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We show some examples of compact symplectic solvmanifolds, of dimension great-
er than four, which are cohomologically Kähler and do not admit Kähler metric
since their fundamental groups cannot be the fundamental group of any compact
Kähler manifold. Some of the examples that we study were considered by Benson
and Gordon (1990). However, whether such manifolds have Kähler metrics was an
open question. The formality and the hard Lefschetz property are studied for the
symplectic submanifolds constructed by Auroux (1997) and some consequences
are discussed.
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1. Introduction. A symplectic manifold (M,ω) is a pair consisting of a 2n-

dimensional differentiable manifoldM together with a closed 2-formω which

is nondegenerate (i.e.,ωn never vanishes). The formω is called symplectic. By

the Darboux theorem, in canonical coordinates, ω can be expressed as

ω=
n∑
i=1

dxi∧dxn+i. (1.1)

Any symplectic manifold (M,ω) carries an almost complex structure J com-

patible with the symplectic form ω, which means that ω(X,Y) =ω(JX,JY)
for any X, Y vector fields on M (see [22, 23]). If (M,ω) has an integrable al-

most complex structure J compatible with the symplectic form ω such that

the Riemannian metric g, given by g(X,Y) = −ω(JX,Y), is positive definite,

then (M,ω,J) is said to be a Kähler manifold with Kähler metric g.

The problem of how compact symplectic manifolds differ topologically from

Kähler manifolds led, during the last years, to the introduction of several geo-

metric methods for constructing symplectic manifolds (see [5, 8, 15, 20, 21]).

The symplectic manifolds presented there do not admit a Kähler metric since

they are not formal or do not satisfy hard Lefschetz theorem, or they fail both

properties of compact Kähler manifolds.

The purpose of this paper is to show that the formality and the hard Lef-

schetz property of any compact symplectic manifold M are not sufficient con-

ditions to imply the existence of a Kähler metric on M . We describe three
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families of compact symplectic solvmanifolds M6(c), P6(c), and N6(c) of di-

mension 6, and a family of compact symplectic solvmanifoldsN8(c) of dimen-

sion 8, each of which is formal and satisfies the hard Lefschetz property. Thus,

they are cohomologically Kähler, their odd Betti numbers are even (see [19]),

and their even Betti numbers are nonzero.

In [13], there are given examples of 4-dimensional compact symplectic mani-

folds which are cohomologically Kähler but do not possess complex structures,

so they admit no Kähler metrics. This is done by appealing to classification the-

orems of Kodaira and Yau that are specific to complex dimension 2.

In our case, we resort, in Section 3, to the properties of the fundamental

group of a compact Kähler manifold given by Campana [7] to show that none

of the manifoldsM6(c),N6(c), P6(c), andN8(c) admit Kähler metrics (see The-

orems 3.3 and 3.5). A similar technique was used in [14] to prove the existence

of 4-dimensional Donaldson symplectic submanifolds with no complex struc-

tures. The manifolds N6(c) as well as the manifolds P6(c) were considered

in [6]. There, Benson and Gordon show that they are cohomologically Kähler.

However, whether or not they have a Kähler metric was an open question.

On the other hand, in Section 4, we study the formality and the hard Lef-

schetz property for the symplectic submanifolds obtained by Auroux in [3]

as an extension to higher-rank bundles of the symplectic submanifolds con-

structed by Donaldson in [11]. Let (M,ω) be a compact symplectic manifold

of dimension 2n with [ω] ∈ H2(M) having a lift to an integral cohomology

class, and let E be any Hermitian vector bundle over M of rank r . In [3], Au-

roux proved the existence of some integer number k0 such that for any k≥ k0,

there is a symplectic submanifold Zr ↩M of dimension 2(n−r)whose homol-

ogy class realizes the Poincaré dual of kr [ω]r +kr−1c1(E)[ω]r−1+···+cr (E),
where ci(E) denotes the ith Chern class of the vector bundle E. For such man-

ifolds the inclusion j : Zr ↩M induces on cohomology:

(i) an isomorphism j∗ :Hi(M)→Hi(Zr ) for i < n−r ;

(ii) a monomorphism j∗ :Hi(M)↩Hi(Zr ) for i=n−r .

As a consequence of this study, we get some examples of Auroux symplec-

tic submanifolds (in particular, nonparallelizable manifolds) of dimension 6

which are formal and hard Lefschetz, but do not carry Kähler metrics.

2. Formal manifolds. First, we need some definitions and results about min-

imal models. Let (A,d) be a differential algebra, that is, A is a graded commu-

tative algebra over the real numbers, with a differential d which is a derivation,

that is, d(a·b)= (da)·b+(−1)deg(a)a·(db), where deg(a) is the degree of a.

A differential algebra (A,d) is said to be minimal if

(i) A is free as an algebra, that is, A is the free algebra
∧
V over a graded

vector space V =⊕Vi,
(ii) there exists a collection of generators {aτ, τ ∈ I}, for some well-ordered

index set I, such that deg(aµ) ≤ deg(aτ) if µ < τ and each daτ is
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expressed in terms of preceding aµ (µ < τ). This implies that daτ does

not have a linear part, that is, it lives in
∧
V>0 ·∧V>0 ⊂∧V .

Morphisms between differential algebras are required to be degree-preserv-

ing algebra maps which commute with the differentials. Given a differential

algebra (A,d), we denote byH∗(A) its cohomology. We say that A is connected

if H0(A)=R, and A is one-connected if, in addition, H1(A)= 0.

We will say that (�,d) is a minimal model of the differential algebra (A,d) if

(�,d) is minimal and there exists a morphism of differential graded algebras

ρ : (�,d)→ (A,d) inducing an isomorphism ρ∗ :H∗(�)→H∗(A) on cohomol-

ogy. Halperin [17] proved that any connected differential algebra (A,d) has a

minimal model unique up to isomorphism.

A minimal model (�,d) is said to be formal if there is a morphism of dif-

ferential algebras ψ : (�,d)→ (H∗(�), d= 0) that induces the identity on co-

homology. The formality of a minimal model can be distinguished as follows.

Theorem 2.1 (see [10]). A minimal model (�,d) is formal if and only if

� =∧V and the space V decomposes as a direct sum V = C⊕N with d(C)= 0,

d is injective onN and such that every closed element in the ideal I(N) generated

by N in
∧
V is exact.

A minimal model of a connected differentiable manifold M is a minimal

model (
∧
V,d) for the de Rham complex (ΩM,d) of differential forms onM . If

M is a simply connected manifold, the dual of the real homotopy vector space

πi(M)⊗R is isomorphic to Vi for any i. We will say that M is formal if its

minimal model is formal or, equivalently, the differential algebras (ΩM,d) and

(H∗(M), d = 0) have the same minimal model. (For details see, for example,

[10, 16])

In [14], the condition of formal manifold is weaken to s-formal manifold as

follows.

Definition 2.2. Let (�,d) be a minimal model of a differentiable manifold

M . We say that (�,d) is s-formal, orM is an s-formal manifold (s ≥ 0) if � =∧V
such that for each i ≤ s, the space Vi of generators of degree i decomposes

as a direct sum Vi = Ci ⊕Ni, where the spaces Ci and Ni satisfy the three

following conditions:

(i) d(Ci)= 0,

(ii) the differential map d :Ni→∧V is injective,

(iii) any closed element in the ideal Is = Is(
⊕
i≤s Ni), generated by

⊕
i≤s Ni

in
∧
(
⊕
i≤s V i), is exact in

∧
V .

The relation between the formality and the s-formality for a manifold is

given in the following theorem.

Theorem 2.3 (see [14]). Let M be a connected and orientable compact dif-

ferentiable manifold of dimension 2n or (2n−1). Then M is formal if and only

if it is (n−1)-formal.
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3. Formal and hard Lefschetz symplectic manifolds with no Kähler metric.

In this section, we show the existence of compact symplectic manifolds of

dimension greater than 4, which do not admit Kähler metrics even when they

are formal and hard Lefschetz.

Example 3.1 (the manifolds M6(c) [9]). Let G(c) be the connected com-

pletely solvable Lie group of dimension 5 consisting of matrices of the form

a=




ecz 0 0 0 0 x1

0 e−cz 0 0 0 y1

0 0 ecz 0 0 x2

0 0 0 e−cz 0 y2

0 0 0 0 1 z
0 0 0 0 0 1



, (3.1)

where xi,yi,z ∈ R (i = 1,2) and c is a nonzero real number. Then a global

system of coordinates x1, y1, x2, y2, and z for G(c) is given by xi(a) = xi,
yi(a) = yi, and z(a) = z. A standard calculation shows that a basis for the

right invariant 1-forms on G(c) consists of

{
dx1−cx1dz,dy1+cy1dz,dx2−cx2dz,dy2+cy2dz,dz

}
. (3.2)

Alternatively, the Lie group G(c) may be described as a semidirect product

G(c) = R�ψ R4, where ψ(z) is the linear transformation of R4 given by the

matrix




ecz 0 0 0

0 e−cz 0 0

0 0 ecz 0

0 0 0 e−cz


 , (3.3)

for any z ∈ R. Thus, G(c) has a discrete subgroup Γ(c) = Z�ψ Z4 such that

the quotient space Γ(c)\G(c) is compact. Therefore, the forms dxi− cxidz,

dyi+ cyidz, and dz (i = 1,2) descend to 1-forms αi, βi, and γ (i = 1,2) on

Γ(c)\G(c).
Now, we consider the manifold M6(c) = Γ(c)\G(c)× S1. Hence, there are

1-forms α1, β1, α2, β2, γ, and η on M6(c) such that

dαi =−cαi∧γ, dβi = cβi∧γ, dγ = dη= 0, (3.4)

where i = 1,2, and such that at each point of M6(c), {α1,β1,α2,β2,γ,η} is a

basis for the 1-forms on M6(c). Using Hattori’s theorem [18], we compute the
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real cohomology of M6(c):

H0(M6(c)
)= 〈1〉,

H1(M6(c)
)= 〈[γ],[η]〉,

H2(M6(c)
)= 〈[α1∧β1

]
,
[
α1∧β2

]
,
[
α2∧β1

]
,
[
α2∧β2

]
,[γ∧η]〉,

H3(M6(c)
)= 〈[α1∧β1∧γ

]
,
[
α1∧β2∧γ

]
,
[
α2∧β1∧γ

]
,
[
α2∧β2∧γ

]
,[

α1∧β1∧η
]
,
[
α1∧β2∧η

]
,
[
α2∧β1∧η

]
,
[
α2∧β2∧η

]〉
,

H4(M6(c)
)= 〈[α1∧β1∧α2∧β2

]
,
[
α1∧β1∧γ∧η

]
,
[
α1∧β2∧γ∧η

]
,[

α2∧β1∧γ∧η
]
,
[
α2∧β2∧γ∧η

]〉
,

H5(M6(c)
)= 〈[α1∧β1∧α2∧β2∧γ

]
,
[
α1∧β1∧α2∧β2∧η

]〉
,

H6(M6(c)
)= 〈[α1∧β1∧α2∧β2∧γ∧η

]〉
.

(3.5)

Therefore, the Betti numbers of M6(c) are

b0
(
M6(c)

)= b6
(
M6(c)

)= 1,

b1
(
M6(c)

)= b5
(
M6(c)

)= 2,

b2
(
M6(c)

)= b4
(
M6(c)

)= 5,

b3
(
M6(c)

)= 8.

(3.6)

Proposition 3.2. The manifoldM6(c) is 2-formal and so formal. Moreover,

M6(c) has a symplectic formω such that (M6(c),ω) satisfies the hard Lefschetz

property.

Proof. To prove that M6(c) is 2-formal, we see that its minimal model

must be a differential graded algebra (�,d), � is the free algebra of the form

� = ∧(a1,a2)⊗
∧
(b1,b2,b3,b4)⊗

∧
V≥3 where the generators ai have degree

1, the generators bj have degree 2, and the differential d is given by dai =
dbj = 0, where i = 1,2 and 1 ≤ j ≤ 4. The morphism ρ : � → Ω(M), inducing

an isomorphism on cohomology, is defined by ρ(a1) = γ, ρ(a2) = η, ρ(b1) =
α1∧β1, ρ(b2)=α1∧β2, ρ(b3)=α2∧β1, and ρ(b4)=α2∧β2.

According to Definition 2.2, we get C1 = 〈a1,a2〉 and N1 = 0, thus M6(c) is

1-formal. Moreover, M6(c) is 2-formal since C2 = 〈b1,b2,b3,b4〉 and N2 = 0.

Now, the formality of M6(c) follows from Theorem 2.3.

We define the symplectic form ω on M6(c) by

ω=α1∧β1+α2∧β2+γ∧η. (3.7)

Then, the maps [ω] : H2(M6(c)) → H4(M6(c)) and [ω]2 : H1(Mc(k)) →
H5(M6(c)) are isomorphisms. Thus, (M6(c),ω) satisfies the hard Lefschetz

property.
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The manifolds M6(c) were considered in [9]. There, the formality of M6(c)
is obtained as a consequence of the existence of a morphism (H∗(M6(c)),d=
0) → (Ω∗(M6(c)),d) that induces the identity on cohomology. Such a mor-

phism is defined by linearity choosing closed forms representatives for each

cohomology class. However, whether or not M6(c) has a Kähler metric was an

open question.

Theorem 3.3. The manifold M6(c) does not admit Kähler metrics.

Proof. In order to show that M6(c) does not admit Kähler metric, notice

that Γ = π1(M6(c)) is a product Γ = Γ(c)×Z. Moreover, its abelianization is

H1(M6(c);Z), and thus, it has rank 2. We will see that Γ cannot be the funda-

mental group of any compact Kähler manifold.

The exact sequence

0 �→ Z4 �→ Γ �→ Z2 �→ 0, (3.8)

shows that Γ is solvable of class 2, that is, D3Γ = 0. Moreover, its rank is 6 by

additivity (see [1] for details).

Assume now that Γ =π1(X), where X is a compact Kähler manifold. Accord-

ing to Arapura-Nori’s theorem (see [2, Theorem 3.3]), there exists a chain of

normal subgroups

0=D3Γ ⊂Q⊂ P ⊂ Γ , (3.9)

such that Q is torsion, P/Q is nilpotent, and Γ/P is finite. The exact sequence

(3.8) implies that Γ has no torsion, and so Q= 0. As Γ/P is torsion, thus finite,

we have rankP = rank Γ = 6. Now, the finite inclusion P ⊂ Γ defines a finite

cover p : Y →X that is also compact Kähler and it has fundamental group P .

We show that P cannot be the fundamental group of any compact Kähler

manifold. For this, we use Campana’s result (see [7, Corollary 3.8, page 313])

that states that if G is the fundamental group of a Kähler manifold such that

G is nilpotent and non-abelian, then G has rank greater than or equal to 9.

Since P is the fundamental group of the Kähler manifold Y , P is nilpotent,

it has rank less than 9, and it has to be abelian. This is impossible since any

pair of nonzero elements e∈ Z2 ⊂ Γ = Z2�Z4, f ∈ Z4 ⊂ Γ do not commute (see,

e.g., [12, page 22]).

Example 3.4 (the manifolds N6(c)). We consider the connected completely

solvable Lie group G(c) of dimension 3 consisting of matrices of the form

a=




ecz 0 0 x
0 e−cz 0 y
0 0 1 z
0 0 0 1


 , (3.10)
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wherex,y,z ∈R (i= 1,2) and c is a nonzero real number. Then a global system

of coordinates x, y , and z for G(c) is given by x(a)= x, y(a)=y , and z = z.

A standard calculation shows that a basis for the right invariant 1-forms on

G(c) consists of

{
dx−cxdz,dy+cydz,dz}. (3.11)

Let Γ(c) be a discrete subgroup of G(c) such that the quotient space Sol(3)=
Γ(c)\G(c) is compact (for the existence of such a subgroup Γ(c) see [4, page

20]). Hence, the forms dx−cxdz, dy+cydz, and dz all descend to 1-forms

α, β, and γ on Sol(3) such that

dα=−cα∧γ, dβ= cβ∧γ, dγ = 0. (3.12)

We use again Hattori’s theorem [18] to compute the real cohomology of Sol(3)

H0(Sol(3)
)= 〈1〉,

H1(Sol(3)
)= 〈[γ]〉,

H2(Sol(3)
)= 〈[α∧γ]〉,

H3(Sol(3)
)= 〈[α∧β∧γ]〉.

(3.13)

Denote by M4(c) the product M4(c) = Sol(3)×S1. In [13], it is proved that

M4(c) is cohomologically Kähler (in fact, it has the same minimal model as

T 2×S2) and it does not carry complex structures, and so it carries no Kähler

metrics. This is done by appealing to classification theorems of Kodaira and

Yau that are specific to complex surfaces.

Next, we consider other examples in dimensions 6 and 8 related also with

Sol(3). Define the manifolds N6(c) = Sol(3)×Sol(3), P6(c) = Sol(3)×T 3, and

N8(c) = Sol(3)× Sol(3)×T 2 = N6(c)×T 2. These manifolds are formal since

they are product of formal manifolds.

From the definition of N6(c) and from (3.12), one can check that there are

1-forms α1, β1, γ1, α2, β2, and γ2 on N6(c) such that

dαi =−cαi∧γi, dβi = cβi∧γi, dγi = 0, (3.14)

where i= 1,2, and such that at each point of N6(c), {α1,β1,γ1,α2,β2,γ2} is a

basis for the 1-forms on N6(c). We define the symplectic formω1 on N6(c) by

ω1 =α1∧β1+α2∧β2+γ1∧γ2. (3.15)

We use again (3.12) to show that there is a basis {α1,β1,γ1,η1,η2,η3} for

the 1-forms on P6(c) such that

dα1 =−cα1∧γ1, dβ1 = cβ1∧γi, dγ1 = dηj = 0, (3.16)
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for 1≤ j ≤ 3, since P6(c)= Sol(3)×T 3. Thus, the 2-form ω2, defined by

ω2 =α1∧β1+γ1∧η1+η2∧η3, (3.17)

is a symplectic form on P6(c).
It is clear that N8(c) is a symplectic manifold since it is the product of

symplectic manifolds. In fact, a symplectic form ω3 on N8(c) is given by

ω3 =ω1+η, (3.18)

where η is a symplectic form on the 2-torus T 2.

One can check that the manifolds N6(c), P6(c), and N8(c) are cohomologi-

cally Kähler. Now, using an argument similar to the one given in Theorem 3.3,

we get the following theorem.

Theorem 3.5. The manifolds N6(c), P6(c), and N8(c) are formal and hard

Lefschetz but they admit no Kähler metrics.

We notice that the manifolds N6(c) and P6(c) were considered as examples

of cohomologically Kähler manifolds by Benson and Gordon in [6]. However,

whether or not they have a Kähler metric was an open question.

4. Formality and hard Lefschetz property for Auroux symplectic submani-

folds. In this section, we study the conditions under which Auroux symplectic

manifolds are formal and/or satisfy the hard Lefschetz theorem.

Let (M,ω) be a compact symplectic manifold of dimension 2n with [ω] ∈
H2(M) admitting a lift to an integral cohomology class, and let E be any

Hermitian vector bundle over M of rank r . In [3], Auroux constructs sym-

plectic submanifolds Zr ↩ M of dimension 2(n− r) whose Poincaré dual is

PD[Zr ] = kr [ω]r + kr−1c1(E)[ω]r−1 + ··· + cr (E) for any integer number k
large enough, where ci(E) denotes the ith Chern class of the vector bundle

E. Moreover, these submanifolds satisfy a Lefschetz theorem in hyperplane

sections, meaning that the inclusion j : Zr ↩ M is (n− r)-connected, that is,

the map there j∗ : Hi(M) → Hi(Zr ) is an isomorphism for i < n− r and a

monomorphism for i=n−r .

In general, let X and Y be compact manifolds. We say that a differentiable

map f : X → Y is a homotopy s-equivalence (s ≥ 0) if it induces isomorphisms

f∗ : Hi(Y) �
����������→ Hi(X) on cohomology for i < s, and a monomorphism f∗ :

Hs(Y)↩Hs(X) for i = s. Therefore, for any Auroux symplectic submanifold,

the inclusion j : Zr ↩M is a homotopy (n−r)-equivalence.

Theorem 4.1 (see [14]). Let X and Y be compact manifolds and let f :X → Y
be a homotopy s-equivalence. If Y is (s−1)-formal, then X is (s−1)-formal.

As a consequence of Theorem 4.1, we get the following corollary.
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Corollary 4.2. Let M be a compact symplectic manifold of dimension 2n
and let Zr ↩ M be an Auroux submanifold of dimension 2(n− r). For each

s ≤ (n−r −1), if M is s-formal then Zr is s-formal. In particular, Zr is formal

if M is (n−r −1)-formal.

In order to continue the analysis of the Auroux symplectic submanifolds we

introduce the following definition.

Definition 4.3. Let (M,ω) be a compact symplectic manifold of dimen-

sion 2n. We say that M is s-Lefschetz with s ≤ (n−1) if

[ω]n−i :Hi(M) �→H2n−i(M) (4.1)

is an isomorphism for all i ≤ s. By extension, if we say that M is s-Lefschetz

with s ≥n, then we just mean that M is hard Lefschetz.

Theorem 4.4. Let (M,ω) be a compact symplectic manifold of dimension 2n
such that the de Rham cohomology class [ω]∈H2(M) has a lift to an integral

cohomology class, and let Zr ↩M be an Auroux submanifold of dimension 2(n−
r). Then, for large enough k and for each s ≤ (n−r−1), ifM is s-Lefschetz, then

Zr is s-Lefschetz. Therefore, Zr is hard Lefschetz if M is (n−r −1)-Lefschetz.

Proof. From now on, we denote by L the complex line bundle overM whose

first Chern class is c1(L)= [ω]. Let p = 2(n−r)−i, where i≤ (n−r −1), and

we consider the map j∗ : Hp(M) → Hp(Zr ) induced by the inclusion j on

cohomology. First, we claim that for [z]∈Hp(M) it holds that

j∗[z]= 0⇐⇒ [z]∪cr
(
E⊗L⊗k)= 0, (4.2)

for large values of the parameter k. This can be shown via Poincaré duality.

Clearly, j∗[z]= 0 if and only if j∗[z]·a= 0 for any a∈Hi(Zr ). Since there is

an isomorphism Hi(Zr )�Hi(M) for i≤ (n−r −1), we can assume that there

exists a closed i-form x on M with [x|Zr ] = [x̂] = a, x̂ being the differential

form on Zr given by x̂ = j∗(x). So

j∗[z]·[x̂]=
∫
Z
ẑ∧ x̂ =

∫
M
z∧x∧ c̃r

(
E⊗L⊗k) (4.3)

since [Zr ] = PD[cr (E⊗L⊗k)], where c̃r (E⊗L⊗k) is a differential form on M
representing cr (E⊗L⊗k). Hence, j∗[z] = 0 if and only if ([z]∪cr (E⊗L⊗k))∪
[x]= 0 for all [x]∈Hi(M), from where the claim follows.

Now, consider an arbitrary norm on H∗(M); for example, the L2-norm on

harmonic forms. Let S ⊂ Hi(M) be the unitary sphere, and denote by K an

upper bound of

∥∥{a∪[ω]n−i−q∪cq(E) | a∈ S, q = 1, . . . ,r
}∥∥. (4.4)
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On the other hand, the s-Lefschetz property of M implies that S ∪ [ω]n−i ⊂
H2n−i(M) does not contain zero. Therefore, there is a lower bound K′ > 0 for

the set

∥∥{a∪[ω]n−i | a∈ S}∥∥. (4.5)

Now, for any [z]∈ S, we obtain

[z]∪[ω]n−r−i∪(kr [ω]r +kr−1[ω]r−1∪c1(E)+···+cr (E)
)
≠ 0 (4.6)

taking k > (r −1)K/K′. Thus, ẑ∪ [ω̂n−r−i] ≠ 0 for any [ẑ] ∈ Hi(Zr ), which

proves that Zr is also s-Lefschetz.

We now consider the compact symplectic solvmanifolds N8(c) defined in

Example 3.4. Since N8(c) has a symplectic form that defines an integral co-

homology class, there exist Auroux symplectic submanifolds Zr ↩ N8(c) of

dimension 2(4−r) for 1≤ r ≤ 3.

Proposition 4.5. Any Auroux symplectic submanifoldZr ↩N8(c) is formal

and hard Lefschetz. Moreover, Zr does not admit Kähler metrics for r = 1,2,

and the submanifolds Z3 ↩N8(c) are Kähler.

Proof. From Theorem 3.5, Corollary 4.2, and Theorem 4.4, we get that any

Auroux symplectic submanifold Zr ↩ N8(c) is formal and hard Lefschetz.

Moreover, a similar argument to the one given in Theorem 3.3 proves that

the submanifolds Zr do not admit Kähler metrics for r = 1,2.
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