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1. Introduction. Let H be a separable infinite-dimensional complex Hilbert

space and let B(H) denote the algebra of all bounded operators onH into itself.

Given A,B ∈ B(H), we define the generalized derivation δA,B : B(H)� B(H) by

δA,B(X)=AX−XB and the elementary operator derivation ∆A,B : B(H)� B(H)
by ∆A,B(X)=AXB−X. Denote δA,A = δA and ∆A,A =∆A.

In [1, Theorem 1.7], Anderson shows that if A is normal and commutes with

T , then, for all X ∈ B(H),

∥∥T +δA(X)∥∥≥ ‖T‖. (1.1)

It is shown in [10] that if the pair (A,B) has the Fuglede-Putnam property

(in particular, if A and B are normal operators) and AT = TB, then, for all

X ∈ B(H),

∥∥T +δA,B(X)∥∥≥ ‖T‖. (1.2)

Duggal [4] showed that the above inequality (1.2) is also true when δA,B is

replaced by ∆A,B . The related inequality (1.1) was obtained by the author [11]

showing that if the pair (A,B) has the Fuglede-Putnam property (FP)Cp , then

∥∥T +δA,B(X)∥∥p ≥ ‖T‖p (1.3)

for all X ∈ B(H), where Cp is the von Neumann-Schatten class, 1≤ p <∞, and

‖ · ‖p is its norm for all X ∈ B(H) and for all T ∈ Cp ∩kerδA,B . In all of the

above results, A was not arbitrary. In fact, certain normality-like assumptions

have been imposed on A. A characterization of T ∈ Cp for 1 < p <∞, which

is orthogonal to R(δA|Cp) (the range of δA|Cp) for a general operator A, has
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been carried out by Kittaneh [7], showing that if T has the polar decomposition

T =U|T |, then

∥∥T +δA(X)∥∥p ≥ ‖T‖p (1.4)

for all X ∈ Cp (1 < p <∞) if and only if |T |p−1U∗ ∈ kerδA. By a simple mod-

ification in the proof of the above inequality, we can prove that this inequal-

ity is also true in the general case, that is, if T has the polar decomposition

T = U|T |, then ‖T +δA,B(X)‖p ≥ ‖T‖p for all X ∈ Cp (1 < p <∞) if and only

if |T |p−1U∗ ∈ kerδB,A. In Sections 1, 2, 3, and 4, we prove these results in the

case where we consider EA,B instead of δA,B , which leads us to prove that if

T ∈ Cp and kerEA,B ⊆ kerE∗A,B , then

∥∥T +EA,B(X)∥∥p ≥ ‖T‖p (1.5)

for all X ∈ Cp (1 < p <∞) if and only if T ∈ kerEA,B . In Sections 5 and 6, we

minimize the map ‖S+EA,B(X)‖p and we classify its critical points.

2. Preliminaries. Let T ∈ B(H) be compact and let s1(X)≥ s2(X)≥ ··· ≥ 0

denote the singular values of T , that is, the eigenvalues of |T | = (T∗T)1/2
arranged in their decreasing order. The operator T is said to belong to the

Schatten p-class Cp if

‖T‖p =

 ∞∑
i=1

sj(T)p



1/p

= [tr(T)p
]1/p, 1≤ p <∞, (2.1)

where tr denotes the trace functional. Hence, C1 is the trace class, C2 is the

Hilbert-Schmidt class, and C∞ is the class of compact operators with

‖T‖∞ = s1(T)= sup
‖f‖=1

‖Tf‖ (2.2)

denoting the usual operator norm. For the general theory of the Schatten p-

classes, the reader is referred to [8, 13].

Recall that the norm ‖·‖ of the B-space V is said to be Gateaux differentiable

at nonzero elements x ∈ V if

lim
t→0, t∈R

‖x+ty‖−‖x‖
t

=�Dx(y) (2.3)

for all y ∈ V . Here R denotes the set of reals, � denotes the real part, and Dx
is the unique support functional (in the dual space V∗) such that ‖Dx‖ = 1 and

Dx(x)= ‖x‖. The Gateaux differentiability of the norm at x implies that x is

a smooth point of the sphere of radius ‖x‖.
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It is well known (see [8] and the references therein) that, for 1<p <∞, Cp is

a uniformly convex Banach space. Therefore, every nonzero T ∈ Cp is a smooth

point and, in this case, the support functional of T is given by

DT(X)= tr

[
|T |p−1UX∗

‖T‖p−1
p

]
(2.4)

for all X ∈ Cp , where T =U|T | is the polar decomposition of T .

Definition 2.1. Let E be a complex Banach space. We define the orthogo-

nality in E. We say that b ∈ E is orthogonal to a∈ E if, for all complex λ, there

holds

‖a+λb‖ ≥ ‖a‖. (2.5)

This definition has a natural geometric interpretation, namely, b⊥a if and

only if the complex line {a+λb | λ∈ C} is disjoint with the open ballK(0,‖a‖),
that is, if and only if this complex line is a tangent one. Note that if b is or-

thogonal to a, then a needs not be orthogonal to b. If E is a Hilbert space, then

from (2.5), it follows that 〈a,b〉 = 0, that is, orthogonality in the usual sense.

3. Main results. In this section, we characterize T ∈ Cp for 1<p <∞, which

is orthogonal to R(∆A,B|Cp) (the range of ∆A,B|Cp) for a general pair of opera-

tors A, B.

Lemma 3.1 [7]. Let u and v be two elements of a Banach space V with norm

‖·‖. If u is a smooth point, then Du(v)= 0 if and only if

‖u+zv‖ ≥ ‖u‖ (3.1)

for all z ∈ C (the complex numbers).

Theorem 3.2. Let A,B ∈ B(H) and T ∈ Cp (1<p <∞). Then

∥∥T +∆A,B(X)∥∥p ≥ ‖T‖p (3.2)

for all X ∈ B(H) with ∆A,B(X) ∈ Cp if and only if tr(|T |p−1U∗∆A,B(X)) = 0 for

all such X.

Proof. The theorem is an immediate consequence of equality (2.4) and

Lemma 3.1.

Theorem 3.3. Let A,B ∈ B(H) and T ∈ Cp (1<p <∞). Then

∥∥T +∆A,B(X)∥∥p ≥ ‖T‖p (3.3)

for all X ∈ Cp if and only if
∼
T = |T |p−1U∗ ∈ ker∆B,A.



3284 SALAH MECHERI

Proof. By virtue of Theorem 3.2, it is sufficient to show that tr(
∼
T∆A,B(X))=

0 for all X ∈ Cp if and only if
∼
T ∈ ker∆B,A.

Choose X to be the rank-one operator f ⊗g for some arbitrary elements f
and g inH; then tr(

∼
T(AXB−X))= tr((B

∼
TA−∼

T)X)= 0 implies that 〈∆B,A(
∼
T)f ,

g〉 = 0�
∼
T ∈ ker∆B,A. Conversely, assume that

∼
T ∈ ker∆B,A, that is, B

∼
TA= ∼

T .

Since
∼
TX and

∼
T∆B,A are trace classes for all X ∈ Cp , we get

tr
(∼
T(AXB−X))= tr

(∼
TAXB−

∼
TX

)
= tr

(
XB

∼
TA−X

∼
T
)

= tr
(
X∆B,A

(∼
T
))= 0.

(3.4)

Lemma 3.4. Let A,B ∈ B(H) and S ∈ B(H) such that ker∆A,B ⊆ ker∆A∗,B∗ . If

AU|S|p−1B = U|S|p−1, where p > 1 and S = U|S| is the polar decomposition of

S, then AU|S|B =U|S|.
Proof. If T = |S|p−1, then

AUTB =UT. (3.5)

We prove that

AUTnB =UTn. (3.6)

If ATB = T =A∗TB∗, then BT∗T = BT∗ATB = T∗TB, and thus B|T | = |T |B
and BT 2 = T 2B. Since B commutes with the positive operator T 2, then B com-

mutes with its square roots, that is,

BT = TB. (3.7)

By (3.5) and (3.7) we obtain (3.6). Let f(t) be the map defined on σ(T)⊂ R+
by

f(t)= t1/(p−1), 1<p <∞. (3.8)

Since f is the uniform limit of a sequence (Pi) of polynomials without constant

term (since f(0)= 0), it follows from (3.3) that AUPi(T)B =UPi(T). Therefore,

AUT 1/(p−1)B =UT 1/(p−1).

Theorem 3.5. Let A and B be operators in B(H) such that ker∆A,B ⊆
ker∆A∗,B∗ . Then T ∈ ker∆A,B∩Cp if and only if

∥∥S+∆A,B(X)∥∥p ≥ ‖S‖p (3.9)

for all X ∈ Cp .
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Proof. If S ∈ ker∆A,B , then, by applying [11, Theorem 3.4], it follows that

∥∥S+∆A,B(X)∥∥p ≥ ‖S‖p (3.10)

for all X ∈ Cp . Conversely, if

∥∥S+∆A,B(X)∥∥p ≥ ‖S‖p (3.11)

for all X ∈ Cp , then, from Theorem 3.3, A|S|p−1U∗B = |S|p−1U∗. Since ker∆A,B
⊆ ker∆A∗,B∗ , A∗|S|p−1U∗B∗ = |S|p−1U∗. By taking adjoints, we get AU|S|p−1B
=U|S|p−1. From Lemma 3.4, it follows thatAU|S|B =U|S|. That is, S∈ker∆A,B.

Theorem 3.6. Let A,B ∈ B(H). If

(1) A,B ∈�(H) such that ‖Ax‖ ≥ ‖x‖ ≥ ‖Bx‖ for all x ∈�,

(2) A is invertible and B is such that ‖A−1‖‖B‖ ≤ 1,

(3) A= B is a cyclic subnormal operator,

then, T ∈ ker∆A,B∩Cp if and only if

∥∥S+∆A,B(X)∥∥p ≥ ‖S‖p (3.12)

for all X ∈ Cp .

Proof. The result of Tong [14, Lemma 1] guarantees that the above condi-

tion implies that for all T ∈ ker(δA,B|�(�)), R(T) reduces A, ker(T)⊥ reduces

B, and A|R(T) and B|ker(T)⊥ are unitary operators. Take �1 =�= ranS⊕ranS⊥

and �2 = � = kerS ⊕ kerS⊥. According to the decomposition of � and for

A1 : �1 →�1, A2 : �2 →�2, and S : �2 →�1, we can write

A=
(
A1 0

0 A2

)
, B∗ =

(
B∗1 0

0 B∗2

)
, S =

(
S1 0

0 0

)
. (3.13)

From ASB = S, it follows that A1SB1 = S, and since A1 and B1 are unitary

operators, we obtain A∗1 SB
∗
1 = S, and the result holds by the above theorem.

The above inequality holds in particular ifA= B is isometric; in other words,

‖Ax‖ = ‖x‖ for all x ∈�.

(2) In this case, it suffices to take A1 = ‖B‖−1A and B1 = ‖B‖−1B, then

‖A1x‖ ≥ ‖x‖ ≥ ‖B1x‖, and the result holds by (1) for all x ∈�.

(3) Since T commutes with A, it follows that T is subnormal [15]. But any

compact subnormal operator is normal; hence, T is normal. By applying

Fuglede-Putnam theorem, we get that ATA= T implies A∗TA∗ = T .

4. The case where n> 1. Let A= (A1,A2, . . . ,An) and B = (B1,B2, . . . ,Bn) be

n-tuples of operators in B(H). In this section, we characterize T ∈ Cp for 1 <
p <∞, which is orthogonal to R(EA,B|Cp) (the range of EA,B|Cp) for a general

pair of operators A and B.
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By the same argument used in the proofs of Theorems 3.2 and 3.3, we prove

the following theorems.

Theorem 4.1. Let A= (A1,A2, . . . ,An) and B = (B1,B2, . . . ,Bn) be n-tuples of

operators in B(H) and T ∈ Cp (1<p <∞). Then

∥∥T +EA,B(X)∥∥p ≥ ‖T‖p (4.1)

for all X ∈ B(H) with EA,B(X) ∈ Cp if and only if tr(|T |p−1U∗EA,B(X)) = 0 for

all such X.

Theorem 4.2. Let A= (A1,A2, . . . ,An) and B = (B1,B2, . . . ,Bn) be n-tuples of

operators in B(H) and T ∈ Cp (1<p <∞). Then

∥∥T +EA,B(X)∥∥p ≥ ‖T‖p (4.2)

for all X ∈ Cp if and only if
∼
T = |T |p−1U∗ ∈ kerEA,B .

Lemma 4.3. Let C = (C1,C2, . . . ,Cn) ben-tuple of operators in B(H) such that∑n
i=1CiC

∗
i ≤ 1,

∑n
i=1C

∗
i Ci ≤ 1, and kerEC ⊆ kerEC∗ . If

n∑
i=1

CiU|S|p−1Ci =U|S|p−1, (4.3)

where p > 1 and S =U|S| is the polar decomposition of S, then

n∑
i=1

CiU|S|Ci =U|S|. (4.4)

Proof. If T = |S|p−1, then

n∑
i=1

CiUTCi =UT. (4.5)

We prove that

n∑
i=1

CiUTnCi =UTn. (4.6)

It is known that if
∑n
i=1CiC

∗
i ≤ 1,

∑n
i=1C

∗
i Ci ≤ 1, and kerEc ⊆ kerE∗c , then

the eigenspaces corresponding to distinct nonzero eigenvalues of the compact

positive operator |S|2 reduce each Ci (see [3, Theorem 8], [14, Lemma 2.3]).

In particular, |S| commutes with Ci for all 1 ≤ i ≤ n. This implies also that

|S|p−1 = T commutes with each Ci for all 1 ≤ i ≤ n. Hence Ci|T | = |T |Ci and

CiT 2 = T 2Ci.
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Since Ci commutes with the positive operator T 2, then Ci commutes with

its square roots, that is,

CiT = TCi. (4.7)

By the same arguments used in the proof of Lemma 3.4, the proof of this lemma

can be completed.

Theorem 4.4. Let C = (C1,C2, . . . ,Cn) be n-tuple of operators in B(H) such

that
∑n
i=1CiC

∗
i ≤ 1,

∑n
i=1C

∗
i Ci ≤ 1, and kerEC ⊆ kerEC∗ . Then S ∈ kerEC ∩Cp

(1<p <∞) if and only if

∥∥S+EC(X)∥∥p ≥ ‖S‖p (4.8)

for all X ∈ Cp .

Proof. If S ∈ kerEC , then, from [14, Theorem 2.4], it follows that ‖S +
EC(X)‖p ≥ ‖S‖p for all X ∈ Cp . Conversely, if ‖S + EC(X)‖p ≥ ‖S‖p for all

X ∈ Cp , then, from Theorem 4.2,
∑n
i=1Ci|S|p−1U∗Ci = |S|p−1U∗. Since kerEC ⊆

kerEC∗ ,
∑n
i=1C

∗
i |S|p−1U∗C∗i = |S|p−1U∗. Taking adjoints, we get

∑n
i=1CiU

× |S|p−1Ci = U|S|p−1, and from Lemma 4.3, it follows that
∑n
i=1CiU|S|Ci =

U|S|, that is, S ∈ kerEC .

Theorem 4.5. Let A = (A1,A2, . . . ,An) and B = (B1,B2, . . . ,Bn) be n-tuples

of operators in B(H) such that
∑n
i=1AiA

∗
i ≤ 1,

∑n
i=1A

∗
i Ai ≤ 1,

∑n
i=1BiB

∗
i ≤ 1,∑n

i=1B
∗
i Bi ≤ 1, and kerEA,B ⊆ kerEA∗,B∗ .

Then T ∈ kerEA,B∩Cp if and only if

∥∥S+EA,B(X)∥∥p ≥ ‖S‖p (4.9)

for all X ∈ Cp .

Proof. It suffices to take the Hilbert space H⊕H and the operators

Ci =
[
Ai 0

0 Bi

]
, S =

[
0 T
0 0

]
, X =

[
0 X
0 0

]
(4.10)

and apply Theorem 4.4.

5. Remarks. (1) It is known (see [8] and the references therein) that the

smooth points of K(H) are those compact operators that attain their norm

at a unique (up to multiplication by a constant of modulus one) unit vector.

It has been shown in [8] that a nonzero T ∈ B(H) is a smooth point if and

only if T attains its norm at a unique (up to multiplication by a constant of

modulus one) unit vector e ∈ H and ‖T‖e ≤ ‖T‖, where ‖T‖e is the essential
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norm of T , that is, the norm of π(T), where π is the quotient map of B(H)
onto B(H)/K(H). In this case,

DT(X)= tr

[
(e⊗Te)
‖T‖ X

]
=
〈
Xe,

Te
‖T‖

�
(5.1)

for all X ∈ B(H), where 〈·,·〉 denotes the inner product on H and e⊗Te is the

rank-one operators defined by (e⊗Te)f = 〈f ,Te〉e for all f ∈H.

Hence, for the usual operator norm, Theorems 3.2, 3.3, 4.1, and 4.2 can be

combined in the following formulation. Let A,B ∈ B(H) and T ∈ B(H) be a
smooth point. If

∼
T = e⊗Te, then the following statements are equivalent:

(i) ‖T +EA,B(X)‖ ≥ ‖T‖ for all X ∈ B(H),
(ii) tr(T∼EA,B(X))= 0 for all X ∈ B(H),

(iii)
∼
T ∈ kerEA,B .

(2) It is still possible to give a characterization similar to this given in the

usual operator norm for the norm ‖·‖∞. However, in this case, we have to as-

sume that T is a smooth point, that is, the given norm is Gateaux differentiable

at T and
∼
T = e⊗Te, where e is the unique (up to multiplication by a constant

of modulus one) unit vector at which T attains its norm.

(3) It is well known that the Hilbert-Schmidt class C2 is a Hilbert space under

the inner product 〈Y ,Z〉 = trZ∗Y .

We remark here that, for the Hilbert Schmidt norm ‖·‖2, the orthogonality

results in Theorems 3.3, 3.5, 4.1, and 4.2 are to be understood in the usual

Hilbert-space sense. Note in the case
∼
T = |T |U∗ = T∗ that

∥∥T +EA,B(X)∥∥2
2 =

∥∥EA,B(X)∥∥2
2+‖T‖2

2 (5.2)

for all X ∈ C2 if and only if T∗ ∈ kerEA,B .

(4) Theorem 4.4 does not hold in the case 0 < p ≤ 1 because the functional

calculus argument involving the function t� t1/(p−1), where 0≤ t <∞, is only

valid for 1 < p <∞. We ask if there is another proof where this theorem still

holds in the case 0<p < 1. For the case p = 1, this theorem still holds see [12,

Theorem 2.3].

6. On minimizing ‖T −(AXB−X)‖pp . Maher [9, Theorem 3.2] showed that,

if A is normal, AT = TA, 1 ≤ p < ∞, and S ∈ kerδA,B ∩Cp ; then the map Fp
defined by Fp(X) = ‖S−(AX−XA)‖pp has a global minimizer at V if, and for

1<p <∞ only if, AV −VA= 0. In other words, we have

∥∥S−(AX−XA)∥∥pp ≥ ‖T‖pp (6.1)

if, and for 1<p <∞ only if,AV−VA= 0. In [10] we generalized Maher’s result,

showing that if the pair (A,B) has the property (FP)Cp , that is, (AT = TB, where

T ∈ Cp implies A∗T = TB∗), 1≤ p <∞ and S ∈ kerδA,B∩Cp , then the map Fp
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defined by Fp(X) = ‖S− (AX−XB)‖pp has a global minimizer at V if, and for

1<p <∞ only if, AV −VB = 0. In other words, we have

∥∥S−(AX−XB)∥∥pp ≥ ‖T‖pp (6.2)

if, and for 1<p <∞ only if, AV −VB = 0. In this paper, we obtain an inequal-

ity similar to (6.1), where the operator AX −XB is replaced by the operator

∆A,B(X) = AXB−X (in the case n = 1). We prove that if ker∆A,B ⊆ ker∆A∗,B∗
and T ∈ ker∆A,B∩Cp , then the map Fp defined by Fp(X) = ‖T −(AXB−X)‖pp
has a global minimizer at V if, and for 1<p <∞ only if, AVB−V = 0. In other

words, we have

∥∥T −(AXB−X)∥∥pp ≥ ‖T‖pp (6.3)

if, and for 1 < p < ∞ only if, AVB − V = 0. Additionally, we show that if

ker∆A,B ⊆ ker∆A∗,B∗ and T ∈ ker∆A,B ∩Cp , 1 < p < ∞, then the map Fp has

a critical point at W if and only if AWB−W = 0, that is, if �WFp is the Frechet

derivative at W of Fp , the set

{
W ∈�(H) : �WFp = 0

}
(6.4)

coincides with ker∆A,B (the kernel of ∆A,B ).

Theorem 6.1 [2]. If 1<p <∞, then the map

Fp : Cp � �→R+ (6.5)

defined by X � ‖X‖pp is differentiable at every X ∈ Cp with derivative �XFp
given by

�XFp(T)= pRetr
(|X|p−1U∗T

)
, (6.6)

where tr denotes trace, Rez is the real part of a complex number z, andX =U|X|
is the polar decomposition of X. If dim� < ∞, then the same result holds for

0<p ≤ 1 at every invertible X.

Theorem 6.2 [6]. If � is a convex set of Cp with 1 < p <∞, then the map

X � ‖X‖pp , where X ∈�, has at most a global minimizer.

Definition 6.3. Let �(A,B)= {X ∈ B(H) :AXB−X ∈ Cp} and let Fp : ��
R+ be the map defined by Fp(X)= ‖T −(AXB−X)‖pp , where T ∈ ker∆A,B∩Cp
(1≤ p <∞).

By a simple modification in the proof of Lemma 4.3, we can proof the fol-

lowing lemma.

Lemma 6.4. Let A,B ∈ B(H) and S ∈ B(H) such that ker∆A,B ⊆ ker∆A∗,B∗ . If

A|S|p−1U∗B = |S|p−1U∗, where p > 1 and S = U|S| is the polar decomposition

of S, then A|S|U∗B = |S|U∗.
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Theorem 6.5. Let A,B ∈ B(H). If ker∆A,B ⊆ ker∆A∗,B∗ and T ∈ ker∆A,B ∩
Cp , then, for 1 ≤ p < ∞, the map Fp has a global minimizer at W if, and for

1<p <∞ only if, AWB−W = 0.

Proof. If ker∆A,B ⊆ ker∆A∗,B∗ , then it follows from Theorem 3.5 that ‖T−
(AXB−X)‖pp ≥ ‖T‖pp , that is, Fp(X)≥ Fp(W). Conversely, if Fp has a minimum,

then

∥∥T −(AWB−WB)∥∥pp = ‖S‖pp. (6.7)

Since � is convex, then the set � = {T −(AXB−X); X ∈�} is also convex.

Thus Theorem 6.2 implies that S−(AWB−W)= S.

Theorem 6.6. Let A,B ∈ B(H). If ker∆A,B ⊆ ker∆A∗,B∗ and S ∈ ker∆A,B ∩
Cp , then, for 1 < p < ∞, the map Fp has a critical point at W if and only if

AWB−W = 0.

Proof. LetW,S ∈� and letφ andϕ be two maps defined, respectively, by

φ :X � S−(AXB−X) and ϕ :X � ‖X‖pp .

Since the Frechet derivative of Fp is given by

�WFp(T)= lim
h→0

Fp(W +hT)−Fp(W)
h

, (6.8)

it follows that �WFp(T) = [�S−(AWB−W)](ATB−T). If W is a critical point of

Fp , then �WFp(T)= 0 for all T ∈�. By applying Theorem 6.1, we get

�WFp(T)= pRetr
[∣∣S−(AWB−W)∣∣p−1W∗(ATB−T)

]
= pRetr

[
Y(ATB−T)]= 0,

(6.9)

where S− (AWB−W) =W |S− (AWB−W)| is the polar decomposition of the

operator S−(AWB−W), and Y = |S−(AWB−W)|p−1W∗.

An easy calculation shows that AYB−Y = 0, that is,

A
∣∣S−(AWB−W)∣∣p−1W∗B = ∣∣S−(AWB−W)∣∣p−1W∗. (6.10)

It follows from Lemma 6.4 that

A
∣∣S−(AWB−W)∣∣W∗B = ∣∣S−(AWB−W)∣∣W∗. (6.11)

By taking adjoints and since ker∆A,B ⊆ ker∆A∗,B∗ , we get A(T − (AWB −
W))B = (T −(AWB−W)). Then A(AWB−W)B = (AWB−W).

Hence AWB−W ∈ R(∆A,B)∩ker∆A,B . It is easy to see that (arguing as in the

proof of Theorem 3.5) if A,B ∈ �(H), ker∆A,B ⊆ ker∆A∗,B∗ , and T ∈ ker∆A,B ,
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where T ∈�(H), then

∥∥T −(AXB−X)∥∥≥ ‖T‖ (6.12)

holds for all X ∈�(H) and for all T ∈ ker∆A,B . Hence AWB−W = 0.

Conversely, ifAWB =W , thenW is a minimum, and since Fp is differentiable,

then W is a critical point.

Theorem 6.7. Let A,B ∈ �(H) such that ker∆A,B ⊆ ker∆A∗,B∗ , S ∈
ker∆A,B ∩Cp (0 < p ≤ 1), dim� < ∞, and S − (AWB−W) is invertible. Then

Fp has a critical point at W if AWB−W = 0.

Proof. Suppose that dim� < ∞. If AWB−W = 0, then S is invertible by

hypothesis. Also |S| is invertible, hence |S|p−1 exists for 0<p ≤ 1. If we take

Y = |S|p−1U∗ (6.13)

with S =U|S| the polar decomposition and since ASB = S implies BS∗A= S∗,

then AS∗S =AS∗BSA= S∗SA, and this implies that |S|2A=A|S|2 and |S|A=
A|S|.

Since BS∗A = S∗, that is, A|S|U∗B = |S|U∗, |S|(AU∗B−U∗) = 0, and since

A|S|p−1 = |S|p−1A, then

AYB−Y =A|S|p−1U∗B−|S|p−1U∗ = |S|p−1(AU∗B−U∗) (6.14)

so that AYB−Y = 0 and tr[(AYB−Y)T] = 0 for all T ∈ B(H). Since S = S−
(AWB−W), then

0= tr[YATB−YAT]= tr
[
Y(ATB−T)]

= pRetr
[
Y(ATB−AT)]= pRetr

[|S|p−1U∗(ATB−T)]
= (�Tφ

)
(ATB−T)= (�WFp

)
(T).

(6.15)

Remark 6.8. (1) In Theorem 6.6, the implication “W is a critical point ⇒
AWB−WB = 0” does not hold in the case 0 < p ≤ 1 because the functional

calculus argument involving the function t� t1/(p−1), where 0≤ t <∞, is only

valid for 1<p <∞.

(2) Theorems 3.5, 6.5, 6.6, and 6.7 hold in particular if A and B are contrac-

tions. Indeed, it is known [4] that if A and B are contractions and ∆A,B(S)= 0,

where S ∈ Cp , then ∆A∗,B∗(S)= δA∗,B(S)= δA,B∗(S)= 0.

(3) The set

	= {X :AXB−X ∈ Cp
}

(6.16)

contains Cp for if X ∈ Cp , then X ∈ 	 and, for example, I ∈ 	 but I ∉ Cp . If

A∈ Cp , the conclusions of Theorems 6.5, 6.6, and 6.7 hold for all X ∈ B(H).
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7. On minimizing ‖T − (∑n
i=1AiXBi − X)‖pp . Let A = (A1,A2, . . . ,An) and

B = (B1,B2, . . . ,Bn) be n-tuples of operators in B(H). We define the elemen-

tary operator EA,B : B(H)� B(H) by EA,B(X)=
∑n
i=1AiXBi−X.

Denote EA,A = EA. In this section, we prove that if
∑n
i=1AiA

∗
i ≤ 1,

∑n
i=1A

∗
i Ai

≤ 1,
∑n
i=1BiB

∗
i ≤ 1,

∑n
i=1B

∗
i Bi ≤ 1, kerEA,B ⊆ kerEA∗,B∗ , and T ∈ ker∆A,B∩Cp ,

then the map Fp defined by Fp(X)= ‖T −EA,B(X)‖pp has a global minimizer at

V if, and for 1<p <∞ only if,
∑n
i=1AiVBi−V = 0. In other words, we have

∥∥T −EA,B(X)∥∥pp ≥ ‖T‖pp (7.1)

if, and for 1 < p <∞ only if,
∑n
i=1AiVBi−V =. Additionally, we show that if

kerEA,B ⊆ EA∗,B∗ and T ∈ kerEA,B ∩Cp (1 < p < ∞), then the map Fp has a

critical point at W if and only if
∑n
i=1AiWBi−W = 0, that is, if DWFp is the

Frechet derivative of Fp at W , the set

{
W ∈ L(H) :DWFp = 0

}
(7.2)

coincides with kerEA,B (the kernel of EA,B).

Definition 7.1. Let �(A,B) = {X ∈ B(H) : (
∑n
i=1CiXCi−X) ∈ Cp} and let

Fp : � � R+ be the map defined by Fp(X) = ‖T − (
∑n
i=1CiXCi−X)‖pp , where

T ∈ kerEC∩Cp (1≤ p <∞).
Lemma 7.2. Let C = (C1,C2, . . . ,Cn) be n-tuple of operators in B(H) such

that
∑n
i=1CiC

∗
i ≤ 1,

∑n
i=1C

∗
i Ci ≤ 1, and kerEc ⊆ kerE∗c . If

∑n
i=1Ci|S|p−1U∗Ci =

|S|p−1U∗, where p > 1 and S = U|S| is the polar decomposition of S, then∑n
i=1Ci|S|U∗Ci = |S|U∗.

Proof. By the same arguments as in the proof of Lemma 4.3, the proof can

be completed.

Theorem 7.3. Let C = (C1,C2, . . . ,Cn) be n-tuple of operators in B(H). If∑n
i=1CiC

∗
i ≤ 1,

∑n
i=1C

∗
i Ci ≤ 1, kerEC ⊆ kerEC∗ , and T ∈ ker∆A,B∩Cp , then, for

1 ≤ p <∞, the map Fp has a global minimizer at W if, and for 1 < p <∞ only

if,
∑n
i=1CiWCi−W = 0.

Proof. If
∑n
i=1CiC

∗
i ≤ 1,

∑n
i=1C

∗
i Ci ≤ 1, and kerEc ⊆ kerE∗c , it follows from

Theorem 4.4 that

∥∥∥∥∥∥T −

 n∑
i=1

CiXCi−X


∥∥∥∥∥∥
p

p

≥ ‖T‖pp, (7.3)

that is, Fp(X)≥ Fp(W). Conversely, if Fp has a minimum, then

∥∥∥∥∥∥T −

 n∑
i=1

CiWCi−W


∥∥∥∥∥∥
p

p

= ‖T‖pp. (7.4)
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Since � is convex, then the set

�=

T −


 n∑
i=1

CiXCi−X

; X ∈�


 (7.5)

is also convex. Thus Theorem 6.2 implies that T −(∑n
i=1CiWCi−W)= T .

Theorem 7.4. Let C = (C1,C2, . . . ,Cn) be n-tuple of operators in B(H). If∑n
i=1CiC

∗
i ≤ 1,

∑n
i=1C

∗
i Ci ≤ 1, kerEc ⊆ kerE∗c , and T ∈ kerEC ∩Cp , then, for

1≤ p <∞, the map Fp has a critical point at W if, and for 1<p <∞ only if,

n∑
i=1

CiWCi−W = 0. (7.6)

Proof. LetW,S ∈U and letφ andϕ be two maps defined, respectively, by

φ :X � �→ S−

 n∑
i=1

CiXCi−X

, ϕ :X � �→‖X‖pp. (7.7)

Since the Frechet derivative of Fp is given by

�WFp(T)= lim
h→0

Fp(W +hT)−Fp(W)
h

, (7.8)

it follows that

�WFp(T)=
[

�S−(∑ni=1CiWCi−W)
] n∑

i=1

CiTCi−T

. (7.9)

If W is a critical point of Fp , then �WFp(T) = 0 for all T ∈ �. By applying

Theorem 6.1, we get

�WFp(T)= pRetr



∣∣∣∣∣∣S−


 n∑
i=1

CiWCi−W


∣∣∣∣∣∣
p−1

W∗

 n∑
i=1

CiTCi−T





= pRetr


Y


 n∑
i=1

CiTCi−T



= 0,

(7.10)

where

S−

 n∑
i=1

CiWCi−W

=W

∣∣∣∣∣∣S−

 n∑
i=1

CiWCi−W


∣∣∣∣∣∣ (7.11)

is the polar decomposition of the operator S−(∑n
i=1CiWCi−W), and

Y =
∣∣∣∣∣∣S−


 n∑
i=1

CiWCi−W


∣∣∣∣∣∣
p−1

W∗. (7.12)
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An easy calculation shows that


 n∑
i=1

CiYCi−Y

= 0, (7.13)

that is,

n∑
i=1

Ci

∣∣∣∣∣∣S−

 n∑
i=1

CiWCi−W


∣∣∣∣∣∣
p−1

W∗Ci =
∣∣S−(AWB−W)∣∣p−1W∗. (7.14)

It follows from Lemma 7.2 that

n∑
i=1

Ci

∣∣∣∣∣∣S−

 n∑
i=1

CiWCi−W


∣∣∣∣∣∣W∗Ci =

∣∣∣∣∣∣S−

 n∑
i=1

CiWCi−W


∣∣∣∣∣∣W∗. (7.15)

By taking adjoints, and since kerEC ⊆ kerEC∗ , we get

n∑
i=1

Ci


T −


 n∑
i=1

CiWCi−W



Ci =


T −


 n∑
i=1

CiWCi−W



, (7.16)

and then

n∑
i=1

Ci




 n∑
i=1

CiWCi−W



Ci =


 n∑
i=1

CiWCi−W

. (7.17)

Hence

n∑
i=1

CiWCi−W ∈ R(EC)∩kerEC∗ . (7.18)

It is easy to see that (arguing as in the proof of [14, Proposition 4.3]) if

C = (C1,C2, . . . ,Cn) is n-tuple of operator in B(H) such that

n∑
i=1

CiC∗i ≤ 1,
n∑
i=1

C∗i Ci ≤ 1, (7.19)

kerEc ⊆ kerE∗c , and T ∈ ker∆C , where T ∈ B(H), then

∥∥T −∆CX∥∥≥ ‖T‖ (7.20)

holds for all X ∈ B(H) and for all T ∈ kerEc . Hence
∑n
i=1CiWCi−W = 0.

Conversely, if
∑n
i=1CiWCi =W , then W is minimum, and since Fp is differ-

entiable, W is a critical point.

Theorem 7.5. Let C = (C1,C2, . . . ,Cn) be n-tuple of operators in B(H). If

n∑
i=1

CiC∗i ≤ 1,
n∑
i=1

C∗i Ci ≤ 1, (7.21)
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such that kerEc ⊆ kerE∗c , S ∈kerEC ∩ Cp (0 < p ≤ 1), dimH < ∞, and S −
(
∑n
i=1CiWCi−W) is invertible, then Fp has a critical point atW if

∑n
i=1CiWCi−

W = 0.

Proof. Suppose that dimH <∞. If
∑n
i=1CiWCi−W = 0, then S is invertible

by hypothesis. Also |S| is invertible, hence |S|p−1 exists for 0 < p ≤ 1 taking

Y = |S|p−1U∗, where S =U|S| is the polar decomposition of S.

It is known that if

n∑
i=1

CiC∗i ≤ 1,
n∑
i=1

C∗i Ci ≤ 1, kerEc ⊆ kerE∗c , (7.22)

the eigenspaces corresponding to distinct nonzero eigenvalues of the compact

positive operator |S|2 reduce each Ci (see [5, Theorem 8] and [14, Lemma 2.3]).

In particular, |S| commutes with Ci for all 1≤ i≤n. Hence

Ci|S| = |S|Ci. (7.23)

Since
∑n
i=1CiS∗Ci = S∗, that is,

n∑
i=1

Ci|S|U∗Ci = |S|U∗, (7.24)

then

|S|

 n∑
i=1

CiU∗Ci−U∗

= 0, (7.25)

and since

A|S|p−1 = |S|p−1A, (7.26)

then

n∑
i=1

CiYCi−Y =
n∑
i=1

Ci|S|p−1U∗Ci−|S|p−1U∗ = |S|p−1


 n∑
i=1

CiU∗Ci−U∗


(7.27)

so that
∑n
i=1CiYCi −Y = 0 and tr[(

∑n
i=1CiYCi −Y)T] = 0 for all T ∈ B(H).

Since

S = S−

 n∑
i=1

CiWCi−W

, (7.28)
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then

0= tr


Y n∑

i=1

CiTCi−YT

= tr


Y


 n∑
i=1

CiTCi−T





= pRetr


Y


 n∑
i=1

CiTCi−T



= pRetr


|S|p−1U∗


 n∑
i=1

CiTCi−T





= (�Tφ
) n∑

i=1

CiTCi−T

= (�WFp

)
(T).

(7.29)

Theorem 7.6. Let A= (A1,A2, . . . ,An) and B = (B1,B2, . . . ,Bn) be n-tuples of

operators in B(H) such that

n∑
i=1

AiA∗i ≤ 1,
n∑
i=1

A∗i Ai ≤ 1,
n∑
i=1

BiB∗i ≤ 1,
n∑
i=1

B∗i Bi ≤ 1. (7.30)

If

kerEA,B ⊆ kerEA∗,B∗ (7.31)

and T ∈ kerEA,B∩Cp , then for 1≤ p <∞,

(i) the map Fp has a global minimizer at W if, and for 1<p <∞ only if,

n∑
i=1

AiWBi−W = 0; (7.32)

(ii) the map Fp has a critical point at W if, and for 1<p <∞ only if,

n∑
i=1

AiWBi−W = 0; (7.33)

(iii) for 0<p ≤ 1, dimH <∞, and S−(∑n
i=1CiWCi−W) invertible, Fp has a

critical point at W if

n∑
i=1

AiWBi−W = 0. (7.34)

Proof. It suffices to take the Hilbert space H⊕H and operators (4.10) and

apply Theorems 7.3, 7.4, and 7.5.

Remark 7.7. (1) In Theorem 7.4, the implication “W is a critical point ⇒∑n
i=1AiWBi−W = 0” does not hold in the case 0<p ≤ 1 because the functional

calculus argument involving the function t� t1/(p−1), where 0≤ t <∞, is only

valid for 1<p <∞.

(2) The set S = {X : AXB−X ∈ Cp} contains Cp . If X ∈ Cp , then X ∈ S and,

for example, I ∈ S but I ∉ Cp . If A ∈ Cp , the conclusion of Theorem 7.6 holds

for all X ∈ B(H).
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[5] I. C. Gohberg and M. G. Krĕın, Introduction to the Theory of Linear Nonselfadjoint
Operators, Translations of Mathematical Monographs, vol. 18, American
Mathematical Society, Rhode Island, 1969.
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