

∥∥∥∥
2

L2(J;Hl+1(Ii))
+‖σ‖2

L2(J;Hl+2(Ii))

)

+
�∑
n=1

(∥∥∥∥∂σ∂x
∥∥∥∥

2

L2(Ii×Jn)
+
∥∥∥∥ ∂2σ
∂z∂x

∥∥∥∥
2

L2(Ii×Jn)
+
∥∥∥∥∂σ∂t

∥∥∥∥
2

L2(Ii×Jn)

)
(∆t)2

)
, l≥ 0.

(3.14)

The proof of this theorem will be carried out in Section 6 as well. Notice that

the error estimate in Theorem 3.3 is optimal in h.
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3.4. Implementation. While method (3.1) is in mixed form, it can be im-

plemented (if desired) in a nonmixed form [14]. We introduce the coefficient-

dependent projections Pnh : L2(I)→ Vh by

((
a−1)n(w−Pnhw),τ)= 0 ∀τ ∈ Vh, (3.15)

for w ∈ L2(I), and Rnh :H1(Ih)→ Vh by

M∑
i=1

((
a−1)nRnh(v),τ)Ii =−

M∑
i=0

[v]{τν}|xi+
∑
x∈ΓD

gnDτν|x, τ ∈ Vh, (3.16)

for v ∈ H1(Ih). Using (3.15) and (3.16), (3.1) can be rewritten as follows [14]:

find uh : {t1, . . . , t�} →Wh such that

(
φunh,v

)−(φun−1
h ,v̂n−1,+)+ M∑

i=1

(
Pnh

(
an
∂unh
∂x

)
,
∂v
∂x

)
Ii

∆tn

−
M∑
i=0

[
unh
]{
Pnh
(
an
∂v
∂x

)
ν
}∣∣∣∣

xi
∆tn

−
M∑
i=0

{(
Pnh

(
an
∂unh
∂x

)
+Rnh

(
unh
))
ν
}
[v]|xi∆tn

=
∫
Jn


(f ,v̂)− ∑

x∈ΓN
gNv̂|x−

∑
x∈ΓD

gDbνv̂|x

dt

−
∑
x∈ΓD

gnDP
n
h

(
an
∂v
∂x

)
ν|x∆tn ∀v ∈Wh

(3.17)

with σh given by

σnh = Pnh
(
an
∂unh
∂x

)
+Rnh

(
unh
)
. (3.18)

To see the relationship of (3.17) with traditional discontinuous Galerkin fi-

nite element methods, we consider the case where a is piecewise constant. In

this case, (3.17) becomes: find uh : {t1, . . . , t�} →Wh satisfying

(
φunh,v

)−(φun−1
h ,v̂n−1,+)+ M∑

i=1

(
an
∂unh
∂x

,
∂v
∂x

)
Ii

∆tn

−
M∑
i=0

[
unh
]{
an
∂v
∂x
ν
}∣∣∣∣

xi
∆tn

−
M∑
i=0

{
an
∂unh
∂x

ν
}
[v]|xi∆tn+

M∑
i=1

((
a−1)nRnh(unh),Rnh(v))Ii∆tn
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=
∫
Jn


(f ,v̂)− ∑

x∈ΓN
gNv̂|x−

∑
x∈ΓD

gDbνv̂|x

dt

−
∑
x∈ΓD

gnD
(
an
∂v
∂x
−Rnh

(
unh
))
ν|x∆tn ∀v ∈Wh.

(3.19)

Note that without the terms involving Rh, (3.19) (as applied to elliptic prob-

lems) is just the global element method introduced in [21]. With a positive sign

in front of the fourth term in the left-hand side of (3.19) (and without the Rh
terms), it is the method recently introduced in [32]. The Rh term in the left-

hand sides of (3.17) and (3.19) naturally comes from the mixed formulation,

which stabilizes the classical method and leads to higher convergence rates (in

space). For more information on the relationship between the present MDFE

method and other earlier methods, we refer to [13, 14].

Although Rh appears, (3.19) can be evaluated virtually in almost the same

amount of work as in the evaluation of the global element method. This is

due to the definition of Rh in (3.16), where the matrix associated with the

left-hand side can be diagonal if the basis functions of Vh are appropriately

chosen. Also, (3.16) is totally local. The stiffness matrices arising from (3.17)

and (3.19) are symmetric and positive definite. Numerical experiments will be

given in Section 8.

4. The second mixed discontinuous method

4.1. The definition. For v ∈H1(Ih), define the one-sided limits at the nodes

xi ∈ �oh:

v
(
x+i
)= lim

x→x+i
v(x), v

(
x−i
)= lim

x→x−i
v(x). (4.1)

At the endpoint c, for τ ∈ Vh, we use the convention τ(c+)= τ(c−); a similar

meaning can be given at x = d. The second Eulerian-Lagrangian mixed discon-

tinuous method for (2.1) is: find (σh,uh) : {t1, . . . , t�} → Vh×Wh such that

(
φunh,v

)−(φun−1
h ,v̂n−1,+)

+
M∑
i=1

(
σnh ,

∂v
∂x

)
Ii
∆tn−

M∑
i=0

σnh
(
x+i
)
ν[v]|xi∆tn

=
∫
Jn

(
(f ,v̂)−

∑
x∈ΓN

gNv̂|x−
∑
x∈ΓD

gDbνv̂|x
)
dt, v ∈Wh,

M∑
i=1

((
a−1)nσnh − ∂u

n
h

∂x
,τ
)
Ii
+

M∑
i=0

τ
(
x+i
)[
unh
]
ν|xi =

∑
x∈ΓD

gnDτν|x, τ ∈ Vh.

(4.2)
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The second method differs from the first one in that the averaged quantities

in (3.1) are replaced by the right-hand side limits. This method is an exten-

sion of the local discontinuous Galerkin method proposed in [9] for advection-

diffusion problems.

4.2. Existence and uniqueness. Existence and uniqueness of the solution

to (4.2) can be shown as for (3.1).

Proposition 4.1. Under (2.3), (4.2) has a unique solution.

4.3. Convergence. The finite element spaces Vh and Wh are defined as in

(3.9). The convergence result in Theorem 3.2 holds for (4.2) as well. As shown

in [12] for elliptic problems, the optimality of convergence in h and p depends

on the type of boundary conditions. We consider the case where c ∈ ΓD and

d∈ ΓN . In this case, we have the following optimal convergence result.

Theorem 4.2. Under (2.3), if (σ ,u) and (σh,uh) are the respective solutions

to (2.2) and (4.2), c ∈ ΓD , and d∈ ΓN , then, for ∆t sufficiently small,

max
1≤n≤�

∥∥un−unh∥∥2
L2(I)+

�∑
n=1

∥∥σn−σnh ∥∥2
L2(I)∆t

n

≤ C(l)
M∑
i=1

(
h2min(l,p)+2

max(1,p)2l+2

(∥∥∥∥∂u∂t
∥∥∥∥

2

L2(J;Hl+1(Ii))
+‖u‖L∞(J;Hl+1(Ii))

+
∥∥∥∥∂u∂z

∥∥∥∥
2

L2(J;Hl+1(Ii))
+‖σ‖2

L2(J;Hl+1(Ii))

)

+
�∑
n=1

(∥∥∥∥∂σ∂x
∥∥∥∥

2

L2(Ii×Jn)
+
∥∥∥∥ ∂2σ
∂z∂x

∥∥∥∥
2

L2(Ii×Jn)

+
∥∥∥∥∂σ∂t

∥∥∥∥
2

L2(Ii×Jn)

)
(∆t)2

)
, l≥ 0.

(4.3)

The proof of this theorem will be carried out in Section 6. The error esti-

mate in Theorem 4.2 is optimal in both h and p. For other cases of boundary

conditions, the error estimate in Theorem 3.2 is sharp for (4.2). However, with

an addition of appropriate boundary terms at x = c,d to (4.2), the resulting

scheme can generate optimal error estimates. We will not pursue this; for more

information in this direction, we refer to [12] for the treatment of elliptic prob-

lems.

4.4. Implementation. System (4.2) can be implemented (if desired) in the

same fashion as in (3.1). The operator Pnh : L2(I)→ Vh is defined as in (3.15),

while Rnh :H1(Ih)→ Vh is modified by

M∑
i=1

((
a−1)nRnh(v),τ)Ii =−

M∑
i=0

[v]
(
xi
)
τ
(
x+i
)+ ∑

x∈ΓD
gnDτν|x, τ ∈ Vh, (4.4)
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for v ∈ H1(Ih). Then (4.2) can be reduced to: find uh : {t1, . . . , t�} → Wh such

that

(
φunh,v

)−(φun−1
h ,v̂n−1,+)+ M∑

i=1

(
Pnh

(
an
∂unh
∂x

)
,
∂v
∂x

)
Ii

∆tn

−
M∑
i=0

[
unh
]
ν|xiPnh

(
an
∂v
∂x

)(
x+i
)
∆tn

−
M∑
i=0

(
Pnh

(
an
∂unh
∂x

)
+Rnh

(
unh
))(

x+i
)
[v]ν|xi∆tn

=
∫
Jn


(f ,v̂)− ∑

x∈ΓN
gNv̂|x−

∑
x∈ΓD

gDbνv̂|x

dt

−
∑
x∈ΓD

gnDP
n
h

(
an
∂v
∂x

)
ν|x∆tn ∀v ∈Wh,

(4.5)

with σh given as in (3.18). Again, in the case in which a is piecewise constant,

(4.5) becomes: find uh : {t1, . . . , t�} →Wh satisfying

(
φunh,v

)−(φun−1
h ,v̂n−1,+)

+
M∑
i=1

(
an
∂unh
∂x

,
∂v
∂x

)
Ii

∆tn−
M∑
i=0

[
unh
]
ν|xian

∂v
∂x

(
x+i
)

−
M∑
i=0

an
∂unh
∂x

(
x+i
)
[v]ν|xi∆tn+

M∑
i=1

((
a−1)nRnh(unh),Rnh(v))Ii∆tn

=
∫
Jn


(f ,v̂)− ∑

x∈ΓN
gNv̂|x−

∑
x∈ΓD

gDbνv̂|x

dt

−
∑
x∈ΓD

gnD
(
an
∂v
∂x
−Rnh

(
unh
))
ν∆tn|x ∀v ∈Wh.

(4.6)

The stiffness matrices arising from (4.5) and (4.6) are symmetric and positive

definite. Numerical results for (4.2) will be given in Section 8 as well.

5. The third mixed discontinuous method

5.1. The definition. The third method is analogous to the second one. Recall

that the averaged quantities in (3.1) are replaced by the right-hand side limits

in (4.2). In the third method, they are replaced by the left-hand side limits. That

is, the third Eulerian-Lagrangian mixed discontinuous method for (2.1) is: find
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(σh,uh) : {t1, . . . , t�} → Vh×Wh such that

(
φunh,v

)−(φun−1
h ,v̂n−1,+)

+
M∑
i=1

(
σnh ,

∂v
∂x

)
Ii
∆tn−

M∑
i=0

σnh
(
x−i
)
ν[v]|xi∆tn

=
∫
Jn

(
(f ,v̂)−

∑
x∈ΓN

gNv̂|x−
∑
x∈ΓD

gDbνv̂|x
)
dt, v ∈Wh,

M∑
i=1

((
a−1)nσnh − ∂u

n
h

∂x
,τ
)
Ii
+

M∑
i=0

τ
(
x−i
)[
unh
]
ν|xi =

∑
x∈ΓD

gnDτν|x, τ ∈ Vh.

(5.1)

5.2. Existence and uniqueness. The analysis for (5.1) can be done in the

same manner as for (4.2). We just state the corresponding results.

Proposition 5.1. Under (2.3), (5.1) has a unique solution.

5.3. Convergence. The finite element spaces Vh and Wh are defined as in

(3.9). Again, the convergence result in Theorem 3.2 holds for (5.1). Similar to

the second method, the optimality of convergence in h and p depends on

the type of boundary conditions. The case where c ∈ ΓN and d ∈ ΓD has the

following optimal convergence result.

Theorem 5.2. Under (2.3), if (σ ,u) and (σh,uh) are the respective solutions

to (2.2) and (5.1), c ∈ ΓN , and d∈ ΓD , then, for ∆t sufficiently small,

max
1≤n≤�

∥∥un−unh∥∥2
L2(I)+

�∑
n=1

∥∥σn−σnh ∥∥2
L2(I)∆t

n

≤ C(l)
M∑
i=1

(
h2min(l,p)+2

max(1,p)2l+2

(∥∥∥∥∂u∂t
∥∥∥∥

2

L2(J;Hl+1(Ii))
+‖u‖L∞(J;Hl+1(Ii))

+
∥∥∥∥∂u∂z

∥∥∥∥
2

L2(J;Hl+1(Ii))
+‖σ‖2

L2(J;Hl+1(Ii))

)

+
�∑
n=1

(∥∥∥∥∂σ∂x
∥∥∥∥

2

L2(Ii×Jn)
+
∥∥∥∥ ∂2σ
∂z∂x

∥∥∥∥
2

L2(Ii×Jn)

+
∥∥∥∥∂σ∂t

∥∥∥∥
2

L2(Ii×Jn)

)
(∆t)2

)
, l≥ 0.

(5.2)

The estimate is optimal in both h and p. For other cases of boundary con-

ditions, the error estimate in Theorem 3.2 is sharp for (5.1). As for the second

method, with an addition of appropriate boundary terms atx = c,d to (5.1), the

resulting scheme can produce optimal error estimates [12]. System (5.1) can be

similarly implemented (if desired) in nonmixed form as in the second method;

the right-hand side limits in (4.5) and (4.6) are replaced by the left-hand side

limits.
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6. Proof of convergence results

6.1. Proof of Theorem 3.2. To prove Theorem 3.2, we need three lemmas

whose proofs can be found in [1, 18].

Lemma 6.1. With definition (2.13), for each n,

(
φv̂n−1,+, v̂n−1,+)−(φv,v)≤K∆tn(φv,v) ∀v ∈ L2(I). (6.1)

Lemma 6.2. If v1 ∈ L1(J;L2(I)) and v2 ∈ L2(I), then for a.e. t ∈ Jn,

(
v1, v̂2

)= (v̌1,v2�n
)= (v̌1,v2

)+(v̌1,v2�′n
)

(6.2)

for some �n(x,t)= 1+�′n(x,t) such that

∣∣�′n(x,t)
∣∣≤K(tn−t). (6.3)

Moreover, for ∆tn small enough, there are positive constants C1 and C2 such

that

C1

∥∥v1

∥∥
L2(I) ≤

∥∥v̌1

∥∥
L2(I) ≤ C2

∥∥v1

∥∥
L2(I),

C1

∥∥v2

∥∥
L2(I) ≤

∥∥v̂2

∥∥
L2(I) ≤ C2

∥∥v2

∥∥
L2(I).

(6.4)

Lemma 6.3. For v ∈H1(I×J), define

∂
∂z
v
(
x̌n(x,t),t

)= ∂
∂t
v
(
x̌n(x,t),t

)+ϕ ∂
∂x
v
(
x̌n(x,t),t

)
, t ∈ Jn. (6.5)

Then, if ∆tn is small enough,

∥∥vn− v̌∥∥L2(I) ≤ C
(
∆tn

)1/2
∥∥∥∥∂v∂z

∥∥∥∥
L2(I×Jn)

,

‖v− v̂‖L2(I) ≤ C
(
∆tn

)1/2
∥∥∥∥∂v∂z

∥∥∥∥
L2(I×Jn)

.
(6.6)

We define the average

v̄n = 1
∆tn

∫
Jn
v dt, n= 1, . . . ,�. (6.7)
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Note that (2.14) can be written as follows:

(
φun,vn

)−(φun−1, v̂n−1,+)+ M∑
i=1

(
σ̄n,

∂v
∂x

)
Ii
∆tn−

M∑
i=0

{
σ̄nν

}
[v]|xi∆tn

=
∫
Jn


(f ,v̂)− ∑

x∈ΓN
gNv̂|x−

∑
x∈ΓD

gDbνv̂|x

dt+ M∑

i=1

(
σ̄n,

∂v
∂x

)
Ii
∆tn

−
∑
i

(
σ,
∂v̂
∂x

)
Ini
+
∑
i

∫
Jn
σν[v̂]|x̌n(xi,t)dt

−
M∑
i=0

{
σ̄nν

}
[v]|xi∆tn, v ∈H1(Ih).

(6.8)

We are now in a position to prove Theorem 3.2. Recall that �h : L2(I) → Wh
is the standard L2-projection. Also, let Πh : L2(I) → Vh be the standard L2-

projection. Below, ε is a positive constant independent of h and p, as small as

we please.

Proof of Theorem 3.2. Set ηn = σ̄n −σnh and ζn = un −unh . The error

equations follow from the subtraction of (3.1) from (6.8) and (2.17):

(
φζn,vn

)−(φζn−1, v̂n−1,+)+ M∑
i=1

(
ηn,

∂v
∂x

)
Ii
∆tn−

M∑
i=0

{
ηnν

}
[v]|xi∆tn

=
M∑
i=1

(
σ̄n,

∂v
∂x

)
Ii
∆tn−

∑
i

(
σ,
∂v̂
∂x

)
Ini

+
∑
i

∫
Jn
σν[v̂]|x̌n(xi,t)dt−

M∑
i=0

{
σ̄nν

}
[v]|xi∆tn, v ∈Wh,

M∑
i=1

((
a−1)nηn− ∂ζn

∂x
,τ
)
Ii
∆tn+

M∑
i=0

[
ζn
]{τν}|xi∆tn

=
M∑
i=1

((
a−1)n(σ̄n−σn),τ)Ii∆tn, τ ∈ Vh.

(6.9)

Set

ηn1 =Πhσ̄n−σnh , ηn2 =Πhσ̄n− σ̄n,
ζn1 =�hun−unh, ζn2 =�hun−un. (6.10)

Note that ηn = ηn1 −ηn2 and ζn = ζn1 −ζn2 . Take v = ζn1 and τ = ηn1 in the

first and second equations of (6.9), respectively, and add the resulting two
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equations to see that

(
φζn1 ,ζ

n
1

)−(φζn−1
1 , ζ̂n−1,+

1

)+((a−1)nηn1 ,ηn1 )∆tn
= ((φζn2 ,ζn1 )−(φζn−1

2 , ζ̂n−1,+
1

))+ M∑
i=1

(
ηn2 ,

∂ζn1
∂x

)
Ii

∆tn

−
M∑
i=0

{
ηn2ν

}[
ζn1
]∣∣
xi∆t

n+
((
a−1)nηn2 ,ηn1 )∆tn

−
M∑
i=1

(
∂ζn2
∂x

,ηn1

)
Ii

∆tn+
M∑
i=0

[
ζn2
]{
ηn1ν

}∣∣
xi∆t

n

+

 M∑
i=1

(
σ̄n,

∂ζn1
∂x

)
Ii
∆tn−

∑
i

(
σ,
∂ζ̂1

∂x

)
Ini




+

∑

i

∫
Jn
σν

[
ζ̂1
]∣∣
x̌n(xi,t)dt−

M∑
i=0

{
σ̄nν

}[
ζn1
]∣∣
xi∆t

n




+
M∑
i=1

((
a−1)n(σ̄n−σn),ηn1 )Ii∆tn

≡
9∑
i=1

Eni

(6.11)

with the obvious definition of Eni , i = 1, . . . ,9. Each of the terms in (6.11) is

estimated as follows.

First, apply Lemma 6.1 to have

(
φζn1 ,ζ

n
1

)−(φζn−1
1 , ζ̂n−1,+

1

)≥ 1
2

((
φζn1 ,ζ

n
1

)−(φζn−1
1 ,ζn−1

1

))
−C∥∥ζn1 ∥∥2

L2(I)∆t
n.

(6.12)

Second, by Lemmas 6.1, 6.2, and 6.3, we see that

En1 =
(
φ
(
ζn2 −ζn−1

2

)
,ζn1

)+(φζn−1
2 − ˇφζn−1

2 ,ζn1
)−( ˇφζn−1

2 ,ζn1 �′n
)

≤ C

(∥∥ζn1 ∥∥2

L2(I)+
∥∥ζn−1

2

∥∥2
L2(I)

)
∆tn+

∥∥∥∥∂ζ2

∂t

∥∥∥∥
2

L2(I×Jn)
+
∥∥∥∥∂ζ2

∂z

∥∥∥∥
2

L2(I×Jn−1)


.

(6.13)

Third, by the definition of Πh, we find that

En2 = 0. (6.14)
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Fourth, by a trace theorem, we observe that

∣∣En3 ∣∣≤ Cp4

h

M∑
i=0

∣∣{ηn2 }(xi)∣∣2∆tn+ε∥∥ζn1 ∥∥2
L2(I)∆t

n. (6.15)

Fifth, by (2.3), it is obvious that

∣∣En4 ∣∣≤ C∥∥ηn2 ∥∥2
L2(I)∆t

n+ε∥∥ηn1 ∥∥2
L2(I)∆t

n. (6.16)

Sixth, using the Green formula, it follows that

En5 +En6 =
M∑
i=1

(
ζn2 ,

∂ηn1
∂x

)
Ii
∆tn−

M∑
i=0

{
ζn2 ν

}[
ηn1
]∣∣
xi∆t

n = E′n5 +E′n6 . (6.17)

By the definition of �h, we get

E′n5 = 0, (6.18)

and, by a trace theorem,

∣∣E′n6 ∣∣≤ Cp4

h

M∑
i=0

∣∣{ζn2 }(xi)∣∣2∆tn+ε∥∥ηn1 ∥∥2
L2(I)∆t

n. (6.19)

Seventh, the Green formula yields that

En7 +En8 =
∑
i

(
∂σ
∂x
,ζ̂1

)
Ini
−

M∑
i=1

(
∂σ̄n

∂x
,ζn1

)
Ii
∆tn; (6.20)

consequently, by Lemmas 6.2 and 6.3, we obtain

∣∣En7 +En8 ∣∣≤ C
(∥∥ζn1 ∥∥2

L2(I)+
(∥∥∥∥∂σ∂x

∥∥∥∥
2

L2(I×Jn)
+
∥∥∥∥∂σ∂z

∥∥∥∥
2

L2(I×Jn)

)
∆tn

)
∆tn. (6.21)

Eighth, with (2.3), we see that

∣∣En9 ∣∣≤ C
∥∥∥∥∂σ∂t

∥∥∥∥
2

L2(I×Jn)

(
∆tn

)2+ε∥∥ηn1 ∥∥2
L2(I)∆t

n. (6.22)

Finally, utilize (6.12), (6.13), (6.14), (6.15), (6.16), (6.18), (6.19), (6.21), and (6.22)

in (6.11), sum over n, and exploit the discrete Gronwall inequality, (2.3), and

(3.10) to finish the proof of Theorem 3.2.
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6.2. Proof of Theorem 3.3. To show Theorem 3.3, we need the next lemma

[20].

Lemma 6.4. With ζn2 = �hun−un and ηn2 = Πhσ̄n− σ̄n, if all pi are even,

i= 1, . . . ,M ,

∣∣{ζn2 }(xi)∣∣≤ C(l) hmin(l,p)+3/2

max(1,p)l+3/2

∥∥un∥∥Hl+2(Ii∪Ii+1), l≥ 0,

∣∣{ηn2 }(xi)∣∣≤ C(l) hmin(l,p)+3/2

max(1,p)l+3/2

∥∥σ̄n∥∥Hl+2(Ii∪Ii+1), l≥ 0.
(6.23)

With Lemma 6.4, Theorem 3.3 can be proven in the same fashion as for

Theorem 3.2; to (6.15) and (6.19), we apply Lemma 6.4 instead of (3.10).

6.3. Proof of Theorem 4.2. In the proofs of Theorems 3.2 and 3.3, we have

utilized the standard L2-projections �h : L2(I) → Wh and Πh : L2(I) → Vh. To

prove Theorem 4.2, we use a different pair of operators. For χ ∈ H1(Ih), on

each interval Ii = (xi−1,xi), �hχ ∈Wh is determined by

(
�hχ−χ,v

)
Ii = 0 ∀v ∈ Ppi−1

(
Ii
)

if pi ≥ 1,

�hχ
(
x−i
)= χ(x−i ), (6.24)

and Πhχ ∈ Vh is given by

(
Πhχ−χ,v

)
Ii = 0 ∀v ∈ Ppi−1

(
Ii
)

if pi ≥ 1,

Πhχ
(
x+i−1

)= χ(x+i−1

)
.

(6.25)

With this pair of operators, we have the next lemma.

Lemma 6.5. Let χ ∈ Hl+1(Ii) with Ii = (xi−1,xi) and l ≥ 0. There exits a

constant C(l) dependent only on l such that

∥∥�hχ−χ
∥∥
L2(Ii) ≤

C(l)hmin(l,pi)+1
i

max
(
1,pi

)l+1 ‖χ‖Hl+1(Ii),

∣∣(�hχ−χ
)
(x)

∣∣≤ C(l)hmin(l,pi)+1/2
i

max
(
1,pi

)l+1/2 ‖χ‖Hl+1(Ii), x = xi−1,xi.

(6.26)

The same estimates hold for Πhχ−χ.

For simplicity, let the initial approximation u0
h be given as in (3.2) with �h

being defined in (6.24).
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Proof of theorem 4.2. As for (6.11), it follows from (2.17), (6.8), and (4.2)

that

(
φζn1 ,ζ

n
1

)−(φζn−1
1 , ζ̂n−1,+

1

)+((a−1)nηn1 ,ηn1 )∆tn
= ((φζn2 ,ζn1 )−(φζn−1

2 , ζ̂n−1,+
1

))+ M∑
i=1

(
ηn2 ,

∂ζn1
∂x

)
Ii

∆tn

−
M−1∑
i=0

ηn2
(
x+i
)
ν
[
ζn1
]∣∣
xi∆t

n+((a−1)nηn2 ,ηn1 )∆tn

+
M∑
i=1

(
ζn2 ,

∂ηn1
∂x

)
Ii

∆tn−
M∑
i=1

ζn2
(
x−i
)
ν
[
ηn1
]∣∣
xi∆t

n

+

 M∑
i=1

(
σ̄n,

∂ζn1
∂x

)
Ii

∆tn−
∑
i

(
σ,
∂ζ̂1

∂x

)
Ini




+

∑

i

∫
Jn
σν

[
ζ̂1
]∣∣
x̌n(xi,t)dt−

M∑
i=0

{
σ̄nν

}[
ζn1
]∣∣
xi∆t

n




+
M∑
i=1

((
a−1)n(σ̄n−σn),ηn1 )Ii∆tn

≡
9∑
i=1

Kni .

(6.27)

Now, by the definition of Πh and �h, we see that

Kn2 =Kn3 =Kn5 =Kn6 = 0. (6.28)

All other terms can be bounded as in the proof of Theorem 3.2.

6.4. Proof of Theorem 5.2. For the proof of Theorem 5.2, the operators �h :

H1(Ih) → Wh and Πh : H1(Ih) → Vh are accordingly modified as follows. For

χ ∈H1(Ih), on each interval Ii = (xi−1,xi), �hχ ∈Wh is determined by

(
�hχ−χ,v

)
Ii = 0 ∀v ∈ Ppi−1

(
Ii
)

if pi ≥ 1,

�hχ
(
x+i−1

)= χ(x+i−1

)
,

(6.29)

and Πhχ ∈ Vh is given by

(
Πhχ−χ,v

)
Ii = 0 ∀v ∈ Ppi−1

(
Ii
)

if pi ≥ 1,

Πhχ
(
x+i
)= χ(x+i ). (6.30)

Lemma 6.5 remains valid for these new operators, and Theorem 5.2 can be

shown using the same technique as for Theorem 4.2.
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7. Generalizations

7.1. The case of a≥ 0. So far, we have assumed that (2.3) holds. When a is

nonnegative only, let κ ≥ 0 satisfy

a= κ2. (7.1)

Now, (2.2) is written in the form

∂(φu)
∂t

+ ∂
∂x
(bu−κσ)= f in I×J,

σ = κ ∂u
∂x

in I×J,

u= gD on ΓD×J,

(bu−κσ)νI = gN on ΓN×J,
u(x,0)=u0(x) in I.

(7.2)

The corresponding weak formulation is defined as follows:

(
φun,vn

)−(φun−1, v̂n−1,+)

+
∑
i

(
κσ,

∂v̂
∂x

)
Ini
−
∑
i

∫
Jn
κσν[v̂]|x̌n(xi,t)dt

=
∫
Jn

((
f ,v̂

)− ∑
x∈ΓN

gNv̂|x−
∑
x∈ΓD

gDbνv̂|x
)
dt, v ∈H1(Ih),

M∑
i=1

(
σn−κn ∂u

n

∂x
,τ
)
Ii
+

M∑
i=0

[
un
]{
κnτν

}∣∣
xi

=
∑
x∈ΓD

gnDκnτν|x, τ ∈H1(Ih).

(7.3)

With this, the three families of Eulerian-Lagrangian mixed discontinuous meth-

ods in the earlier sections can be accordingly defined. Moreover, all the stability

and convergence results hold by combining the present techniques and those

in [13, 14] for treating the case of a ≥ 0. Note that (7.3) applies to the case

where a≡ 0. In this case, only the inflow boundary condition is needed.

7.2. The case of variables φ and b. For the purpose of demonstration, we

have considered the case of constants φ and b. We now generalize to the vari-

able case. Again, for any x ∈ I and two times 0≤ tn−1 < tn ≤ T , the hyperbolic

part of problem (2.1), φ∂u/∂t + b∂u/∂x, defines the characteristic x̌n(x,t)
along the interstitial velocity ϕ = b/φ:
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∂
∂t
x̌n =ϕ

(
x̌n,t

)
, t ∈ Jn,

x̌n
(
x,tn

)= x. (7.4)

In general, we cannot exactly follow the characteristic in (7.4), it can be fol-

lowed only approximately. There are many ways to solve the first-order or-

dinary differential equation (7.4). We consider only the Euler method [1]. For

tn−1,m = tn−1+m∆tn/Mn, with m=Mn,. . . ,1, set

x̌n−1,m−1
n (x)= x̌n−1,m(x)−ϕ(x̌n−1,m(x),tn−1,m)∆tn

Mn ,

x̌n−1,Mn
n (x)= x.

(7.5)

Note that the number of steps Mn can depend on n. Denote by x̌n(x,t) the

piecewise linear interpolant in time of x̌n−1,m(x). If ∆tn/Mn is sufficiently

small (depending upon the smoothness ofϕ), the approximate characteristics

do not cross each other, which is assumed here. Again, indicate the inverse of

x̌n(·, t) by x̂n(·, t).
For any t ∈ (tn−1,m−1, tn−1,m], define

ϕ̃(x,t)=ϕ(x̌n(x̂n(x,t),tn−1,m), tn−1,m), b̃ = ϕ̃φ. (7.6)

Then the approximate characteristics are defined in terms of ϕ̃:

∂
∂t
x̌n = ϕ̃

(
x̌n,t

)
, t ∈ (tn−1, tn

)
,

x̌n
(
x,tn

)= x.
(7.7)

Now, replacing b by b̃+(b−b̃) in the first equation of (2.2), (2.14) is modified

as follows:

(
φnun,vn

)−(φn−1un−1, v̂n−1,+)+∑
i

(
σ,
∂v̂
∂x

)
Ini
−
∑
i

∫
Jn
σν

[
v̂
]∣∣
x̌n(xi,t)dt

=
∫
Jn


(f ,v̂)− ∑

x∈ΓN
gNv̂|x−

∑
x∈ΓD

gDb̃νv̂|x

dt

+
∫
Jn


( ∂
∂x

(
(b̃−b)u), v̂)− ∑

x∈ΓN

(
b̃−b)uνv̂|x


dt, v ∈H1(Ih),

(7.8)

and (2.17) remains the same. The first Eulerian-Lagrangian mixed discontinu-

ous method for (2.1) is modified as follows: find (σh,uh) : {t1, . . . , t�} → Vh×Wh
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Table 8.1. The estimates for uh.

1/h 12 24 48 96

p error order error order error order error order

1 2.0489e-02 — 5.1661e-03 1.99 1.2923e-03 2.00 3.2276e-04 2.00

2 1.2717e-03 — 1.1590e-04 3.00 1.9853e-05 3.00 2.4817e-06 3.00

3 5.8455e-05 — 3.6763e-06 3.99 2.3015e-07 4.00 1.4401e-08 4.00

4 2.2652e-06 — 7.1221e-08 4.99 2.2320e-09 5.00 6.8973e-11 5.01

such that

(
φnunh,v

)−(φn−1un−1
h ,v̂n−1,+)

+
M∑
i=1

(
σnh ,

∂v
∂x

)
Ii
∆tn−

M∑
i=0

{
σnh ν

}
[v]|xi∆tn

=
∫
Jn


(f ,v̂)− ∑

x∈ΓN
gNv̂|x−

∑
x∈ΓD

gDb̃νv̂|x

dt, v ∈Wh,

M∑
i=1

((
a−1)nσnh − ∂u

n
h

∂x
,τ
)
Ii
+

M∑
i=0

[
unh
]{τν}|xi = ∑

x∈ΓD
gnDτν|x, τ ∈ Vh.

(7.9)

The second and third methods can be modified in the same manner. The ex-

istence and uniqueness result previously obtained holds for (7.9) as well, and

the convergence result holds provided the following assumption is satisfied:

φ,ϕ ∈ L∞(J;W 1,∞(I)
)
. (7.10)

8. Numerical results. We have observed numerical results for the three pre-

sented methods similar to those obtained for the corresponding stationary

problem in [12] when ∆t is sufficiently small. As an example, we just report

numerical results for the second mixed discontinuous method with c ∈ ΓD and

d∈ ΓN . More numerical results can be found in [12]. The coefficients in (2.1) are

constant (φ = 1), the domain is the unit interval (0,1), and the exact solution

is chosen as follows:

u(x,t)= exp(−at)(1−cos
(
2π(x−bt))). (8.1)

The numerical results for uh at T = 0.1 are shown in Table 8.1 in terms of the

space mesh size h and the polynomial degree p. In these results, we have ran-

domly chosen the values of a and b (they have the same magnitude) and have
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considered uniform grids; analogous results have been observed on nonuni-

form grids. These results are in a good agreement with Theorem 4.2. That is,

the estimates are optimal in both h and p. Also, similar numerical results are

obtained for σh.
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