CS-MODULES AND ANNIHILATOR CONDITIONS

MAHMOUD A. KAMAL and AMANY M. MENSHAWY

Received 4 June 2002

We study *S*-*R*-bimodules ${}_{S}M_{R}$ with the annihilator condition $S = l_{S}(A) + l_{S}(B)$ for any closed submodule *A*, and a complement *B* of *A*, in M_{R} . Such annihilator condition has a direct connection with the CS-condition for M_{R} . We make use of this to give a new characterization of CS-modules. Bimodules ${}_{S}M_{R}$ for which $r_{M}l_{S}(A) = A$ (for every closed submodule *A* of M_{R}) are also dealt with. Such modules are called *W**-modules. We give the extra added annihilator conditions to *W**-modules to be equivalent to the continuous (quasicontinuous) modules.

2000 Mathematics Subject Classification: 16D80.

1. Introduction. Let *R* and *S* be rings and let ${}_{S}M_{R}$ be a bimodule. For any $X \le M$ and $T \le S$, write $l_{S}(X) = \{s \in S : sX = 0\}$ and $r_{M}(T) = \{m \in M : Tm = 0\}$. Let $\lambda : S \to \text{End}(M_{R})$ be the canonical ring homomorphism. For each $s \in S$, we identify $\lambda(s)$ with *s*. A submodule *A* is essential in *M* (denoted by $A \le^{e} M$) if $A \cap B \neq 0$ for every nonzero submodule *B* of *M*. A submodule *A* is closed in *M* if it has no proper essential extensions in *M*. $A \le^{\oplus} M$ signifies that *A* is a direct summand of *M* (or simply a summand). A module *M* is called a CS-module if every closed submodule of *M* is a summand. The module *M* is continuous if it is a CS-module and satisfies condition (C₂): if $A \cong B \le M$ with $A \le^{\oplus} M$, then $B \le^{\oplus} M$. A generalization of condition (C₂) is (GC₂) (see [4]): if *A* is a submodule of *M* with $A \cong M$, then $A \le^{\oplus} M$. The module *M* is quasicontinuous if it is a CS-module and satisfies condition (C₃): if $A, B \le^{\oplus} M$ with $A \cap B = 0$, then $A \oplus B \le^{\oplus} M$. It is known that *M* is quasicontinuous if and only if $M = A \oplus B$ whenever *A* and *B* are complements of each other in *M* (see [3, Theorem 2.8]).

Camillo et al. [1] have dealt with Ikeda-Nakayama rings that are related to continuous and quasicontinuous rings.

For a bimodule ${}_{S}M_{R}$, Wisbauer et al. [4] have studied the annihilator condition $l_{S}(A \cap B) = l_{S}(A) + l_{S}(B)$ for any submodules A and B of M_{R} , and the condition $S = l_{S}(A) + l_{S}(B)$ for any submodules A and B of M_{R} with $A \cap B = 0$. Consequently, they obtained new characterizations of quasicontinuous modules. We adapt their ideas here to study a variation of the above annihilator condition which is connected to CS-modules, and obtain a new characterization of CS-modules in Section 2.

In Section 3, we study the bimodules ${}_{S}M_{R}$ which satisfy the following condition:

$$S = l_S(A) + l_S(B)$$
(1.1)

for any two relative complements A and B in M_R . Such modules are clearly quasicontinuous modules, while there are quasicontinuous modules which do not satisfy condition (1.1). For example, consider R as a commutative integral domain with field of quotients Q and let $M = Q \oplus Q$. In Lemma 3.2, we give a necessary and sufficient condition for quasicontinuous modules to satisfy condition (1.1). In the case of $S = \text{End}(M_R)$, every quasicontinuous module must have condition (1.1). As a generalization of this condition, we introduce the concept of W^* -modules (bimodules ${}_SM_R$ for which $A = r_M l_S(A)$ for every closed submodule A of M_R). It is clear that any bimodule with condition (1.1) is a W^* -module, while in general the converse is not true. Proposition 3.8 indicates when a W^* -module satisfies condition (1.1).

In Section 4, we discuss the equivalence between W^* -modules and continuous (quasicontinuous) modules over an arbitrary ring *S*. Then we draw the consequences when *S* is the endomorphism ring of M_R .

2. CS-modules and annihilator conditions. The proofs of the lemmas and propositions, presented in this section, are adaptations of the arguments in [4].

LEMMA 2.1. Let ${}_{S}M_{R}$ be a bimodule. If for every closed submodule A of M_{R} there exists a complement B of A in M_{R} such that $S = l_{S}(A) + l_{S}(B)$, then M_{R} is a CS-module.

PROOF. Let *A* be a closed submodule of M_R . Then by assumption there exists a complement *B* of *A* in M_R such that $S = l_S(A) + l_S(B)$. Write $1_S = u + v$, where $u \in l_S(A)$ and $v \in l_S(B)$. It follows that a = va for all $a \in A$, b = ub for all $b \in B$, and vB = uA = 0. Thus $B \subseteq r_M(v) \subseteq r_M(v^2)$ and $r_M(v^2) \cap A = 0$. Since *B* is a complement of *A* in M_R , we have $B = r_M(v) = r_M(v^2)$. Similarly, $A = r_M(u) = r_M(u^2)$. Now we show that (vu)M = 0. Let vum = a + b, where $m \in M$, $a \in A$, and $b \in B$. Noting that vu = uv, we have that $(v^2u^2)m = (vu)(a+b) = 0$. Hence $u^2m \in r_M(v^2) = r_M(v)$, and this gives that $u^2vm = vu^2m = 0$. Then $vm \in r_M(u^2) = r_M(u)$; and thus vum = uvm = 0. So $(vu)M \cap (A+B) = 0$. Since A + B is essential in M_R , (vu)M = 0. So $uM \subseteq r_M(v) = B$ and $vM \subseteq r_M(u) = A$ and hence $M = vM + uM = A + B = A \oplus B$. Therefore *A* is a summand of M_R .

REMARK 2.2. The converse of Lemma 2.1 is not true. For example, there are torsion-free CS-modules over commutative integral domains, which do not satisfy the given condition in Lemma 2.1.

The next lemma follows from [4, Lemma 3].

3196

LEMMA 2.3. Let $_{S}M_{R}$ be a bimodule, where $_{S}M$ is faithful, and let $M_{R} = A \oplus B$. If the projection f of M onto A along B is given by f(m) = sm for some $s \in S$, and all $m \in M$, then $S = l_{S}(A) + l_{S}(B)$.

For any submodules *A* and *B* of M_R and any $t \in S$, define $\alpha_t : A + B \to M$, $a + b \to ta$ (see [4]).

PROPOSITION 2.4. Let ${}_{S}M_{R}$ be a bimodule such that ${}_{S}M$ is faithful. The following are equivalent:

- (1) M_R is CS and for any $f^2 = f \in \text{End}(M_R)$, there exists $s \in S$ such that f(m) = sm, for all $m \in M_R$;
- (2) for every closed submodule A of M_R , there exists a complement B of A in M_R such that $S = l_S(A) + l_S(B)$;
- (3) for every closed submodule A of M_R , there exists a complement B of A in M_R such that $S = l_S(A) \oplus l_S(B)$;
- (4) for every closed submodule A of M_R , there exists a complement B of A in M_R such that for every $t \in S$, the diagram

can be extended by $\lambda(s)$, for some $s \in S$.

PROOF. (1) \Rightarrow (2). Let *A* be a closed submodule of M_R . Since M_R is a CSmodule, there exists $f^2 = f \in \text{End}(M_R)$ such that A = fM. By (1), there exists $s \in S$ such that f(m) = sm, for all $m \in M_R$. Hence $(s^2 - s)M = (f^2 - f)M = 0$. Since $_SM$ is faithful, it follows that *s* is an idempotent in *S*. Now we have

$$l_{S}(A) = l_{S}(fM) = l_{S}(sM) = l_{S}(s) = S(1-S).$$
(2.2)

Similarly, $l_S(B) = S_S$, where B =: (1 - f)M. Thus $S = l_S(A) + l_S(B)$.

 $(2)\Rightarrow(1)$. It is clear by Lemma 2.1 that M_R is CS. Now let $f^2 = f \in \text{End}(M_R)$, and denote A = f(M). By (2), there exists a complement *B* of *A* in M_R such that $S = l_S(A) + l_S(B)$. The argument of the proof of Lemma 2.1 shows that $M = A \oplus B$. Let π be the projection of *M* onto *A* along *B*. Then

$$l_S(A) = l_S(\pi M) = \{ s \in S : s\pi = 0 \}$$
(2.3)

(by considering s the homomorphism given by left multiplication by s) and

$$l_{S}(B) = l_{S}((1-\pi)M) = \{s \in S : s(1-\pi) = 0\}.$$
(2.4)

Let 1 = s' + s, where $s' \in l_S(A)$ and $s \in l_S(B)$. Thus $s'\pi = 0$ and $s(1-\pi) = 0$. It follows that $0 = s(1-\pi) = (1-s')(1-\pi) = 1-\pi-s'$. Therefore $f(m) = \pi(m) = sm$ for all $m \in M$.

(2)⇒(3). From the argument in the proof of Lemma 2.1, we have $M = A \oplus B$. Since *sM* is faithful, we have $0 = l_S(M) = l_S(A + B) = l_S(A)\hbar l_S(B)$ and hence $S = l_S(A) \oplus l_S(B)$.

 $(3) \Rightarrow (4)$. Let *A* be a closed submodule of M_R . By (3), there exists a complement *B* of *A* such that $S = l_S(A) \oplus l_S(B)$. Write t = u + v, where $u \in l_S(A)$ and $v \in l_S(B)$. Then $\alpha_t(a+b) = ta = (u+v)a = va = v(a+b) = \lambda(v)(a+b)$.

 $(4)\Rightarrow(2)$. Let *A* be a closed submodule of M_R . By (4), there exists a complement *B* of *A* in M_R satisfying diagram (2.1). By (4), there exists $s \in S$ such that $\lambda(s)$ extends α_t . Thus, for all $a \in A$ and $b \in B$, $ta = \alpha_t(a + b) = \lambda(s)(a + b) = s(a + b)$. It follows that (1 - s)a + (-s)b = 0, for all $a \in A$ and $b \in B$. So $1 - s \in l_S(A)$ and $-s \in l_S(B)$ and hence $1 = (1 - s) - (-s) \in l_S(A) + l_S(B)$.

COROLLARY 2.5. The following are equivalent for a bimodule ${}_{S}M_{R}$ with $S = \text{End}(M_{R})$:

- (1) M_R is a CS-module;
- (2) for every closed submodule A of M_R, there exists a complement B of A in M_R such that S = l_S(A) + l_S(B);
- (3) for every closed submodule A of M_R , there exists a complement B of A in M_R such that $S = l_S(A) \oplus l_S(B)$;
- (4) for every closed submodule A of M_R, there exists a complement B of A in M_R such that for every t ∈ S, diagram (2.1) can be extended by some g : M → M.

PROPOSITION 2.6. Let *S* be the center of $End(M_R)$. The following are equivalent:

- (1) for every closed submodule A of M_R , there exists a complement B of A in M_R such that $S = l_S(A) + l_S(B)$;
- (2) M_R is CS and every idempotent of End (M_R) is central;
- (3) M_R is CS and every closed submodule of M_R is fully invariant.

PROOF. (1) \Leftrightarrow (2) by Proposition 2.4.

 $(2)\Rightarrow(3)$. Let *A* be a closed submodule of *M*. By CS, *A* is a direct summand of M_R . Then A = f(M) for some $f^2 = f \in \text{End}(M_R)$. For any $g \in \text{End}_R(M)$, since *f* is central by (2), $g(A) = g(f(M)) = f(g(M)) \subseteq f(M) = A$. This shows that *A* is a fully invariant submodule of *M*.

 $(3)\Rightarrow(2)$. Let $f,g \in \operatorname{End}_R(M)$ with $f^2 = f$. Therefore f(M) is a closed submodule of M_R . By (3), $g(f(M)) \subseteq f(M)$ and $g((1-f)(M)) \subseteq (1-f)(M)$. It follows that fgf = gf and (1-f)g(1-f) = g(1-f). Thus, g - gf = g(1-f) = (1-f)g(1-f) = g - gf - fg + fgf = g - gf - fg + gf = g - fg. This shows that fg = gf.

3. Condition (1.1) and its generalizations. The next lemma is clear.

LEMMA 3.1. The following are equivalent for a bimodule $_{S}M_{R}$:

- (1) $S = l_S(A) + l_S(B)$ for any two relative complements A and B of M_R ;
- (2) for any submodules A and B of M_R with $A \cap B = 0$, $S = l_S(A) + l_S(B)$.

We say that a bimodule ${}_{S}M_{R}$ has condition (1.1) if it satisfies one of the equivalent conditions of Lemma 3.1.

The next lemma follows from [4, Lemma 3].

LEMMA 3.2. Let ${}_{S}M_{R}$ be a bimodule such that ${}_{S}M$ is faithful. Then the following are equivalent:

- (1) *M* has condition (1.1);
- (2) *M* is quasicontinuous and every idempotent in $End(M_R)$ is a left multiplication by an element of *S*.

REMARK 3.3 [4, Theorem 8]. In the case of $S = \text{End}(M_R)$, it is clear from Lemma 3.2 that an R-module *M* is quasicontinuous if and only if *M* has condition (1.1).

PROPOSITION 3.4. Let $_{S}M_{R}$ be a bimodule which satisfies condition (1.1). Then $A = r_{M}l_{S}(A)$ for all closed submodules A of M_{R} .

PROOF. Let *A* be a closed submodule of M_R and *B* a submodule of $r_M l_S(A)$ such that $A \cap B = 0$. By Zorn's lemma, there exists a complement *C* of *A* in M_R with $B \subseteq C$. By condition (1.1), we have $S = l_S(A) + l_S(C) \subseteq l_S(A) + l_S(B)$, so $S = l_S(A) + l_S(B)$. Since $l_S(A) = l_S r_M l_S(A) \leq l_S(B)$, it follows that $S = l_S(B)$ and hence B = 0. This shows that $A \leq^e r_M l_S(A)$. Since *A* is a closed submodule of M_R , we have $A = r_M l_S(A)$.

A bimodule ${}_{S}M_{R}$ is called a W^* -module if $A = r_{M}l_{S}(A)$ for every closed submodule A of M_{R} . It is clear by Proposition 3.4 that every bimodule ${}_{S}M_{R}$ with condition (1.1) is a W^* -module. But there are bimodules which are W^* -modules and do not satisfy condition (1.1). For example, let $S = R = \begin{bmatrix} F & F \\ 0 & F \end{bmatrix}$, where F is any field and let $M = {}_{R}R_{R}$. It is clear that M is W^* -module. But M_{R} is not quasicontinuous, and hence M does not satisfy condition (1.1).

LEMMA 3.5. The following are equivalent for a bimodule ${}_{S}M_{R}$: (1) $A \leq^{e} r_{M}l_{S}(A)$ for all submodules A of M_{R} ; (2) ${}_{S}M_{R}$ is a W^{*} -module.

PROOF. (1) \Rightarrow (2). This implication is obvious.

 $(2)\Rightarrow(1)$. Let *A* be a submodule of M_R and *C* a maximal essential extension of *A* in M_R . We have by (2) that $A \leq^e C = r_M l_S(C)$. Since $r_M l_S(A) \leq r_M l_S(C)$, we have $A \leq^e r_M l_S(A)$.

PROPOSITION 3.6. If $_{S}M_{R}$ is a W^{*} -module, then $r_{M}(T) = 0$, or $r_{M}(T)$ is uniform for every maximal left ideal T of S.

PROOF. Let *T* be a maximal left ideal of *S*. Since $T \subseteq l_S r_M(T)$, we have either $l_S r_M(T) = T$ or $l_S r_M(T) = S$. If $l_S r_M(T) = S$, then $r_M(T) = 0$. If $l_S r_M(T) = T$, let *N* be a nonzero submodule of $r_M(T)$. Then $T = l_S r_M(T) \subseteq l_S(N) \subseteq S$, and the maximality of *T* yields $T = l_S(N)$. It follows that $r_M(T) = r_M l_S(N)$. Since *M* is *W**-module, we have by Lemma 3.5 that $N \leq^e r_M(T)$. Therefore $r_M(T)$ is uniform.

COROLLARY 3.7. Let ${}_{S}M_{R}$ be a W^{*} -module, where every maximal left ideal of *S* is a left annihilator. Then $r_{M}(T)$ is uniform for every maximal left ideal *T* of *S*.

PROOF. Let *T* be a maximal left ideal of *S*. From Proposition 3.6, it is enough to show that $r_M(T) \neq 0$. Let $r_M(T) = 0$. By assumption, $T = l_S r_M(T) = l_S(0) = S$, which contradicts the maximality of *T*.

PROPOSITION 3.8. The following are equivalent for a bimodule ${}_{S}M_{R}$:

- (1) ${}_{S}M_{R}$ is a W^{*} -module and $l_{S}(A) + l_{S}(B)$ is a left annihilator for any two relative complements A and B in M_{R} ;
- (2) $_{S}M_{R}$ has condition (1.1).

PROOF. (1) \Rightarrow (2). Let *A* and *B* be two relative complements in *M_R*. Then by (1), $S = l_S(0) = l_S(A \cap B) = l_S(r_M l_S(A) \cap r_M l_S(B)) = l_S r_M(l_S(A) + l_S(B)) = l_S(A) + l_S(B)$. Therefore *M* has condition (1.1).

 $(2)\Rightarrow(1)$. This implication is obvious.

4. The relation between *W**-modules and (quasi-) continuous modules. The following is an immediate consequence of Proposition 3.8.

PROPOSITION 4.1. Let $_{S}M_{R}$ be a bimodule with $S = \text{End}(M_{R})$. Then the following are equivalent:

- (1) ${}_{S}M_{R}$ is a W^{*} -module and $l_{S}(A) + l_{S}(B)$ is a left annihilator for any two relative complements A and B of M_{R} ;
- (2) M_R is quasicontinuous.

PROPOSITION 4.2. Let ${}_{S}M_{R}$ be a bimodule, where ${}_{S}M$ is faithful. Then the following are equivalent:

- (1) ${}_{S}M_{R}$ is a W^{*} -module, $l_{S}(A) + l_{S}(B)$ is an annihilator for any two relative complements A and B of M_{R} , and M_{R} has GC_{2} ;
- (2) M_R is a continuous module and every idempotent in $End(M_R)$ is a left multiplication by an element of *S*.

PROOF. (1) \Rightarrow (2). We have by Proposition 3.8 that M_R has condition (1.1). Therefore, by Lemma 3.2, M_R is a quasicontinuous module. Let $s \in \text{End}(M_R)$ be a monomorphism, with $sM \leq^e M$. By GC₂ it follows that sM = M. Then by [3, Lemma 3.14], M_R is a continuous module. The rest of the proof of (2) follows from Lemma 3.2.

 $(2)\Rightarrow(1)$. This implication is obvious.

COROLLARY 4.3. Let $_{S}M_{R}$ be a bimodule with $S = \text{End}(M_{R})$. Then the following are equivalent:

- (1) ${}_{S}M_{R}$ is a W^{*} -module, $l_{S}(A) + l_{S}(B)$ is an annihilator for any two relative complements A and B of M_{R} , and M_{R} has GC_{2} ;
- (2) M_R is a continuous module.

In particular, if M_R is of finite uniform dimension, then S is semiperfect.

PROOF. It is clear that every monomorphism $f \in \text{End}(M_R)$ is an isomorphism (due to GC_2 and M of finite uniform dimension). Hence, M satisfies the assumptions in Camps and Dicks [2, Theorem 5], and so $\text{End}(M_R)$ is semilocal. Therefore by using [3, Proposition 3.5 and Lemma 3.7], idempotents of S/J(S) lift to idempotents of S, and thus S is semiperfect.

LEMMA 4.4. Let ${}_{S}M_{R}$ be a bimodule such that every finitely generated left ideal of *S* is a left annihilator of a subset of M_{R} , and every closed submodule of M_{R} is a right annihilator of a finite subset of *S*. Then *M* has condition (1.1).

PROOF. Let A_1 and A_2 be complements of each other in M_R . Then by assumption, we have $A_i = r_M(Y_i)$ for some finite subsets Y_i of S. Again by assumption, $SY_i = l_S(K_i)$ for some subsets K_i in M_R , where i = 1, 2. Now $S = l_S(A_1 \cap A_2) = l_S(r_M(Y_1) \cap r_M(Y_2)) = l_Sr_M(SY_1 + SY_2) = SY_1 + SY_2$ (due to the assumption and since $SY_1 + SY_2$ is finitely generated). Hence $S = l_S(K_1) + l_S(K_2) = l_Sr_M l_S(K_1) + l_Sr_M l_S(K_2) = l_Sr_M(Y_1) + l_Sr_M(Y_2) = l_S(A_1) + l_S(A_2)$. Therefore M satisfies condition (1.1).

LEMMA 4.5. Let $_{S}M_{R}$ be a bimodule and let every idempotent in End (M_{R}) be a left multiplication by an element of *S*. If M_{R} is a *CS*-module, then every closed submodule of M_{R} is a right annihilator of a finite subset of *S*.

PROOF. Let *A* be a closed submodule of M_R . Then by CS, there exists $f^2 = f \in \text{End}(M_R)$ such that $A = r_M(1 - f) = \{m \in M : (1 - s)m = 0\} = r_M(1 - s)$, where $(1 - s) \in S$.

The following corollary is an immediate consequence of Lemmas 4.4 and 4.5.

COROLLARY 4.6. Let ${}_{S}M_{R}$ be a bimodule, where $S = \text{End}(M_{R})$. Let every finitely generated left ideal of *S* be a left annihilator of a subset of *M*. Then the following are equivalent:

(1) every closed submodule of *M* is a right annihilator of a finite subset of *S*;

(2) M is a CS-module.

THEOREM 4.7. Let $_{S}M_{R}$ be a bimodule, where $S = \text{End}(M_{R})$. Let every finitely generated left ideal of S be a left annihilator of a subset of M. Then the following are equivalent:

- (1) *M* is a *CS*-module;
- (2) M is continuous.

PROOF. By Lemmas 4.4 and 4.5, we have that *M* has condition (1.1). By Remark 3.3, *M* is quasicontinuous. To show that *M* is continuous, by [3, Lemma 3.14], it is enough to show that every essential monomorphism $s \in S$ is an isomorphism. Let $s \in S$ be a monomorphism, with $sM \leq^e M$. By assumption, $S_S = l_S(X)$ for some subset *X* of *M*. It follows that X = 0 and hence $S_S = s$. Then *s* is a split monomorphism, and therefore sM = M.

REFERENCES

- V. Camillo, W. K. Nicholson, and M. F. Yousif, *Ikeda-Nakayama rings*, J. Algebra 226 (2000), 1001–1010.
- [2] R. Camps and W. Dicks, On semi-local rings, Israel J. Math. 81 (1993), 203-211.
- [3] S. H. Mohamed and B. J. Muller, *Continuous and Discrete Modules*, Cambridge University Press, Cambridge, 1990.
- [4] R. Wisbauer, M. F. Yousif, and Y. Zhou, *Ikeda-Nakayama modules*, Beiträge Algebra Geom. 43 (2002), no. 1, 111–119.

Mahmoud A. Kamal: Department of Mathematics, Faculty of Education, Ain Shams University, Roxy, Cairo, Egypt

E-mail address: mahmoudkama1333@hotmail.com

Amany M. Menshawy: Department of Mathematics, Faculty of Education, Ain Shams University, Roxy, Cairo, Egypt