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We study the sets {gx−gy(modp) : 1≤ x, y ≤N} and {xy : 1≤ x, y ≤N} where
p is a large prime number, g is a primitive root, and p2/3 <N <p.
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1. Introduction. Let p be a large prime number, g a primitive root (modp),
and N a given positive integer, N <p. In a series of papers, the distribution of

powers gn(modp) has been investigated by [1, 2, 4, 5]. Vâjâitu and Zaharescu

[5] considered the question of A. Odlyzko concerning the set of differences

A := {gx−gy(modp) : 1≤ x, y ≤N}. (1.1)

As it was indicated in [5], A. Odlyzko asks for which values of N the set A
contains all residue classes (modp). The conjecture is that one can take N to

be as small as p1/2+ε, for any positive ε and p > c with some c = c(ε). From

the result of Rudnick and Zaharescu [4] it follows that in Odlyzko’s problem

one can take N = c0p3/4 logp for some absolute constant c0.

One of the main results of [5] is that for the exceptional set of Odlyzko’s

problem we have

#
{
h(modp) : h ∉A

}� p3 logp
N3

. (1.2)

It then follows that for N > p2/3+ε almost all the residues (modp) belong

to A.

Denote

B = {xy(modp) : 1≤ x, y ≤N}. (1.3)

Vâjâitu and Zaharescu [5] put another problem similar to that of Odlyzko: for

which values of N can we be sure that the set B contains all residue classes

(modp)? They conjectured that N can be taken to be as small as p1/2+ε and
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observed that one can take N = c1p3/4 logp. This problem is also related to

the pair correlation problem for sequences of the form αn2(mod1). For this

account, see Rudnick et al. [3].

In this paper, using an elementary approach we slightly improve by a factor

of logp estimate (1.2) and the estimate for N in Odlyzko’s problem and obtain

estimate (1.2) with the set B instead of A, see Theorems 1.1, 1.2, and 1.3.

Theorem 1.1. For any prime number p, any primitive root g(modp), and

N = 10p3/4, the set A contains the complete residue system (modp).

Theorem 1.2. For any prime number p, any primitive root g(modp), and

any positive integer N <p,

#
{
h(modp) : h ∉A

}� p3

N3
. (1.4)

Theorem 1.3. For any prime number p and any positive integer N <p,

#
{
h(modp) : h ∉ B

}� p3 logp
N3

. (1.5)

We require the following lemma (see [6, Exercise 14, page 92] and the so-

lution in [6, page 142]) which will be used in the proof of Theorems 1.1 and

1.2.

Lemma 1.4. Let m> 1, (a,m)= 1. Then

∣∣∣∣∣
m−1∑

x=0

m−1∑

y=0

ν(x)�(y)e2πi(axy/m)

∣∣∣∣∣≤
√
mXY, (1.6)

where ν(x), �(y) are complex numbers and

m−1∑

x=0

∣∣ν(x)
∣∣2 =X,

m−1∑

y=0

∣∣�(y)
∣∣2 = Y . (1.7)

2. Proof of Theorem 1.1. Note that 0∈A. Leth be any integer,h�0(modp),
N = 10p3/4, and denote N1 = [N/4]. Our aim is to prove that J > 0, where J is

the number of solutions in integers x, y , z, and t of the congruence equation

gx+z−gy−hgt ≡ 0(modp) (2.1)

subject to the condition

N1+1≤ x,y,z ≤ 2N1, 1≤ t ≤N1. (2.2)

In order to prove it we write J in terms of rational trigonometric sums:

pJ =
p−1∑

a=0

2N1∑

x=N1+1

2N1∑

y=N1+1

2N1∑

z=N1+1

N1∑

t=1

e2πi(a(gx+z−gy−hgt)/p). (2.3)
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Picking up the term with a = 0 and estimating other terms by their absolute

values, we obtain

pJ ≥N4
1 −

p−1∑

a=1

∣∣∣∣∣∣

2N1∑

x=N1+1

2N1∑

z=N1+1

e2πi(agxgz/p)

∣∣∣∣∣∣

×
∣∣∣∣∣∣

2N1∑

y=N1+1

e2πi(agy/p)

∣∣∣∣∣∣

∣∣∣∣∣∣

N1∑

t=1

e2πi(ahgt/p)

∣∣∣∣∣∣.

(2.4)

We will apply Lemma 1.4 to the double inner sum. To do that, we define

ν(u)= �(u)= 1 if u≡ gx(modp) for some N1+1≤ x ≤ 2N1. For all other u,

we put ν(u)= �(u)= 0. Then Lemma 1.4 gives

∣∣∣∣∣∣

2N1∑

x=N1+1

2N1∑

z=N1+1

e2πi(agxgz/p)

∣∣∣∣∣∣≤
√
pN2

1 . (2.5)

Hence,

pJ ≥N4
1 −
√
pN2

1

p−1∑

a=0

∣∣∣∣∣∣

2N1∑

y=N1+1

e2πi(agy/p)

∣∣∣∣∣∣

∣∣∣∣∣∣

N1∑

t=1

e2πi(ahgt/p)

∣∣∣∣∣∣. (2.6)

For the sum over a, we apply Cauchy inequality. Since g is a primitive root,

then

p−1∑

a=0

∣∣∣∣∣∣

2N1∑

y=N1+1

e2πi(agy/p)

∣∣∣∣∣∣

2

= pN1,
p−1∑

a=0

∣∣∣∣∣∣

N1∑

t=1

e2πi(ahgt/p)

∣∣∣∣∣∣

2

= pN1. (2.7)

Therefore, for each integer h,

pJ >N4
1 −p3/2N2

1 (2.8)

and Theorem 1.1 follows in view of N1 = [N/4].

3. Proof of Theorem 1.2. Denote A= {h(modp) : h ∉A}, N1 = [N/2], and

let |A| denote the cardinality of A. Then

∑

h∈A

p−1∑

a=0

N1∑

x=1

N1∑

z=1

N∑

y=1

e2πi(a(gx+z−gy−h)/p) = 0. (3.1)

Picking up the term with a= 0, we obtain

N2
1N|A| ≤

p−1∑

a=1

∣∣∣∣∣∣

N1∑

x=1

N1∑

z=1

e2πi(agxgz/p)

∣∣∣∣∣∣

∣∣∣∣∣∣

N∑

y=1

e2πi(agy/p)

∣∣∣∣∣∣

∣∣∣∣∣∣
∑

h∈A
e2πi(ah/p)

∣∣∣∣∣∣. (3.2)
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We will apply Lemma 1.4 to the double inner sum in the same way as we did

in the proof of Theorem 1.1. We obtain
∣∣∣∣∣∣

N1∑

x=1

N1∑

z=1

e2πi(agxgz/p)

∣∣∣∣∣∣≤
√
pN2

1 . (3.3)

Hence,

N2
1N|A| ≤

√
pN2

1

p−1∑

a=0

∣∣∣∣∣∣

N∑

y=1

e2πi(agy/p)

∣∣∣∣∣∣

∣∣∣∣∣∣
∑

h∈A
e2πi(ah/p)

∣∣∣∣∣∣. (3.4)

In analogy with Section 2, we apply Cauchy inequality to the sum over a.

Since

p−1∑

a=0

∣∣∣∣∣∣

N∑

y=1

e2πi(agy/p)

∣∣∣∣∣∣

2

= pN,

p−1∑

a=0

∣∣∣∣∣∣
∑

h∈A
e2πi(ah/p)

∣∣∣∣∣∣

2

= p|A|,

(3.5)

then

N2
1N|A| ≤

√
pN2

1pNp|A|. (3.6)

Hence, from N1 = [N/2], we obtain

|A| ≤ 10p3

N3
. (3.7)

This proves Theorem 1.2.

4. Proof of Theorem 1.3. Using Gauss method of estimation of trigonomet-

ric sums, one can prove the validity of the following lemma.

Lemma 4.1. Let 1≤N ≤ p, (a,p)= 1. Then
∣∣∣∣∣∣

N∑

x=1

e2πi(ax2/p)

∣∣∣∣∣∣�
√
p logp. (4.1)

Indeed, if we denote by |S| the value of the left-hand side, then

|S|2 =
N∑

x=1

N∑

y=1

e2πi(a(y2−x2)/p) ≤N+2

∣∣∣∣∣
∑

1≤x<y≤N
e2πi(a(y2−x2)/p)

∣∣∣∣∣. (4.2)

Substituting y = x+t gives

|S|2 �N+
∣∣∣∣∣
N−1∑

x=1

N−x∑

t=1

e2πi(at2+2atx/p)

∣∣∣∣∣. (4.3)
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Changing the order of summation, we obtain

|S|2 �N+
N−1∑

t=1

∣∣∣∣∣∣

N−t∑

x=1

e2πi(2atx/p)

∣∣∣∣∣∣�N+
p−1∑

t=1

1∣∣sin(π2at/p)
∣∣ . (4.4)

When t runs through reduced residue system (modp) so does 2at. Hence,

|S|2 �N+
p−1∑

t=1

1∣∣sin(πt/p)
∣∣ �N+

(p−1)/2∑

t=1

1
t/p

� p logp. (4.5)

We now proceed to prove Theorem 1.3. Put N1 = [N/4] and denote by B1

the set

B1 =
{
x2−y2(modp), N1 ≤ x ≤ 2N1, 1≤y <N1

}
. (4.6)

Since B1 ⊂ B, then |B| ≤ |B1| where B and B1 denote the complement of B and

B1 in the complete residue system (modp), accordingly. Now, as in the proof

of Theorem 1.2, we have

∑

h∈B1

p−1∑

a=0

2N1∑

x=N1

N1−1∑

y=1

e2πi(a(x2−y2−h)/p) = 0. (4.7)

Then it follows that

N2
∣∣B1

∣∣�
p−1∑

a=1

∣∣∣∣∣∣

2N1∑

x=N1

e2πi(ax2/p)

∣∣∣∣∣∣

∣∣∣∣∣∣

N1−1∑

y=1

e2πi(ay2/p)

∣∣∣∣∣∣

∣∣∣∣∣∣
∑

h∈B1

e2πi(ah/p)

∣∣∣∣∣∣. (4.8)

Now, apply Lemma 4.1 for the sum over x and then use Cauchy inequality as

we did in the proof of Theorems 1.1 and 1.2. Then, we obtain

N2
∣∣B1

∣∣�
√
p logp

√
pNp

∣∣B1

∣∣ (4.9)

whence, we get

∣∣B1

∣∣� p3 logp
N3

. (4.10)

Now, Theorem 1.3 follows from |B| ≤ |B1|.
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