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Self-similar random fractal measures were studied by Hutchinson and Rüschen-
dorf. Working with probability metric in complete metric spaces, they need the
first moment condition for the existence and uniqueness of these measures. In
this paper, we use contraction method in probabilistic metric spaces to prove the
existence and uniqueness of self-similar random fractal measures replacing the
first moment condition.
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1. Introduction. Contraction methods for proving the existence and unique-

ness of nonrandom self-similar fractal sets and measures were first applied by

Hutchinson [7]. Further results and applications to image compression were

obtained by Barnsley and Demko [3] and Barnsley [2]. At the same time, Fal-

coner [5], Graf [6], and Mauldin and Williams [13] randomized each step in

the approximation process to obtain self-similar random fractal sets. Arbeiter

[1] and Olsen [15] studied self-similar random fractal measures applying non-

random metrics. More recently, Hutchinson and Rüschendorf [8, 9, 10] intro-

duced probability metrics defined by expectation for random measure and es-

tablished existence, uniqueness, and approximation properties of self-similar

random fractal measures. In these works a finite first moment condition is

essential.

In this paper, we show that, using probabilistic metric spaces techniques,

we can weaken the first moment condition for the existence and uniqueness

of self-similar measures.

The theory of probabilistic metric spaces, introduced in 1942 by Menger

[14], was developed by numerous authors, as it can be realized upon consult-

ing [4, 18] and the references therein. The study of contraction mappings for

probabilistic metric spaces was initiated by Sehgal [19] and Sherwood [20].

2. Self-similar random fractal measures. Based on contraction properties

of random scaling operators with respect to l∗p and l∗∗p , for 0 < p < ∞, on a

space of random measures and their distributions, respectively, defined below,

Hutchinson and Rüschendorf [8, 9, 10] gave a simple proof for the existence

and uniqueness of invariant random measures. The underlying probability
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space for the iteration procedure is also generated by selecting independent

and identically distributed (i.i.d.) scaling laws for measures.

Let (X,d) be a complete separable metric space.

Definition 2.1. A scaling law with weights is a 2N-tuple

S := (p1,S1, . . . ,pN,SN
)
, N ≥ 1, (2.1)

of positive real numbers pi such that
∑N
i=1pi = 1 and of Lipschitz maps Si :

X →X.

Let ri = LipSi, i ∈ {1, . . . ,N}. Denote by M = M(X) the set of finite-mass

Radon measures on X with weak topology. If µ ∈ M , then the measure Sµ is

defined by

Sµ =
N∑
i=1

piSiµ, (2.2)

where Siµ is the usual push-forward measure, that is,

Siµ(A)= µ
(
S−1
i (A)

)
for A⊆X. (2.3)

Definition 2.2. The measure µ satisfies the scaling law S or is a self-similar

fractal measure if Sµ = µ.

Let Mq denote the set of unit mass Radon measures µ on X with finite qth

moment; that is,

Mq =
{
µ ∈M | µ(X)= 1,

∫
X
dq(x,a)dµ(x) <∞

}
, (2.4)

for some (and hence any) a∈X. Note that, if p ≥ q, then Mp ⊂Mq.

Definition 2.3. The minimal metric lq on Mq is defined by

lq(µ,ν)= inf

{(∫
X
dq(x,y)dγ(x,y)

)1/q∧1

|π1γ = µ, π2γ = ν
}
, (2.5)

where ∧ denotes the minimum of the relevant numbers and πiγ denotes the

ith marginal of γ, that is, projection of the measure γ on X×X onto the ith
component.

The lq metric has the following properties (see [16]).

(a) Suppose α is a positive real, S : X → X is Lipschitz, and ∨ denotes the

maximum of the relevant numbers. Then, for q > 0 and for measures µ and ν ,
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we have the following properties:

lq∨1
q (αµ,αν)=αlq∨1

q (µ,ν), (2.6)

lq∨1
q

(
µ1+µ2,ν1+ν2

)≤ lq∨1
q

(
µ1,ν1

)+lq∨1
q

(
µ2,ν2

)
, (2.7)

lq(Sµ,Sν)≤ (LipS)q∧1lq(µ,ν). (2.8)

The first property follows from the definition by setting γ = cγ, where γ is

optimal for (µ,ν), and the third follows by setting γ = Sγ. The second follows

by setting γ = γ1+γ2, where γi is optimal for (µi,νi), and also by noting that

(a+b)q ≤ aq+bq if a,b ≥ 0 and 0< q < 1.

(b) The pair (Mq,lq) is a complete separable metric space and lq(µn,µ)→ 0

if and only if

(i) µn→ µ (weak convergence),

(ii)
∫
X dq(x,a)dµn(x)→

∫
dq(x,a)dµ(x) (convergence of qth moments).

(c) If δa is the Dirac measure at a∈X, then

lq
(
µ,µ(X)δa

)= (
∫
X
dq(x,a)dµ(x)

)1/q∧1

,

lq
(
δa,δb

)= d1∧q(a,b).
(2.9)

Let M denote the set of all random measures µ with value in M , that is,

random variables µ : Ω → M . Let Mq denote the space of random measures

µ :Ω→Mq with finite expected qth moment. That is,

Mq :=
{
µ ∈M | µω(X)= 1 a.s., Eω

∫
X
dq(x,a)dµω(x) <∞

}
. (2.10)

The notation Eω indicates that the expectation is with respect to the vari-

able ω. It follows from (2.10) that µω ∈ Mq a.s. Note that Mp ⊂ Mq if q ≤ p.

Moreover, since E1/q|f |q → exp(E log |f |) as q→ 0,

M0 :=∪q>0Mq =
{
µ ∈M | µω(X)= 1 a.s., Eω

∫
X

logd(x,a)dµω(x) <∞
}
.

(2.11)

For random measures µ,ν ∈Mq, define

l∗q (µ,ν) :=


E1/q
ω lqq

(
µω,νω

)
, q ≥ 1,

Eωlq
(
µω,νω

)
, 0< q < 1.

(2.12)

One can check, as in [16], that (Mq, l∗q ) is a complete separable metric space.

Note that l∗q (µ,ν)= lq(µ,ν) if µ and ν are constant random measures.
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Let � denote the class of probability distributions on M, that is,

� = {�= distµ | µ ∈M}. (2.13)

Let �q be the set of probability distributions of random measures µ ∈Mq. For

q ≤ p, it is to be noticed that �p ⊂�q. Let

�0 :=∪q>0�q. (2.14)

The minimal metric on �q is defined by

l∗∗q
(
�1,�2

)= inf
{
l∗q (µ,ν) | µ d=D1, ν

d=D2

}
. (2.15)

It follows that (�q,l∗∗q ) is a complete separable metric space with the next

properties (see [16]):

(a) l∗∗q (α�1,α�2)=αl∗∗q (�1,�2),
(b) l∗∗q (�1+�2,�3+�4)≤ l∗∗q q(�1,�3)+l∗∗q q(�2,�4),

for �i ∈�q, i= 1,2,3,4.

Definition 2.4. A random scaling law with weights or a random scaling law

for measure S= (p1,S1,p2,S2, . . . ,pN,SN) is a random variable whose values are

scaling laws, with
∑N
i=1pi = 1 a.s.

We write �= distS for the probability distribution determined by S.

If µ is a random measure, then the random measure Sµ is defined (up to

probability distribution) by

Sµ :=
N∑
i=1

piSiµ(i), (2.16)

where S, µ(1), . . . ,µ(N) are independent of one another, and µ(i) d= µ. If � =
distµ, we define ��= distSµ.

Definition 2.5. The measure µ satisfies the scaling law S or is a self-similar

random fractal measure if Sµ d= µ, or equivalently ��=�, where � is called a

self-similar random fractal distribution.

To generate a random self-similar fractal measure, we use the iterative pro-

cedure described as follows. Fixq > 0. Beginning with a nonrandom measure

µ0 ∈ Mq (or, more generally, a random measure µ0 ∈ Mq), one iteratively ap-

plies i.i.d. scaling laws with distribution � to obtain a sequence µn of random

measures in Mq and a corresponding sequence �n of distributions in �q as

follows.

(i) Select a scaling law S via the distribution � and define

µ1 = Sµ0 =
n∑
i=1

piSiµ0, (2.17)
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that is,

µ1(ω)= Sµ0 =
n∑
i=1

pi(ω)Si(ω)µ0, �1
d= µ1. (2.18)

(ii) Select S1, . . . ,SN via � with Si = (pi1,Si1, . . . ,piN,SiN), i ∈ {1,2, . . . ,N}, in-

dependent of each other and of S, and define

µ2 := S2µ0 =
∑
i,j
pipijSi ◦Sijµ0, �2

d= µ0. (2.19)

(iii) Select Sij = (pi1,Sij1 , . . . ,piN,Si,jN ) via �, independent of one another and

of S1, . . . ,SN,S, and define

µ3 = S3µ0 =
∑
i,j,k

pipijp
ij
k Si ◦Sij ◦Sijk µ0, �3

d= µ3, (2.20)

and so forth.

Thus µn+1 =
∑N
i=1piSiµ

(i)
n , where µ(i)n

d= µn d= �n, S
d=�, and µ(i)n and S are

independent. It follows that �n =��N−1 =�n�0, where �0 is the distribution

of µ0. In the case µ0 ∈Mq, �0 is constant.

In the following, we define the underlying probability space for a.s. conver-

gence (see [10]).

A construction tree (or a construction process) is a map ω : {1, . . . ,N}∗ → Γ ,
where Γ is the set of (nonrandom) scaling laws. A construction tree specifies,

at each node of the scaling law used for constructive definition, a recursive

sequence of random measures. Denote the scaling law of ω at the node σ by

the 2N-tuple

Sσ (ω)=ω(σ)= (pσ1 (ω),Sσ1 (ω), . . . ,pσN(ω),SσN (ω)), (2.21)

where pσi are weights and Sσi Lipschitz maps. The sample space of all con-

struction trees is denoted by Ω̃. The underlying probability space (Ω̃,�̃, P̃ ) for

the iteration procedure is generated by selecting i.i.d. scaling laws ω(σ) d= S

for each σ ∈ {1, . . . ,N}∗. We use the notation

pσ = pσ1p
σ1
σ2p

σ1σ2
σ3 ···pσ1···σn−1

σn ,

Sσ = Sσ1S
σ1
σ2p

σ1σ2
σ3 ···Sσ1···σn−1

σn ,
(2.22)

where |σ | =n and where pσi and Sσi denote the ith components of scaling law.

For a fixed measure µ0 ∈Mq, define

µn = µn(ω)=
∑
|σ |=n

pσ(ω)Sσ (ω)µ0 (2.23)
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for n ≥ 1. This is identical to the sequence defined in an iterative procedure

with an underlying space Ω = Ω. To see this, for ω ∈ Ω and 1 ≤ i ≤ N, let

ω(i) ∈Ω be defined by

ω(i)(σ)=ω(i∗σ) (2.24)

for σ ∈ {1, . . . ,N}∗. Then

pi∗σ = pi(ω)pσ
(
ω(i)),

Si∗σ = Si(ω)◦pσ
(
ω(i)). (2.25)

By construction, ω(i) are i.i.d. with the same distribution as ω, and are inde-

pendent of (p1(ω),S1(ω), . . . ,pN(ω),SN(ω)). More precisely, for any P mea-

surable sets E,F ⊂Ω and B ⊂ Γ ,

P
({ω |ω∈ E})= P({ω |ω(i) ∈ E}), (2.26)

where {ω | ω(i) ∈ E} and {ω | ω(j) ∈ E} are independent if i 
= j, and {ω |
(p1ω,S1(ω), . . . ,pN(ω),SN(ω))∈B} and {ω | ω(i) ∈ E} are independent. It

follows that

µn+1(ω)=
N∑
i=1

∑
|σ |=n

pi∗σSi∗σ (ω)µ0 =
N∑
i=1

pi(ω)Si(ω)µn
(
ω(i))= Sµn(ω).

(2.27)

In [8], Hutchinson and Rüschendorf proved the following theorem.

Theorem 2.6. Let S= (p1,S1,p2S2, . . . ,pN,SN) be a random scaling law with∑N
i=1pi = 1 a.s. Assume λq := Eω(

∑N
i=1pir

q
i ) < 1 and

Eω


 N∑
i=1

pidq
(
Sia,a

)<∞ for some q > 0, and for a∈ Y . (2.28)

Then the following facts hold.

(a) The operator S :Mq →Mq is a contraction map with respect to l∗q .

(b) There exists a self-similar random measure µ∗.

(c) If µ0 ∈Mp (or, more generally, Mq), then

E1/q
ω lqq

(
µk,µ∗

)≤ λk/qq
1−λ1/q

q
E1/q
ω lqq

(
µ1,Sµ0

)
�→ 0, q ≥ 1,

Eωlq
(
µk,µ∗

)≤ λkq
1−λq Eωlq

(
µ1,Sµ0

)
�→ 0, 0< q < 1,

(2.29)

as k→∞. In particular µn → µ∗ a.s. in the sense of weak convergence of mea-

sures.

Moreover, up to probability distribution, µ∗ is the unique unit mass random

measure with Eω
∫

lnd(x,a)dµω <∞, which satisfies S.
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Using contraction method in probabilistic metric spaces, instead of condi-

tion (2.28), we can give a weaker condition for the existence and uniqueness

of invariant measure. More precisely, we prove the following theorem.

Theorem 2.7. Let S = (p1,S1,p2,S2, . . . ,pN,SN) be a random scaling law

which satisfies
∑N
i=1pi = 1 a.s., and suppose λq := esssup(

∑N
i=1pir

q
i ) < 1 for

some q > 0. If there exist α∈Mq and a positive number γ such that

P
({
ω∈Ω | lq

(
α(ω),Sα(ω)

)≥ t})≤ γ
t

∀t > 0, (2.30)

then there exists µ∗ such that Sµ∗ = µ∗ a.s.

Moreover, up to probability distribution, µ∗ is the unique unit mass random

measure which satisfies S.

Remark 2.8. If condition (2.28) is satisfied, then condition (2.30) also holds.

To see this, let a∈X and α(ω) := δa for all ω∈Ω. We have

P
({
ω∈Ω | lq

(
δa(ω

)
,Sδa(ω)

)≥ t})

= P



ω∈Ω | lq


 N∑
i=1

piδa(ω),
N∑
i=1

piSiδa(ω)


≥ t






≤ P



ω∈Ω |

N∑
i=1

pilq
(
δa(ω),Siδa(ω)

)≥ t





= P



ω∈Ω |

N∑
i=1

pidq
(
Sia,a

)≥ t





≤ 1
t
Eω


 N∑
i=1

pidq
(
Sia,a

)= γ
t
.

(2.31)

However, condition (2.30) can also be satisfied if

Eω


 N∑
i=1

pidq
(
Sia,a

)=∞ ∀q > 0. (2.32)

Let Ω =]0,1] with the Lebesque measure, let X be the interval [0,∞[, and let

N = 1. Define S :X →X by Sω(x)= x/2+e1/ω. This map is a contraction with

ratio 1/2. For q > 0, the expectation Eωdq(S0,0)=∞, however

P
({
ω∈Ω | lq(S0,0)≥ t})= 1

t
(2.33)

for all t > 0.

3. Invariant sets in E-spaces

3.1. Menger spaces. Let R denote the set of real numbers and R+ := {x ∈
R : x ≥ 0}. A mapping F : R → [0,1] is called a distribution function if it is
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nondecreasing, left continuous with inft∈RF(t) = 0 and supt∈RF(t) = 1 (see

[4]). By ∆we will denote the set of all distribution functions F . Let ∆ be ordered

by the relation “≤”, that is, F ≤ G if and only if F(t)≤ G(t) for all real t. Also

F < G if and only if F ≤G but F 
=G. We set ∆+ := {F ∈∆ : F(0)= 0}.
Throughout this paper, H will denote the heaviside distribution function

defined by

H(x)=

0, x ≤ 0,

1, x > 0.
(3.1)

Let X be a nonempty set. For a mapping � : X×X → ∆+ and x,y ∈ X, we

will denote �(x,y) by Fx,y , and the value of Fx,y at t ∈ R by Fx,y(t), respec-

tively. The pair (X,�) is a probabilistic metric space (briefly PM space) if X
is a nonempty set and � : X×X → ∆+ is a mapping satisfying the following

conditions:

(1) Fx,y(t)= Fy,x(t) for all x,y ∈X and t ∈R;

(2) Fx,y(t)= 1, for every t > 0, if and only if x =y ;

(3) if Fx,y(s)= 1 and Fy,z(t)= 1, then Fx,z(s+t)= 1.

A mapping T : [0,1]×[0,1]→ [0,1] is called a t-norm if the following con-

ditions are satisfied:

(4) T(a,1)= a for every a∈ [0,1];
(5) T(a,b)= T(b,a) for every a,b ∈ [0,1];
(6) if a≥ c and b ≥ d, then T(a,b)≥ T(c,d);
(7) T(a,T(b,c))= T(T(a,b),c) for every a,b,c ∈ [0,1].
A Menger space is a triplet (X,�,T ), where (X,�) is a PM space, T is a t-

norm, and instead of condition (3), we have the stronger condition

(8) Fx,y(s+t)≥ T(Fx,z(s),Fz,y(t)) for all x,y,z ∈X and s,t ∈R+.

The (t,ε)-topology in a Menger space was introduced in 1960 by Schweizer

and Sklar [17]. The base for the neighbourhoods of an element x ∈ X is given

by

{
Ux(t,ε)⊆X : t > 0, ε∈]0,1[}, (3.2)

where

Ux(t,ε) := {y ∈X : Fx,y(t) > 1−ε}. (3.3)

In 1969, Sehgal [19] introduced the notion of a contraction mapping in PM

spaces. The mapping f : X → X is said to be a contraction if there exists r ∈
]0,1[ such that

Ff(x),f (y)(rt)≥ Fx,y(t) (3.4)

for every x,y ∈X and t ∈R+.
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A sequence (xn)n∈N from X is said to be fundamental if

lim
n,m→∞Fxm,xn(t)= 1 (3.5)

for all t > 0. The element x ∈ X is called limit of the sequence (xn)n∈N, and

we write limn→∞xn = x or xn → x if limn→∞Fx,xn(t) = 1 for all t > 0. A PM

(Menger) space is said to be complete if every fundamental sequence in that

space is convergent.

Let A and B be nonempty subsets of X. The probabilistic Hausdorff-Pompeiu

distance between A and B is the function FA,B :R→ [0,1] defined by

FA,B(t) := sup
s<t

T
(

inf
x∈A

sup
y∈B

Fx,y(s), inf
y∈B

sup
x∈A

Fx,y(s)
)
. (3.6)

In the following, we recall some properties proved in [11, 12].

Proposition 3.1. If � is a nonempty collection of nonempty closed bounded

sets in a Menger space (X,�,T )with T continuous, then (�,��,T ) is also Menger

space, where �� is defined by ��(A,B) := FA,B for all A,B ∈�.

Proposition 3.2. Let Tm(a,b) :=max{a+b−1,0}. If (X,�,Tm) is a com-

plete Menger space and � is the collection of all nonempty closed bounded sub-

sets of X in (t,ε)-topology, then (�,��,Tm) is also a complete Menger space.

3.2. E-spaces. The notion of E-space was introduced by Sherwood [20] in

1969. Next we recall this definition. Let (Ω,�,P) be a probability space and let

(Y ,ρ) be a metric space. The ordered pair (�,�) is an E-space over the metric

space (Y ,ρ) (briefly, an E-space) if the elements of � are random variables from

Ω into Y and � is the mapping from �×� into ∆+ defined via �(x,y)= Fx,y ,

where

Fx,y(t)= P
({
ω∈Ω | d(x(ω),y(ω))< t}) (3.7)

for every t ∈R. Usually (Ω,�,P) is called the base and (Y ,ρ) the target space

of the E-space. If � satisfies the condition

�(x,y) 
=H for x 
=y, (3.8)

with H defined in Section 3.1, then (�,�) is said to be a canonical E-space.

Sherwood [20] proved that every canonical E-space is a Menger space under

T = Tm, where Tm(a,b)=max{a+b−1,0}. In the following, we suppose that

� is a canonical E-space.

The convergence in an E-space is exactly the probability convergence. The

E-space (�,�) is said to be complete if the Menger space (�,�,Tm) is complete.

Proposition 3.3. If (Y ,ρ) is a complete metric space, then the E-space

(�,�) is also complete.
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Proof. This property is well known for Y = R (see, e.g., [21, Theorem

VII.4.2]). In the general case, the proof is analogous.

Let (xn)n∈N be a Cauchy sequence of elements of �, that is,

lim
n,m→∞Fxn,xn+m(t)= 1 ∀t > 0. (3.9)

First we show that there exists a subsequence (xnk)k∈N of the given sequence

which is convergent almost everywhere to a random variable x. We set positive

numbers εi so that
∑∞
i=1 εi <∞ and put δp =

∑∞
i=p εi, p = 1,2, . . . . For each i,

there is a natural number ki such that

P
({
ω∈Ω | ρ(xk(ω),xl(ω))≥ εi})< εi for k,l≥ ki. (3.10)

We can assume that k1 < k2 < ···< ki < ··· . Then

P
({
ω∈Ω | ρ(xki+1(ω),xki(ω)

)≥ εi})< εi for k,l≥ ki. (3.11)

We put

Dp =∪∞i=p
{
ω∈Ω | ρ(xki+1 ,xki

)≥ εi}. (3.12)

Then P(Dp) < δp . Finally, for the intersection D′ = ∩∞p=1Dp , we obviously

have P(D′) = 0 since δp → 0. We will show that the sequence (xki(ω)) has a

finite limit x(ω) at every point ω ∈ {ω ∈ Ω | ρ(xk(ω),xm(ω)) > t}\D′. For

some p we have x ∉Dp . Consequently, ρ(xki+1(ω),xki(ω)) < εi, for all i≥ p.

It follows that for any two indices i and j such that j > i≥ p, we have

ρ
(
xkj (ω),xki(ω)

)≤ j−1∑
m=i

ρ
(
xkm+1(ω),xkm(ω)

)
<

j−1∑
m=i

εm <
∞∑
m=i

εm = δi.
(3.13)

Thus limi,j→∞ρ(xkj (ω),xki(ω))= 0. This means that (xk(ω))k∈N is a Cauchy

sequence for every ω which implies the pointwise convergence of (xki)i∈N to

a finite-limit function. Now remains only to put

x(ω)=

limxki(ω) for ω ∉D′,

0 for ω∈D′ (3.14)

to obtain the desired limit random variable. By Lebesque theorem (see, e.g.,

[21, Theorem VI.5.2]), xki → x with respect to d. Thus, every Cauchy sequence

in � has a limit, which means that the space � is complete.

The next result was proved in [12].
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Theorem 3.4. Let (�,�) be a complete E-space, N ∈N∗, and let f1, . . . ,fN :

�→ � be contractions with ratios r1, . . . ,rN , respectively. Suppose that there exist

an element z ∈ � and a real number γ such that

P
({
ω∈Ω | ρ(z(ω),fi(z(ω)))≥ t})≤ γt (3.15)

for all i ∈ {1, . . . ,N} and for all t > 0. Then there exists a unique nonempty

closed bounded and compact subset K of � such that

f1(K)∪···∪fN(K)=K. (3.16)

Corollary 3.5. Let (�,�) be a complete E-space and let f : � → � be a

contraction with ratio r . Suppose there exist z ∈ � and a real number γ such

that

P
({
ω∈Ω | ρ(z(ω),f (z)(ω))≥ t})≤ γ

t
∀t > 0. (3.17)

Then there exists a unique x0 ∈ � such that f(x0)= x0.

4. Proof of Theorem 2.7. Before the proof of the theorem, we give two lem-

mas.

Let �q be the set of random variables with values inMq and let �q(α) be the

set

�q(α) :=
{
β∈ �q | ∃γ > 0, P

({
ω∈Ω | lq

(
α(ω),β(ω)

)≥ t})≤ γ
t
∀t > 0

}
.

(4.1)

Lemma 4.1. For all α∈Mq, Mq ⊂ �q(α).

Proof. For β∈Mq, we have

P
({
ω∈Ω | lq

(
α(ω),β(ω)

)≥ t})
=
∫
lq(α(ω),β(ω))≥t

dP ≤ 1
t

∫
Ω
lq
(
α(ω),β(ω)

)
dP = 1

t
Eωlq

(
α(ω),β(ω)

)
.

(4.2)

Since β∈�q, we have γ = Eωlq(α(ω),β(ω)) <∞ for all t > 0.

Lemma 4.2. The pair (�q,�) is a complete E-space.

Proof. The lemma follows by choosing Y := �q and �µ,ν(t) := P({ω∈Ω |
lq(µ(ω),ν(ω)) < t}) in Proposition 3.3.

Proof of Theorem 2.7. Let S be a random scaling law. Define f : �q → �q
by f(µ)= Sµ, that is,

Sµ(ω)=
∑
i
pωi S

ω
i µ

(
ω(i)). (4.3)
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We first claim that if µ ∈ �q, then Sµ ∈ �q. For this, choose i. i.d.µ(ω(i)) d= µ(ω)
and (pω1 ,S

ω
1 , . . . ,p

ω
N ,S

ω
N )

d= S independent of µ(ω). For q ≥ 1 and bi = S−1
i (a),

using (2.8), we compute

∫
X
dq(x,a)d

(
Sµω(x)

)= lqq

 N∑
i=1

pωi S
ω
i µ

(
ω(i)),δa




= lqq

 N∑
i=1

pωi S
ω
i µ

(
ω(i)), N∑

i=1

pωi S
ω
i δbi




≤
N∑
i=1

pωi r
q
i l
q
q
(
µ
(
ω(i)),δbi).

(4.4)

Since µ(ω(i))∈Mq, we have

∫
X
dq(x,a)d

(
Sµ(x)

)
<∞. (4.5)

We can deal with the case 0< q < 1 similarly by replacing lqq with lq:

∫
X
dq(x,a)d

(
Sµω(x)

)= lq

 N∑
i=1

pωi S
ω
i µ

(
ω(i)),δa




= lq

 N∑
i=1

pωi S
ω
i µ

(
ω(i)), N∑

i=1

pωi S
ω
i δbi




≤
N∑
i=1

pωi r
q
i lq

(
µ
(
ω(i)),δbi)<∞.

(4.6)

To establish the contraction property, we consider µ,ν ∈ �q,

µ
(
ω(i)) d= µ(ω), ν

(
ω(i)) d= ν(ω), i∈ {1,2, . . . ,N}, (4.7)

and q ≥ 1. We have

Ff(µ),f (ν)(t)= P
({
ω∈Ω | lq

(
f
(
µ(ω)

)
,f
(
ν(ω)

))
< t

})

= P



ω∈Ω | lq


 N∑
i=1

pωi S
ω
i µ

(
ω(i)), N∑

i=1

pωi S
ω
i ν

(
ω(i))


< t






≥ P



ω∈Ω |


 N∑
i=1

pωi
(
ri
)qlqq(µ(ω(i)),ν(ω(i)))




1/q

< t






≥ P
({
ω∈Ω | [λqlqq(µ(ω),ν(ω))]1/q < t

})
= Fµ,ν

(
t
λ1/q
q

)

(4.8)

for all t > 0.
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In case 0< q < 1, one replaces lqq everywhere by lq:

Ff(µ),f (ν)(t)= P
({
ω∈Ω | lq

(
f
(
µ(ω)

)
,f
(
ν(ω)

))
< t

})

= P



ω∈Ω | lq


 N∑
i=1

pωi S
ω
i µ

(
ω(i)), N∑

i=1

pωi S
ω
i ν

(
ω(i))


< t






≥ P



ω∈Ω |


 N∑
i=1

pωi
(
ri
)qlq(µ(ω(i)),ν(ω(i)))




1/q

< t






≥ P({ω∈Ω | [λqlq(µ(ω),ν(ω))]< t})= Fµ,ν
(
t
λq

)

(4.9)

for all t > 0. Thus S is a contraction map with ratio λ1/q∧1
q . We can apply

Corollary 3.5 for r = λ1/q∧1
q . If µ∗ is the unique fixed point of S and µ0 ∈Mq,

then

FSnµ0,µ∗(t)= P
({
ω∈Ω | lq

(
Snµ0,µ∗

)
< t

})

≥ P
({
ω∈Ω | λn/qq

1−λ1/q
q
lq
(
µ0,Sµ0

)
< t

})

= Fµ0,Sµ0

(
t
(
1−λ1/q

q
)

λn/qq

)
,

lim
n→∞FSnµ0,µ∗(t)= 1 ∀t > 0.

(4.10)

From µn+1(ω) = Sµn(ω), it follows that µn → µ∗ exponentially fast. More-

over, for q ≥ 1,

∞∑
i=1

P
(
lqq
(
Snν0,µ∗

)≥ ε)≤ ∞∑
i=1

elqq
(
Snµ0,µ∗

)
ε

≤ c
∞∑
i=1

λnq
ε
<∞. (4.11)

This implies by Borel-Cantelli lemma that lq(µn,µ∗)→ 0 a.s.

For the uniqueness, let � be the set of probability distribution of members

of �q. We define the probability metric on � by

F�,	(t)= sup
s<t

sup
{
Fµ,ν(s) | µ d=�, ν d=	

}
. (4.12)

To establish the contraction property of �, we consider �,	∈�. For q ≥ 1, we

get

F��,�	(t)= sup
s<t

sup
{
FSµ,Sν(s) | µ d=�, ν d=	

}

≥ sup
s<t

sup

{
Fµ,ν

(
s
λ1/q
q

)
| µ d=�, ν d=	

}
= F�,	

(
t
λ1/q
q

) (4.13)

for all t > 0. For 0< q < 1, the demonstration is similar.
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Consider �1 and �2 such that ��1 =�1 and ��2 =�2.

Since �1 =�n(�1) and �2 =�n(�2), we have

F�1,�2(t)≥ F�1,�2

(
t
rn

)
(4.14)

for all t > 0. Using limn→∞ rn = 0, it follows that

F�1,�2(t)= 1 (4.15)

for all t > 0.

Remark 4.3. Since λ1/q
q →maxi ri as q→∞, we can regard [12, Theorem 4.2]

as a limit case of Theorem 2.7. More precisely, if maxi ri < 1, then sprtµ∗ is

the unique compact set satisfying the random scaling law for sets (S1, . . . ,SN).
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