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CS-MODULES AND ANNIHILATOR CONDITIONS
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We study S-R-bimodules SMR with the annihilator condition S = lS(A)+ lS(B)
for any closed submodule A, and a complement B of A, in MR . Such annihila-
tor condition has a direct connection with the CS-condition for MR . We make
use of this to give a new characterization of CS-modules. Bimodules SMR for
which rMlS(A) = A (for every closed submodule A of MR) are also dealt with.
Such modules are called W∗-modules. We give the extra added annihilator condi-
tions to W∗-modules to be equivalent to the continuous (quasicontinuous) mod-
ules.
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1. Introduction. Let R and S be rings and let SMR be a bimodule. For any

X ≤M and T ≤ S, write lS(X) = {s ∈ S : sX = 0} and rM(T) = {m ∈M : Tm =
0}. Let λ : S → End(MR) be the canonical ring homomorphism. For each s ∈ S,

we identify λ(s) with s. A submodule A is essential in M (denoted by A≤e M)

if A∩B ≠ 0 for every nonzero submodule B of M . A submodule A is closed

in M if it has no proper essential extensions in M . A ≤⊕ M signifies that A
is a direct summand of M (or simply a summand). A module M is called a

CS-module if every closed submodule of M is a summand. The module M is

continuous if it is a CS-module and satisfies condition (C2): if A � B ≤M with

A≤⊕ M , then B ≤⊕ M . A generalization of condition (C2) is (GC2) (see [4]): ifA is

a submodule ofM withA�M , thenA≤⊕ M . The moduleM is quasicontinuous

if it is a CS-module and satisfies condition (C3): if A,B ≤⊕ M with A∩B = 0,

then A⊕B ≤⊕ M . It is known that M is quasicontinuous if and only if M =
A⊕B whenever A and B are complements of each other in M (see [3, Theorem

2.8]).

Camillo et al. [1] have dealt with Ikeda-Nakayama rings that are related to

continuous and quasicontinuous rings.

For a bimodule SMR , Wisbauer et al. [4] have studied the annihilator con-

dition lS(A∩B) = lS(A)+ lS(B) for any submodules A and B of MR , and the

condition S = lS(A)+lS(B) for any submodules A and B of MR with A∩B = 0.

Consequently, they obtained new characterizations of quasicontinuous mod-

ules. We adapt their ideas here to study a variation of the above annihilator

condition which is connected to CS-modules, and obtain a new characterization

of CS-modules in Section 2.
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In Section 3, we study the bimodules SMR which satisfy the following con-

dition:

S = lS(A)+lS(B) (1.1)

for any two relative complements A and B in MR . Such modules are clearly

quasicontinuous modules, while there are quasicontinuous modules which do

not satisfy condition (1.1). For example, consider R as a commutative integral

domain with field of quotients Q and let M = Q⊕Q. In Lemma 3.2, we give

a necessary and sufficient condition for quasicontinuous modules to satisfy

condition (1.1). In the case of S = End(MR), every quasicontinuous module

must have condition (1.1). As a generalization of this condition, we introduce

the concept of W∗-modules (bimodules SMR for which A = rMlS(A) for ev-

ery closed submodule A of MR). It is clear that any bimodule with condition

(1.1) is a W∗-module, while in general the converse is not true. Proposition 3.8

indicates when a W∗-module satisfies condition (1.1).

In Section 4, we discuss the equivalence between W∗-modules and contin-

uous (quasicontinuous) modules over an arbitrary ring S. Then we draw the

consequences when S is the endomorphism ring of MR .

2. CS-modules and annihilator conditions. The proofs of the lemmas and

propositions, presented in this section, are adaptations of the arguments in

[4].

Lemma 2.1. Let SMR be a bimodule. If for every closed submodule A of MR

there exists a complement B of A in MR such that S = lS(A)+ lS(B), then MR is

a CS-module.

Proof. Let A be a closed submodule of MR . Then by assumption there

exists a complement B of A in MR such that S = lS(A)+ lS(B). Write 1S =
u+v , where u ∈ lS(A) and v ∈ lS(B). It follows that a = va for all a ∈ A,

b =ub for all b ∈ B, and vB =uA= 0. Thus B ⊆ rM(v)⊆ rM(v2) and rM(v2)∩
A = 0. Since B is a complement of A in MR , we have B = rM(v) = rM(v2).
Similarly, A = rM(u) = rM(u2). Now we show that (vu)M = 0. Let vum =
a+b, where m ∈ M , a ∈ A, and b ∈ B. Noting that vu = uv , we have that

(v2u2)m= (vu)(a+b)= 0. Hence u2m∈ rM(v2)= rM(v), and this gives that

u2vm = vu2m = 0. Then vm ∈ rM(u2) = rM(u); and thus vum = uvm = 0.

So (vu)M∩ (A+B) = 0. Since A+B is essential in MR , (vu)M = 0. So uM ⊆
rM(v) = B and vM ⊆ rM(u) = A and hence M = vM +uM = A+B = A⊕B.

Therefore A is a summand of MR .

Remark 2.2. The converse of Lemma 2.1 is not true. For example, there

are torsion-free CS-modules over commutative integral domains, which do not

satisfy the given condition in Lemma 2.1.

The next lemma follows from [4, Lemma 3].
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Lemma 2.3. Let SMR be a bimodule, where SM is faithful, and letMR =A⊕B.

If the projection f of M onto A along B is given by f(m)= sm for some s ∈ S,

and all m∈M , then S = lS(A)+lS(B).
For any submodules A and B of MR and any t ∈ S, define αt : A+B → M ,

a+b→ ta (see [4]).

Proposition 2.4. Let SMR be a bimodule such that SM is faithful. The fol-

lowing are equivalent:

(1) MR is CS and for any f 2 = f ∈ End(MR), there exists s ∈ S such that

f(m)= sm, for all m∈MR ;

(2) for every closed submodule A of MR , there exists a complement B of A in

MR such that S = lS(A)+lS(B);
(3) for every closed submodule A of MR , there exists a complement B of A in

MR such that S = lS(A)⊕lS(B);
(4) for every closed submodule A of MR , there exists a complement B of A in

MR such that for every t ∈ S, the diagram

0 A+B M

M

αt (2.1)

can be extended by λ(s), for some s ∈ S.

Proof. (1)⇒(2). Let A be a closed submodule of MR . Since MR is a CS-

module, there exists f 2 = f ∈ End(MR) such that A = fM . By (1), there exists

s ∈ S such that f(m)= sm, for all m ∈MR . Hence (s2−s)M = (f 2−f)M = 0.

Since SM is faithful, it follows that s is an idempotent in S. Now we have

lS(A)= lS(fM)= lS(sM)= lS(s)= S(1−S). (2.2)

Similarly, lS(B)= SS , where B =: (1−f)M . Thus S = lS(A)+lS(B).
(2)⇒(1). It is clear by Lemma 2.1 that MR is CS. Now let f 2 = f ∈ End(MR),

and denote A = f(M). By (2), there exists a complement B of A in MR such

that S = lS(A)+ lS(B). The argument of the proof of Lemma 2.1 shows that

M =A⊕B. Let π be the projection of M onto A along B. Then

lS(A)= lS(πM)= {s ∈ S : sπ = 0} (2.3)

(by considering s the homomorphism given by left multiplication by s) and

lS(B)= lS
(
(1−π)M)= {s ∈ S : s(1−π)= 0

}
. (2.4)
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Let 1 = s′ +s, where s′ ∈ lS(A) and s ∈ lS(B). Thus s′π = 0 and s(1−π) = 0.

It follows that 0 = s(1−π) = (1− s′)(1−π) = 1−π − s′. Therefore f(m) =
π(m)= sm for all m∈M .

(2)⇒(3). From the argument in the proof of Lemma 2.1, we have M = A⊕B.

Since SM is faithful, we have 0 = lS(M) = lS(A+B) = lS(A)�lS(B) and hence

S = lS(A)⊕lS(B).
(3)⇒(4). LetA be a closed submodule ofMR . By (3), there exists a complement

B of A such that S = lS(A)⊕ lS(B). Write t = u+ v , where u ∈ lS(A) and

v ∈ lS(B). Then αt(a+b)= ta= (u+v)a= va= v(a+b)= λ(v)(a+b).
(4)⇒(2). LetA be a closed submodule ofMR . By (4), there exists a complement

B of A in MR satisfying diagram (2.1). By (4), there exists s ∈ S such that λ(s)
extends αt . Thus, for all a ∈ A and b ∈ B, ta = αt(a+ b) = λ(s)(a+ b) =
s(a+ b). It follows that (1− s)a+ (−s)b = 0, for all a ∈ A and b ∈ B. So

1− s ∈ lS(A) and −s ∈ lS(B) and hence 1 = (1− s)− (−s) ∈ lS(A)+ lS(B).
Therefore S = lS(A)+lS(B).

Corollary 2.5. The following are equivalent for a bimodule SMR with S =
End(MR):

(1) MR is a CS-module;

(2) for every closed submodule A of MR , there exists a complement B of A in

MR such that S = lS(A)+lS(B);
(3) for every closed submodule A of MR , there exists a complement B of A in

MR such that S = lS(A)⊕lS(B);
(4) for every closed submodule A of MR , there exists a complement B of A

in MR such that for every t ∈ S, diagram (2.1) can be extended by some

g :M →M .

Proposition 2.6. Let S be the center of End(MR). The following are equiv-

alent:

(1) for every closed submodule A of MR , there exists a complement B of A in

MR such that S = lS(A) +lS(B);
(2) MR is CS and every idempotent of End(MR) is central;

(3) MR is CS and every closed submodule of MR is fully invariant.

Proof. (1)�(2) by Proposition 2.4.

(2)⇒(3). Let A be a closed submodule of M . By CS, A is a direct summand of

MR . Then A = f(M) for some f 2 = f ∈ End(MR). For any g ∈ EndR(M), since

f is central by (2), g(A)= g(f(M))= f(g(M))⊆ f(M)=A. This shows that A
is a fully invariant submodule of M .

(3)⇒(2). Let f ,g ∈ EndR(M)with f 2 = f . Therefore f(M) is a closed submod-

ule of MR . By (3), g(f(M))⊆ f(M) and g((1−f)(M))⊆ (1−f)(M). It follows

that fgf = gf and (1− f)g(1− f) = g(1− f). Thus, g − gf = g(1− f) =
(1−f)g(1−f) = g−gf −fg+fgf = g−gf −fg+gf = g−fg. This shows

that fg = gf .
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3. Condition (1.1) and its generalizations. The next lemma is clear.

Lemma 3.1. The following are equivalent for a bimodule SMR :

(1) S = lS(A)+lS(B) for any two relative complements A and B of MR ;

(2) for any submodules A and B of MR with A∩B = 0, S = lS(A)+lS(B).

We say that a bimodule SMR has condition (1.1) if it satisfies one of the

equivalent conditions of Lemma 3.1.

The next lemma follows from [4, Lemma 3].

Lemma 3.2. Let SMR be a bimodule such that SM is faithful. Then the follow-

ing are equivalent:

(1) M has condition (1.1);

(2) M is quasicontinuous and every idempotent in End(MR) is a left multipli-

cation by an element of S.

Remark 3.3 [4, Theorem 8]. In the case of S = End(MR), it is clear from

Lemma 3.2 that an R-module M is quasicontinuous if and only if M has condi-

tion (1.1).

Proposition 3.4. Let SMR be a bimodule which satisfies condition (1.1).

Then A= rMlS(A) for all closed submodules A of MR .

Proof. Let A be a closed submodule of MR and B a submodule of rMlS(A)
such that A∩B = 0. By Zorn’s lemma, there exists a complement C of A in

MR with B ⊆ C . By condition (1.1), we have S = lS(A)+ lS(C) ⊆ lS(A)+ lS(B),
so S = lS(A)+ lS(B). Since lS(A)= lSrMlS(A)≤ lS(B), it follows that S = lS(B)
and hence B = 0. This shows that A≤e rMlS(A). Since A is a closed submodule

of MR , we have A= rMlS(A).
A bimodule SMR is called a W∗-module if A= rMlS(A) for every closed sub-

module A of MR . It is clear by Proposition 3.4 that every bimodule SMR with

condition (1.1) is aW∗-module. But there are bimodules which areW∗-modules

and do not satisfy condition (1.1). For example, let S = R =
[
F F
0 F

]
, where F is

any field and let M = RRR . It is clear that M is W∗-module. But MR is not qua-

sicontinuous, and hence M does not satisfy condition (1.1).

Lemma 3.5. The following are equivalent for a bimodule SMR :

(1) A≤e rMlS(A) for all submodules A of MR ;

(2) SMR is a W∗-module.

Proof. (1)⇒(2). This implication is obvious.

(2)⇒(1). Let A be a submodule ofMR and C a maximal essential extension of

A in MR . We have by (2) that A ≤e C = rMlS(C). Since rMlS(A) ≤ rMlS(C), we

have A≤e rMlS(A).
Proposition 3.6. If SMR is a W∗-module, then rM(T) = 0, or rM(T) is uni-

form for every maximal left ideal T of S.
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Proof. Let T be a maximal left ideal of S. Since T ⊆ lSrM(T), we have either

lSrM(T) = T or lSrM(T) = S. If lSrM(T) = S, then rM(T) = 0. If lSrM(T) = T ,

let N be a nonzero submodule of rM(T). Then T = lSrM(T) ⊆ lS(N) ⊆ S, and

the maximality of T yields T = lS(N). It follows that rM(T) = rMlS(N). Since

M is W∗-module, we have by Lemma 3.5 that N ≤e rM(T). Therefore rM(T) is

uniform.

Corollary 3.7. Let SMR be aW∗-module, where every maximal left ideal of

S is a left annihilator. Then rM(T) is uniform for every maximal left ideal T of S.

Proof. Let T be a maximal left ideal of S. From Proposition 3.6, it is enough

to show that rM(T)≠ 0. Let rM(T)= 0. By assumption, T = lSrM(T)= lS(0)= S,

which contradicts the maximality of T .

Proposition 3.8. The following are equivalent for a bimodule SMR :

(1) SMR is a W∗-module and lS(A)+ lS(B) is a left annihilator for any two

relative complements A and B in MR ;

(2) SMR has condition (1.1).

Proof. (1)⇒(2). LetA and B be two relative complements inMR . Then by (1),

S = lS(0) = lS(A∩B) = lS(rMlS(A)∩rMlS(B)) = lSrM(lS(A)+ lS(B)) = lS(A)+
lS(B). Therefore M has condition (1.1).

(2)⇒(1). This implication is obvious.

4. The relation between W∗-modules and (quasi-) continuous modules.

The following is an immediate consequence of Proposition 3.8.

Proposition 4.1. Let SMR be a bimodule with S = End(MR). Then the fol-

lowing are equivalent:

(1) SMR is a W∗-module and lS(A)+ lS(B) is a left annihilator for any two

relative complements A and B of MR ;

(2) MR is quasicontinuous.

Proposition 4.2. Let SMR be a bimodule, where SM is faithful. Then the

following are equivalent:

(1) SMR is a W∗-module, lS(A)+lS(B) is an annihilator for any two relative

complements A and B of MR , and MR has GC2;

(2) MR is a continuous module and every idempotent in End(MR) is a left

multiplication by an element of S.

Proof. (1)⇒(2). We have by Proposition 3.8 that MR has condition (1.1).

Therefore, by Lemma 3.2, MR is a quasicontinuous module. Let s ∈ End(MR)
be a monomorphism, with sM ≤e M . By GC2 it follows that sM =M . Then by [3,

Lemma 3.14], MR is a continuous module. The rest of the proof of (2) follows

from Lemma 3.2.

(2)⇒(1). This implication is obvious.
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Corollary 4.3. Let SMR be a bimodule with S = End(MR). Then the follow-

ing are equivalent:

(1) SMR is a W∗-module, lS(A)+lS(B) is an annihilator for any two relative

complements A and B of MR , and MR has GC2;

(2) MR is a continuous module.

In particular, if MR is of finite uniform dimension, then S is semiperfect.

Proof. It is clear that every monomorphism f ∈ End(MR) is an isomor-

phism (due to GC2 and M of finite uniform dimension). Hence, M satisfies the

assumptions in Camps and Dicks [2, Theorem 5], and so End(MR) is semilocal.

Therefore by using [3, Proposition 3.5 and Lemma 3.7], idempotents of S/J(S)
lift to idempotents of S, and thus S is semiperfect.

Lemma 4.4. Let SMR be a bimodule such that every finitely generated left

ideal of S is a left annihilator of a subset of MR , and every closed submodule of

MR is a right annihilator of a finite subset of S. Then M has condition (1.1).

Proof. Let A1 and A2 be complements of each other in MR . Then by as-

sumption, we have Ai = rM(Yi) for some finite subsets Yi of S. Again by as-

sumption, SYi = lS(Ki) for some subsets Ki in MR , where i = 1,2. Now S =
lS(A1∩A2)= lS(rM(Y1)∩rM(Y2))= lSrM(SY1+SY2)= SY1+SY2 (due to the as-

sumption and since SY1+SY2 is finitely generated). Hence S = lS(K1)+lS(K2)=
lSrMlS(K1)+ lSrMlS(K2)= lSrM(Y1)+ lSrM(Y2)= lS(A1)+ lS(A2). Therefore M
satisfies condition (1.1).

Lemma 4.5. Let SMR be a bimodule and let every idempotent in End(MR) be

a left multiplication by an element of S. If MR is a CS-module, then every closed

submodule of MR is a right annihilator of a finite subset of S.

Proof. Let A be a closed submodule of MR . Then by CS, there exists f 2 =
f ∈ End(MR) such that A = rM(1−f) = {m ∈ M : (1− s)m = 0} = rM(1− s),
where (1−s)∈ S.

The following corollary is an immediate consequence of Lemmas 4.4 and 4.5.

Corollary 4.6. Let SMR be a bimodule, where S = End(MR). Let every

finitely generated left ideal of S be a left annihilator of a subset of M . Then

the following are equivalent:

(1) every closed submodule of M is a right annihilator of a finite subset of S;

(2) M is a CS-module.

Theorem 4.7. Let SMR be a bimodule, where S = End(MR). Let every finitely

generated left ideal of S be a left annihilator of a subset ofM . Then the following

are equivalent:

(1) M is a CS-module;

(2) M is continuous.



3202 M. A. KAMAL AND A. M. MENSHAWY

Proof. By Lemmas 4.4 and 4.5, we have that M has condition (1.1) . By

Remark 3.3,M is quasicontinuous. To show thatM is continuous, by [3, Lemma

3.14], it is enough to show that every essential monomorphism s ∈ S is an

isomorphism. Let s ∈ S be a monomorphism, with sM ≤e M . By assumption,

SS = lS(X) for some subset X of M . It follows that X = 0 and hence SS = s.
Then s is a split monomorphism, and therefore sM =M .
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