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1. Introduction. In [5], Isac et al. raised the following open problem which

is closely related to the equilibrium problem. Given a closed nonempty subset

K in a locally convex semireflexive topological space, a mapping f :K×K→R,

and two real numbers α,β, where α ≤ β, it is interesting to know under what

conditions there exists an x̄ ∈K such that

α≤ f(x̄,y)≤ β, ∀y ∈K. (1.1)

First, Li [8] gave some answers to the open problem (1.1) by introducing and

using the concept of extremal subsets. Then Chadli et al. [1] gave some answers

to this open problem by a method different from that Li used. Our goal in this

paper is to derive some more results in answering this problem in G-convex

spaces. In fact, we will derive some results of problem (1.1) for bifunctions that

are defined on X×X, for which X is a G-convex space.

Let X be nonempty set. We denote by 2X the family of all subsets of X, by

�(X) the family of all nonempty finite subsets of X, and by |A| the cardinality

of A∈�(X).
Let Y be a nonempty set and let X be a topological space. If F : Y → 2X

is a multivalued map, then we say that F is transfer closed-valued if, for any

(y,x) ∈ Y ×X with x �∈ F(y), there exists y ′ ∈ Y such that x �∈ clF(y ′); see

Tian [14]. It is clear that this definition is equivalent to saying that
⋂
y∈Y F(y)=⋂

y∈Y clF(y). If B ⊆ Y and A⊆X, then we say that F : B→ 2A is transfer closed-

valued if the multivalued map y → F(y)∩A is transfer closed-valued. In the

case when X = Y and A= B, we say that F is transfer closed-valued on A.

Let f be a bifunction on X×Y , then f is called λ-transfer lower semicontin

uous (l.s.c.) on the first variable onX if, for each (x,y)∈X×Y with f(x,y) > λ,

there existy ′ ∈ Y and a neighborhoodU(x) ofx inX such that f(z,y ′) > λ for
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all z ∈ U(x). The bifunction f is said to be λ-transfer upper semicontinuous

(u.s.c.) on the first variable on X if −f is λ-transfer l.s.c. on the first variable.

If f is defined on Y ×X, then λ-transfer l.s.c. (u.s.c.) bifunction on second

variable on X is defined by a similar method. It is easily seen that an l.s.c

(u.s.c.) bifunction is λ-transfer l.s.c (u.s.c.) bifunction for each λ.

A generalized convex space or G-convex space was first introduced by Park

and Kim [12], and more recently, it has been generalized by Park [10]. A G-

convex space (X,D;Γ) consists of a topological space X, a nonempty set D,

and a multivalued map Γ : �(D)→ 2X \{∅} such that, for each A∈�(D) with

the cardinality |A| = n+1, there exists a continuous function ΦA : ∆n → Γ(A)
such that each J ∈�(A) impliesΦA(∆J)⊂ Γ(J), for which ifA= {a0,a1, . . . ,an}
and J = {ai0 ,ai1 , . . . ,aij}, then ∆J = co{ei0 , . . . ,eij}. When D = X, we will write

(X;Γ) in place of (X,X;Γ). If (X,D;Γ) is a G-convex space, D ⊆ X, and K ⊂ X,

then K isG-convex if for eachA∈�(D),A⊂K implies Γ(A)⊂K. TheG-convex

hull of K denoted by G-coK is the set
⋂{B ⊂ X : B is a G-convex subset of X

containing K}.
Notice that G-convex spaces contain most of the well-know spaces such as

topological vector spaces, convex spaces, generalized H-spaces, L-spaces, C-

spaces, and hyperconvex metric spaces (see [10, 11, 12, 13] and the references

therein).

Let (X,D;Γ) be aG-convex space, then the multivalued mapping F :D→ 2X is

called a KKM map if, for each finite subsetA ofD, we have Γ(A)⊆ F(A); see Park

and Lee [13]. If x� clF(x) is a KKM map, then we say that clF is a KKM map.

2. Main results. The KKM theorem is a very important tool in the study of

the equilibrium problem. To solve problem (1.1) on G-convex spaces, we first

give some refined versions of the KKM theorem. The following KKM theorem,

due to Park and Lee [13, Theorem 1], is essential for obtaining our main results.

Theorem 2.1. Let (X,D;Γ) be a G-convex space and let F : D → 2X be a

multimap such that

(1) F has closed (resp., open) values,

(2) F is a KKM map.

Then {F(z) : z ∈D} has the finite intersection property. More precisely, for each

N ∈�(D), Γ(N)∩(⋂z∈N F(z)≠∅). Further, if

(3)
⋂
z∈M clF(z) is compact for some M ∈�(D), then

⋂
z∈D clF(z)≠∅.

As a consequence of the above theorem, we obtain the following result which

is a refinement of [3, Theorem 1.1] and [7, Theorem 3.3].

Theorem 2.2. Let (X,D;Γ) be a G-convex space such that, for each A,B ∈
�(D) with A ⊆ B, Γ(A) ⊆ Γ(B). Suppose that F : D → 2X \ {∅} and G : D →
2X \{∅} are two multivalued maps such that

(1) F(x)⊆G(x) for all x ∈D,

(2) F is a KKM map,
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(3) for some M ∈�(D),
⋂
x∈M clF(x) is compact,

(4) for each A∈�(D) with M ⊆A, G :A→ 2Γ(A) is transfer closed-valued,

(5) for each A∈�(D) with M ⊆A,

cl


 ⋂
x∈A
G(x)


=

⋂
x∈A
G(x). (2.1)

Then
⋂
x∈DG(x)≠∅.

Proof. Let A ∈ �(D) with M ⊆ A. Consider a multivalued map FA : A →
2Γ(A) \{∅} defined by FA(x) := clΓ(A)(F(x)∩Γ(A)) for all x ∈A. Then FA(x) is

closed in Γ(A). Also FA is a KKM map. In fact, if B ∈ �(A), then Γ(B) ⊆ Γ(A)
and Γ(B) ⊆ ⋃x∈B F(x), thus Γ(B) ⊆ (⋃x∈B F(x))∩ Γ(A) ⊆

⋃
x∈B FA(x). So, by

Theorem 2.1, we have

⋂
x∈A
FA(x)≠∅. (2.2)

Let {Ai : i ∈ I} be the family of all finite subsets of D containing the set M ,

partially ordered by ⊆. Now, for each i∈ I, let Xi = Γ(Ai). By (2.2),

⋂
x∈Ai

clXi
(
F(x)∩Xi

)
≠∅, for each i∈ I. (2.3)

Take any xi ∈
⋂
x∈Ai clXi(F(x)∩Xi). For each i ∈ I, let Yi = {xj : j ≥ i, j ∈ I}.

Clearly, we have that {Yi : i ∈ I} has finite intersection property, and Yi ⊆⋂
x∈M clF(x), for all i ∈ I. Hence, by condition (3), clYi is compact. Therefore⋂
i∈I clYi ≠ ∅. Choose any x̄ ∈ ⋂i∈I clYi. Also, for any i,j ∈ I with j ≥ i, we

have

xj ∈
⋂
x∈Aj

clXj
(
F(x)∩Xj

)
⊆
⋂
x∈Aj

clXj
(
G(x)∩Xj

)

=
⋂
x∈Aj

(
G(x)∩Xj

)
⊆
⋂
x∈Ai

(
G(x)∩Xj

)

⊆
⋂
x∈Ai

G(x).

(2.4)

Therefore, Yi ⊆
⋂
x∈Ai G(x). Now, for any x ∈ D, there exists i0 ∈ I such that

x ∈Ai0 . It follows that

x̄ ∈ clYi0 ⊆ cl



⋂
z∈Ai0

G(z)


=

⋂
z∈Ai0

G(z)⊆G(x). (2.5)

Then x̄ ∈G(x) for all x ∈X, and the proof is completed.

By Theorem 2.1 and the fact that
⋂
x∈DG(x)=

⋂
x∈D clG(x), whenG is trans-

fer closed-valued, we can obtain the following result.



3270 M. FAKHAR AND J. ZAFARANI

Theorem 2.3. Let (X,D;Γ) be aG-convex space. Suppose that F :D→2X \{∅}
and G :D→ 2X \{∅} are two multivalued maps such that

(1) F(x)⊆G(x) for all x ∈D,

(2) clF is a KKM map,

(3) for some M ∈�(D),
⋂
x∈M clF(x) is compact,

(4) G is transfer closed-valued.

Then
⋂
x∈DG(x)≠∅.

The following examples show that Theorems 2.2 and 2.3 are different.

Example 2.4. Assume thatX=R andD=N. If we define Γ(A)=co(A+1) for

every A∈�(D), then (X,D;Γ) is a G-convex space and Γ(A)≠G-coA. Suppose

that F :D→ 2X is defined as

F(x)=




{1,2}∪((−∞,0)∩Q) if x = 1,

(1,+∞) if x = 2,

R if x ≠ 1,2.

(2.6)

By taking M = {1,2} and F =G, all the conditions of Theorem 2.2 are satisfied

and
⋂
x∈D F(x) = {2}, but

⋂
x∈D clF(x) = {1,2}. Therefore, F is not transfer

closed-valued and so we cannot apply Theorem 2.3.

The following example is a modified form of [14, Example 1].

Example 2.5. If X = [0,1], D =Q∩X, and Γ(A)= [minA,1], for every A∈
�(D), then (X,D;Γ) is a G-convex space. Suppose that F :D→ 2X is defined by

F(x)= [x,1]∩Q. If F =G, then all the conditions of Theorem 2.3 are satisfied.

But F is not KKM map and moreover for A= {0,0.5}, conditions (4) and (5) are

not satisfied.

By a method similar to that of the proof of Theorem 2.2, we can obtain the

following result which is an improvement of [2, Lemma 2] and [6, Lemma 3.1]

on G-convex spaces.

Theorem 2.6. Let (X;Γ) be a G-convex space and let G-coA be closed for

each A ∈ �(X). Suppose that F : X → 2X \ {∅} and G : X → 2X \ {∅} are two

multivalued maps such that

(1) F(x)⊆G(x) for all x ∈X,

(2) F is a KKM map,

(3) for some M ∈�(X),
⋂
x∈M clF(x) is compact,

(4) for each A∈�(X) with M ⊆A, G is transfer closed-valued on G-coA,

(5) for each A∈�(X) with M ⊆A,

cl


 ⋂
x∈G-coA

G(x)


∩G-coA=


 ⋂
x∈G-coA

G(x)


∩G-coA. (2.7)

Then
⋂
x∈X G(x)≠∅.
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Remark 2.7. (a) If, in Theorem 2.3, X is Hausdorff and X =D, then condi-

tion (3) can be replaced by the following condition:

(3′) there exists a compact subset K of X such that, for each N ∈ �(X),
there exists a nonempty compact G-convex subset LN of X such that⋂
x∈LN clF(x)⊆K.

(b) If, in Theorem 2.6, for each A ∈ �(X), G-coA is compact, then, instead

of conditions (3) and (4) we can assume that

(3′) there exists M ∈�(X) such that cl(
⋂
x∈M F(x)) is compact,

(4′) for each A∈�(X) with M ⊆A, F is transfer closed-valued on G-coA.

Then the conclusion of Theorem 2.6 holds. In this case, we obtain a refinement

of Lemma 2.3 of Ding and Tarafdar [4]. Also condition (3) of Theorem 2.6 can

be replaced by the following condition:

(3′′) there exists M ∈�(X) such that cl(
⋂
x∈M G(x)) is compact.

(c) Example 2.4 shows that, in general, Γ(A)≠G-coA. Therefore, Theorem 2.6

has its own applications.

Now, by Theorem 2.2, we obtain the following result, which gives an answer

to problem (1.1).

Theorem 2.8. Let (X,D;Γ) be a G-convex space such that for each A,B ∈
�(D) with A ⊆ B, Γ(A) ⊆ Γ(B). Suppose that f and g are two real bifunctions

defined on X×D such that

(1) for each (x,y)∈X×D, if α≤ f(x,y)≤ β, then α≤ g(x,y)≤ β;

(2) for each A∈�(D) and B ⊆A with ∅≠ B ≠A, either

(i) α≤ infx∈Γ(A)maxy∈B f (x,y) or

(ii) supx∈Γ(A)miny∈A\B f (x,y)≤ β.

For B =A, condition (i) holds, and for B =∅, condition (ii) is satisfied;

(3) there exist a compact subset K of X and M ∈ �(D) such that, for every

x ∈ X \K, there are a point y ∈M and a neighborhood U(x) of x such

that for any z ∈U(x), f(z,y) < α or f(z,y) > β;

(4) for each A ∈ �(D) with M ⊆ A, g : Γ(A)×A→ R is α-transfer u.s.c. and

β-transfer l.s.c. on the first variable on Γ(A);
(5) for each A ∈ �(D) with M ⊆ A, x ∈ X and for each net (xλ) in X con-

verging to x, if α≤ g(xλ,y)≤ β for all y ∈A, then α≤ g(x,y)≤ β.

Then there exists x̄ ∈X such that α≤ g(x̄,y)≤ β for all y ∈D.

Proof. Assume that F , G :D→ 2X are defined by

F(y)= {x ∈X :α≤ f(x,y)≤ β},
G(y)= {x ∈X :α≤ g(x,y)≤ β}. (2.8)

By condition (1), F(y) ⊆ G(y) for all y ∈ D. Condition (2) implies that F is a

KKM map, because if there exists A∈�(D) such that Γ(A)�
⋃
y∈AF(y), then

there is a point x̂ ∈ Γ(A) such that f(x̂,y) < α or f(x̂,y) > β, for all y ∈ A.

Let B = {y ∈A : f(x̂,y) < α}, then B =A or ∅, or ∅≠ B ≠A. In the case when
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B = A or B = ∅, we have maxy∈Af(x̂,y) < α or miny∈Af(x̂,y) > β. If ∅ ≠
B ≠ A, then maxy∈B f (x̂,y) < α and miny∈A\B f (x̂,y) > β which contradicts

condition (2). Also, by condition (3) we have
⋂
y∈M clF(y) ⊆ K. Now, we show

that condition (4) implies that G : A→ 2Γ(A) is transfer closed-valued for each

A ∈ �(D) with M ⊆ A. Let (x,y) be a point in Γ(A)×A and x �∈ Γ(A)∩G(y).
Then g(x,y) < α or g(x,y) > β. If g(x,y) < α, then there exist y ′ ∈A and a

neighborhood U(x) of x in Γ(A) such that g(z,y ′) < α for all z ∈U(x). Thus,

x �∈ clΓ(A)(Γ(A)∩G(y ′)). Similarly, we can prove the case when g(x,y) > β.

Moreover if x ∈ cl(
⋂
y∈AG(y)), then there exists a net (xλ) in

⋂
y∈AG(y) such

that xλ→ x. Therefore, α≤ g(xλ,y)≤ β for all y ∈A, and by condition (5), we

have α ≤ g(x,y)≤ β. Hence x ∈⋂y∈AG(y) and so, by Theorem 2.2, we have⋂
y∈DG(y)≠∅.

Remark 2.9. (a) If in Theorem 2.8 instead of condition (4) we assume the

following condition:

(4′) g is α-transfer u.s.c. and β-transfer l.s.c. on the first variable on X,

then, by Theorem 2.3 and without condition (5), we can obtain another answer

for problem (1.1). In the above case, if X = D and X is Hausdorff, then by

Remark 2.7(a), condition (3) can be replaced by the following condition:

(3′) there exists a compact subset K of X such that, for every N ∈ �(X)
there is a nonempty compact G-convex subset LN of X such that for

every x ∈ X \K, there are a point y ∈ LN and a neighborhood U(x) of

x such that for any z ∈U(x) we have f(z,y) < α or f(z,y) > β.

(b) If in Theorem 2.8 X = D and G-coA is compact for any A ∈ �(X), then

we can conclude Theorem 2.8 by replacing conditions (3), (4), and (5) by the

following conditions:

(3′) there exist a compact subset K of X and M ∈�(X) such that, for every

x ∈X \K, there is a point y ∈M such that f(x,y) < α or f(x,y) > β;

(4′) for each A ∈ �(X) with M ⊆ A, f : G-coA×G-coA → R is α-transfer

u.s.c. and β-transfer l.s.c. on the first variable on G-coA;

(5′) for each A ∈ �(X) with M ⊆ A, x,y ∈ G-coA, and for each net (xλ)
in X converging to x, if α ≤ g(xλ,z) ≤ β for all z ∈ Γ({x,y}), then

α≤ g(x,y)≤ β.

(c) In part (a), if X is a nonempty convex subset of a Hausdorff topologi-

cal vector space, then we can obtain a refinement of [1, Theorem 2.3] and [8,

Theorem 3.1].

Theorem 2.10. Let (X;Γ) be a Hausdorff G-convex space, for any finite sub-

set A of X, and let G-coA be compact. Suppose that f , g1, and g2 are real

bifunctions on X×X satisfying the following conditions:

(1) g1(x,x)≥α and g2(x,x)≤ β, for all x ∈X;

(2) for every x ∈ X and for every A ∈ �(X) if A ⊆ {y ∈ X : f(x,y) <
α or f(x,y) > β}, Γ(A)⊆ {y ∈X : g1(x,y) < α or g2(x,y) > β};

(3) there exist compact subset K of X and M ∈ �(X) such that the set {y ∈
M : f(x,y) < α or f(x,y) > β} is nonempty for each x ∈X \K;
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(4) for each A ∈ �(X) with M ⊆ A, f : G-coA×G-coA → R is α-transfer

u.s.c. and β-transfer l.s.c. on the first variable on G-coA;

(5) for each A ∈ �(X) with M ⊆ A, x,y ∈ G-coA, and for each net (xλ)
in X converging to x, if α ≤ f(xλ,z) ≤ β for all z ∈ Γ({x,y}), then

α≤ f(x,y)≤ β.

Then there exists x̄ ∈X such that α≤ f(x̄,y)≤ β for each y ∈X.

Proof. Let F :X → 2X be defined by

F(y)= {x ∈X :α≤ f(x,y)≤ β}. (2.9)

First, we show that F is a KKM map. Assume that there exists A ∈ �(X) such

that Γ(A) �
⋃
y∈AF(y). Therefore, Γ(A) contains a point x0 which is not in⋃

y∈AF(y). Hence, by condition (2), we have g1(x0,x0) < α or g2(x0,x0) > β.

This contradicts condition (1). Condition (3) implies that
⋂
y∈M F(y)⊆K. As in

the proof of Theorem 2.8, condition (4) implies condition (4′) of Remark 2.7,

and condition (5) implies condition (5) of Theorem 2.6. Therefore, by Theorem

2.6 and part (b) of Remark 2.7, we have
⋂
y∈X F(y)≠∅.

Remark 2.11. If, in Theorem 2.10, instead of conditions (3) and (4), we have

the following conditions:

(3′) there exists a compact subset K of X such that for every N ∈ �(X)
there is a nonempty compact G-convex subset LN of X such that for

every x ∈X \K there are a point y ∈ LN and a neighborhood U(x) of x
such that for any z ∈U(x), we have f(z,y) < α or f(z,y) > β;

(4′) f is α-transfer u.s.c. and β-transfer l.s.c. on the first variable on X.

Then, by Remark 2.7(a) and without condition (5) we can obtain a refinement

of [1, Theorem 2.2]. Also if g1 and g2 are identical and equal to f , then we

obtain an improvement of [8, Theorem 3.1].

3. Some applications. In this section, we give some applications of Theorem

2.8 and Remark 2.9.

Theorem 3.1. Let (X,D;Γ) be a G-convex space such that for each A,B ∈
�(D) with A⊆ B, Γ(A)⊆ Γ(B). Suppose that f1 and g1 are two real bifunctions

defined on D×X such that

(1) for each (y,x)∈D×X, if f1(y,x)≤ c, then g1(y,x)≤ c,
(2) for each A∈�(D), supx∈Γ(A)miny∈Af1(y,x)≤ c,
(3) there exist a compact subset K of X and M ∈ �(D) such that, for every

x ∈X \K, there exist a point y ∈M and a neighborhood U(x) of x such

that for any z ∈U(x), f1(y,z) > c,
(4) for each A ∈ �(D) with M ⊆ A, g1 : A× Γ(A) → R is c-transfer l.s.c. on

the second variable on Γ(A),
(5) for each A ∈ �(D) with M ⊆ A and each net (xλ) in X converging to x,

if g1(y,xλ)≤ c for all y ∈A, then g1(y,x)≤ c.
Then there exists x̄ ∈X such that g1(y,x̄)≤ c for all y ∈D.
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Proof. Define f , g :X×D→R by f(x,y)= ef1(y,x) and g(x,y)= eg1(y,x).

If α= 0 and β= ec , then it is easy to see that all of the conditions of Theorem

2.8 are satisfied. Therefore, there is a point x̄ ∈ X such that 0 ≤ g(x̄,y) ≤ ec
for all y ∈D, that is, g1(y,x̄)≤ c for all y ∈D.

Corollary 3.2. Let (X,D;Γ) be a G-convex space such that for each A,B ∈
�(D) with A ⊆ B, Γ(A) ⊆ Γ(B). Suppose that ϕ and ψ are two real bifunctions

defined on X×D such that

(1) for each (x,y)∈X×D, if ϕ(x,y)≥ 0, then ψ(x,y)≥ 0,

(2) for each A∈�(D), infx∈Γ(A)maxy∈Aϕ(x,y)≥ 0,

(3) there exist a compact subset K of X and M ∈ �(D) such that for every

x ∈ X \K there exist a point y ∈M and a neighborhood U(x) of x such

that for any z ∈U(x), ϕ(z,y) < 0,

(4) for each A ∈ �(D) with M ⊆ A, ψ : Γ(A)×A → R is 0-transfer u.s.c. on

the first variable on Γ(A),
(5) for each A ∈ �(D) with M ⊆ A and each net (xλ) in X converging to x,

if ψ(xλ,y)≥ 0 for all y ∈A, then ψ(x,y)≥ 0.

Then there exists x̄ ∈X such that ψ(x̄,y)≥ 0 for all y ∈D.

Proof. It is enough in Theorem 3.1 to set c = 0, f1(y,x)=−ϕ(x,y), and

g1(y,x)=−ψ(x,y).

If (X,Γ) is a G-convex space, then g : X → R is G-quasiconvex if {x ∈ X :

g(x) < λ} is G-convex for each λ∈R.

Remark 3.3. If in Corollary 3.2 X = D, for each x ∈ X, y �ϕ(x,y) is G-

quasiconvex, and ϕ(x,x) ≥ 0, then condition (2) of Corollary 3.2 is satisfied.

So Corollary 3.2 improves [9, Corollary 2].

If X = D, X is Hausdorff space and G-coA is compact for any A ∈ �(X),
then instead of conditions (3), (4), and (5) of Theorem 3.1 we can suppose that

(3′) there exist a compact subset K of X and M ∈�(X) such that, for every

x ∈X \K, there exists a point y ∈M such that f1(y,x) > c;
(4′) for each A ∈ �(X) with M ⊆ A, f1 is c-transfer l.s.c. on the second

variable on G-coA,

(5′) for each A ∈ �(X) with M ⊆ A, x,y ∈ G-coA, and each net (xλ) in X
converging to x, if g1(z,xλ)≤ c for all z ∈ Γ({x,y}), then g1(y,x)≤ c.

In the above case we obtain a refinement of [2, Theorem 2], [6, Theorem 3.2],

and [15, Theorems 2.2 and 2.3].

The following corollary improves [9, Corollary 3].

Corollary 3.4. Let (X;Γ) be a Hausdorff G-convex space and let G-coA be

compact for all A∈�(X). Suppose that Y is a topological space, T :X → 2Y is a

multivalued mapping having a continuous selection f , and φ :X×Y ×X →R is

a function such that
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(1) φ(x,y,z) is G-quasiconvex in z,

(2) φ(x,f(x),z)≥ 0 for all x ∈X,

(3) there exist a compact subset K of X and M ∈ �(X) such that, for every

x ∈X \K and y ∈ Y there exists a point z ∈M such that φ(x,y,z) < 0,

(4) for each A∈�(X) with M ⊆A, φ(x,y,z) is 0-transfer u.s.c. in (x,y) on

G-coA,

(5) for each A ∈ �(X) with M ⊆ A, x,z ∈ G-coA, and for each net (xλ)
in X converging to x, if φ(xλ,f (xλ),z′) ≥ 0 for all z′ ∈ Γ({x,z}), then

φ(x,f(x),z)≥ 0.

Then there exist an x̄ ∈X and ȳ ∈ T(x̄) such that φ(x̄,ȳ,z)≥ 0 for all z ∈X.

Proof. Let ϕ(z,x) =ψ(z,x) = −φ(x,f(x),z) for (x,z) ∈ X×X. Then ψ
satisfies all of the requirements of Remark 3.3. Therefore, by Theorem 3.1, we

have the conclusion.

Acknowledgments. The authors thank the referee for his comments and

helpful suggestions. Also they would like to express their sincere gratitude to

Professor Sehie Park for providing them some of his recent research articles

on G-convex spaces. The second author is partially supported by the Inter-

universities Research Project No. 31303378-37.

References

[1] O. Chadli, Y. Chiang, and J. C. Yao, Equilibrium problems with lower and upper
bounds, Appl. Math. Lett. 15 (2002), no. 3, 327–331.

[2] M. S. R. Chowdhury and K.-K. Tan, Generalization of Ky Fan’s minimax inequal-
ity with applications to generalized variational inequalities for pseudo-
monotone operators and fixed point theorems, J. Math. Anal. Appl. 204
(1996), no. 3, 910–929.

[3] M. S. R. Chowdhury, E. Tarafdar, and K.-K. Tan, Minimax inequalities on G-convex
spaces with applications to generalized games, Nonlinear Anal. 43 (2001),
no. 2, 253–275.

[4] X. P. Ding and E. Tarafdar, Generalized variational-like inequalities with pseu-
domonotone set-valued mappings, Arch. Math. (Basel) 74 (2000), no. 4, 302–
313.

[5] G. Isac, V. M. Sehgal, and S. P. Singh, An alternate version of a variational inequal-
ity, Indian J. Math. 41 (1999), no. 1, 25–31.

[6] E. M. Kalmoun, On Ky Fan’s minimax inequalities, mixed equilibrium problems and
hemivariational inequalities, JIPAM. J. Inequal. Pure Appl. Math. 2 (2001),
no. 1, 1–13.

[7] W. A. Kirk, B. Sims, and G. X.-Z. Yuan, The Knaster-Kuratowski and Mazurkiewicz
theory in hyperconvex metric spaces and some of its applications, Nonlinear
Anal. 39 (2000), no. 5, 611–627.

[8] J. Li, A lower and upper bounds version of a variational inequality, Appl. Math.
Lett. 13 (2000), no. 5, 47–51.

[9] L.-J. Lin and S. Park, On some generalized quasi-equilibrium problems, J. Math.
Anal. Appl. 224 (1998), no. 2, 167–181.

[10] S. Park, Elements of the KKM theory for generalized convex spaces, Korean J.
Comput. Appl. Math. 7 (2000), no. 1, 1–28.



3276 M. FAKHAR AND J. ZAFARANI

[11] , Fixed points of better admissible maps on generalized convex spaces, J.
Korean Math. Soc. 37 (2000), no. 6, 885–899.

[12] S. Park and H. Kim, Admissible classes of multifunctions on generalized convex
spaces, Proc. College Natur. Sci. Seoul Nat. Univ. 18 (1993), 1–21.

[13] S. Park and W. Lee, A unified approach to generalized KKM maps in generalized
convex spaces, J. Nonlinear Convex Anal. 2 (2001), no. 2, 157–166.

[14] G. Q. Tian, Generalizations of the FKKM theorem and the Ky Fan minimax inequal-
ity, with applications to maximal elements, price equilibrium, and comple-
mentarity, J. Math. Anal. Appl. 170 (1992), no. 2, 457–471.

[15] R. U. Verma, Role of generalized KKM type selections in a class of minimax in-
equalities, Appl. Math. Lett. 12 (1999), no. 4, 71–74.

M. Fakhar: Department of Mathematics, University of Isfahan, Isfahan 81745-163,
Iran

E-mail address: fakhar@sci.ui.ac.ir

J. Zafarani: Department of Mathematics, University of Isfahan, Isfahan 81745-163,
Iran

E-mail address: jzaf@sci.ui.ac.ir

mailto:fakhar@sci.ui.ac.ir
mailto:

