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We study the Hyers-Ulam stability theory of a four-variate Jensen-type functional
equation by considering the approximate remainderφ and obtain the correspond-
ing error formulas. We bring to light the close relation between the β-homogeneity
of the norm on F∗-spaces and the approximate remainder φ, where we allow
p,q,r , and s to be different in their Hyers-Ulam-Rassias stability.
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1. Introduction. Throughout this paper, we denote by G a linear space and

by E a real or complex Hausdorff topological vector space. By N and R we de-

note the sets of positive integers and of reals, respectively. Let f be a mapping

from G into E. We refer to the equations
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as a Jensen equation and a four-variate Jensen-type functional equation, re-

spectively. The approximate remainder φ is defined by
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(1.3)

for all x,y,z,w ∈G.
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In 1940, the following problem was proposed (see Ulam [11]): let G be a

group and let E be a metric group with the metry d(·,·). Given ε > 0, does

there exist a δ > 0 such that if a function h : G → E satisfies the inequality

d(h(xy),h(x)h(y)) < δ for all x,y ∈ G, then there exists a homomorphism

H :G→ E with d(h(x),H(x)) < ε for all x ∈G?

In 1941, Hyers [2] answered this question in the affirmative whenG and E are

Banach spaces. In 1978, Rassias [6] generalized the result of Hyers. The result

was further generalized by Rassias [7], Rassias and Šemrl [9], and Găvru̧ta [1].

The stability problems of Jensen equations can be found in [3, 4, 5].

The author [12] considered Hyers-Ulam-Rassias stability of several func-

tional equations under the assumption that G and E are a power-associative

groupoid and a sequentially complete topological vector space, respectively.

In the following, we introduce [12, Theorem 4].

Theorem 1.1. The approximate remainderφ :G×G→ E of Jensen equation

(1.1) satisfies

lim
n→∞

φ
(
3nx,3ny

)
3n

= θ ∀x,y ∈G,
∞∑
k=1

φ
(
3k−1x,−3k−1x

)−φ(−3k−1x,3kx
)

3k
= η(x)∈ E ∀x ∈G

(1.4)

if and only if the limit T(x) = limn→∞f(3nx)/3n exists for all x ∈ G, and T is

additive, where G is a real linear space and E is a real Hausdorff topological

vector space. In addition,

T(x)−f(x)+f(θ)= η(x) ∀x ∈G. (1.5)

Trif [10] investigated the Hyers-Ulam-Rassias stability of the three-variate

Jensen-type functional equation
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under the assumption that G and E are a real normed linear space and a real

Banach space, respectively.

In this paper, we investigate the Hyers-Ulam stability of (1.2) by considering

the approximate remainders under the assumption that G and E are a real

linear space and a certain kind of F∗-space, respectively. First we solve (1.2) in

Section 2. Second, in Section 3, still using the direct method, we obtain some

theorems of the Hyers-Ulam stability of (1.2). Finally, we give an example that

the Hyers-Ulam-Rassias stability of (1.2) does not hold.
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2. Solutions of (1.2). From now we let G be a real linear space and E a real

Hausdorff topological vector space, unless otherwise specified. In this section,

we claim that (1.2) is equivalent to (1.1). It is well known that if G and E are

real linear spaces, then a function f : G → E satisfying f(θ) = θ is a solution

of (1.1) if and only if it is additive.

Theorem 2.1. A function f : G → E satisfies (1.2) for all x,y,z,w ∈ G if

and only if there exist a constant element C ∈ E and a unique additive mapping

T :G→ E such that

f(x)= T(x)+C ∀x ∈G. (2.1)

Proof. The proof of the sufficiency is straightforward, so we will show only

the necessity. Set C = f(θ) and T(x)= f(x)−C for each x ∈G. Then T(θ)= θ
and
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for any x,y,z,w ∈ G. We will show that T is additive. Let x ∈ G. Put y = x
and z =w =−x in (2.2) to yield

T(x)+T(−x)= 3
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Take y =−x and z =w = θ in (2.2) to get
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From (2.3) and the last equality, we obtain
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Putting y = x, z =−2x, and w = θ in (2.2) gives
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From (2.5) and the last equality, we have

T(x)+T(−x)= 2T
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3

)
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)
. (2.7)

Put y = z = x and w =−3x in (2.2) to conclude that

T(x)+4T(−x)= 9T
(
− x

3

)
. (2.8)

Replacing x by −x in the above equality, we have

T(−x)+4T(x)= 9T
(
x
3

)
. (2.9)

Adding the last two formulas together produces

5
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Hence, from (2.3) and the last equality, we conclude that

T(x)+T(−x)= θ, that is, T(−x)=−T(x). (2.11)

It follows from (2.7), (2.9), and (2.11) that
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Replacing x/3 by x in the last equality, we obtain

T(2x)= 2T(x), that is, T
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2
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and so, T(x/4)= (1/4)T(x). Substituting
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into (2.2) supplies

T(x+y+z+w)+T(x+y)+T(x+w)+T(y+z)+T(z+w)
= T(x+y+z)+T(y+z+w)+T(z+w+x)+T(w+x+y). (2.15)

Finally, we take z =−x−y and w = θ in the above equality to get from (2.11)

that T(x+y)= T(x)+T(y), and so, T is additive in terms of the arbitrariness

of x and y .
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3. Hyers-Ulam-Rassias stability of (1.2). Next we are interested in the

Hyers-Ulam stability of (1.2). For convenience, we set ϕ(x,y) =φ(x,y,x,y)
for all x,y ∈G, where φ is of (1.3).

Theorem 3.1. The map ϕ :G×G→ E satisfies

lim
n→∞

ϕ
(
3nx,3ny

)
3n

= θ ∀x,y ∈G, (3.1)

1
2

∞∑
k=1

ϕ
(
3kx,−3kx

)−ϕ(−3k−1(5x),3k−1(7x)
)

3k+1
= η(x)∈ E ∀x ∈G (3.2)

if and only if the limit T(x) = limn→∞f(3nx)/3n exists for all x ∈ G, and T is

additive. In this case (1.5) holds.

Proof. We omit the easy proof of sufficiency and, like Theorem 2.1, we will

show the necessity only. Let any x,y ∈G. Putting z = x andw =y in (1.3), we

get
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Let u,v ∈G, x = 2u−v , and y = −u+2v . Then u = (2x+y)/3, v = (x+
2y)/3, and x+y =u+v , and so we have
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)
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where Φ(u,v) def= (1/6)ϕ(2u−v,−u+2v).
On the one hand, clearly,

lim
n→∞

Φ
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)
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lim
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ϕ
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This yields from assumption (3.1) that

lim
n→∞

Φ
(
3nu,3nv

)
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= θ. (3.6)

On the other hand, using the definition of Φ(u,v), we compute

Φ
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6
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then we conclude from (3.2) that

∞∑
k=1

Φ
(
3k−1u,−3k−1u

)−Φ(−3k−1u,3ku
)

3k

= 1
2

∞∑
k=1

ϕ
(
3ku,−3ku

)−ϕ(−3k−1(5u),3k−1(7u)
)

3k+1
= η(u)∈ E.

(3.8)

Thus, by Theorem 1.1, the limit T(u)= limn→∞f(3nu)/3n exists, T is additive,

and the equality T(u)−f(u)+f(θ)= η(u) holds for each u∈G.

The proof is complete.

For abbreviation, we set

B(x,−x)= co
(
{θ}∪{ϕ(3ix,−3ix

)}∞
i=1

)
∀x ∈G,

B(−5x,7x)= co
(
{θ}∪{ϕ(−3i−1(5x),3i−1(7x)

)}∞
i=1

)
∀x ∈G.

(3.9)

By Theorem 3.1 and [12, Corollary 6], we conclude the following corollary.

Corollary 3.2. Let E be sequentially complete and let (3.1) hold. If B
(x,−x) and B(−5x,7x) are bounded for any x ∈G, then there exists a unique

additive mapping T :G→ E such that

T(x)−f(x)+f(θ)∈ 1
6

[
Bs(x,−x)−Bs(−5x,7x)

] ∀x ∈G, (3.10)

where co(A) is the convex hull of a set A, and As denotes the sequential closure

of set A. If E is also locally convex, then the boundedness of {ϕ(3ix,−3ix)}∞i=1

and {φ(−3i−1(5x),3i−1(7x))}∞i=1 ensures the boundedness of B(x,−x) and

B(−5x,7x), respectively.

Next we derive the Hyers-Ulam-Rassias stability of (1.2), which is an applica-

tion of Theorem 3.1. Note that it is close correlative with the β-homogeneity of

the norm on F∗-spaces. Simultaneously, we allow p,q,r , and s to be different.

Let X be a linear space. A nonnegative-valued function ‖·‖ defined on X is

called an F -norm if it satisfies the following conditions:

(n1) ‖x‖ = 0 if and only if x = 0;

(n2) ‖ax‖ = ‖x‖ for all a, |a| = 1;

(n3) ‖x+y‖ ≤ ‖x‖+‖y‖;
(n4) ‖anx‖→ 0 provided an→ 0;

(n5) ‖axn‖→ 0 provided xn→ 0.

A space X with an F -norm is called an F∗-space. An F -pseudonorm (‖x‖ = 0

does not necessarily imply that x = 0 in (n1)) is called β-homogeneous (β > 0)

if ‖tx‖ = |t|β‖x‖ for all x ∈X and all t ∈R. A complete F∗-space is said to be

an F -space.
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Corollary 3.3. Suppose that G is an F∗-space and E a β-homogeneous

F -space (0< β≤ 1). Given ε1,ε2,ε3,ε4,δ≥ 0 and 0≤ p,q,r ,s < β, if φ satisfies

∥∥φ(x,y,z,w)∥∥
≤ δ+ε1‖x‖p+ε2‖y‖q+ε3‖z‖r +ε4‖w‖s ∀x,y,z,w ∈G, (3.11)

then there exists a unique additive mapping T :G→ E such that

∥∥T(x)−f(x)+f(θ)∥∥≤Aδ+ε1B1‖x‖p+ε2B2‖x‖q
+ε3B3‖x‖r +ε4B4‖x‖s

(3.12)

for all x ∈G, where

A def= 2
6β
(
3β−1

) , B1
def=

(
3p+5p

)
6β
(
3β−3p

) , B2
def=

(
3q+7q

)
6β
(
3β−3q

) ,

B3
def=

(
3r +5r

)
6β
(
3β−3r

) , B4
def=

(
3s+7s

)
6β
(
3β−3s

) .
(3.13)

Proof. Let any x,y ∈ G. Firstly, put z = x and w = y in (3.11) to get

according to the definition of ϕ that

∥∥ϕ(x,y)∥∥= ∥∥φ(x,y,x,y)∥∥≤ δ+ε1‖x‖p+ε2‖y‖q
+ε3‖x‖r +ε4‖y‖s ∀x,y ∈G. (3.14)

It follows from p,q,r ,s < β that

lim
n→∞

∥∥∥∥ϕ
(
3nx,3ny

)
3n

∥∥∥∥≤ lim
n→∞

[
δ
3n
+ ε1

3n(β−p)
‖x‖p+ ε2

3n(β−q)
‖y‖q

+ ε3

3n(β−r)
‖x‖r + ε4

3n(β−s)
‖y‖s

]
= 0.

(3.15)

Secondly, in light of the triangle inequality of F -norm and p,q,r ,s ≥ 0, we have,

for any i∈N,

∥∥ϕ(3ix,−3ix
)∥∥≤ δ+ε13ip‖x‖p+ε23iq‖x‖q+ε33ir‖x‖r +ε43is‖x‖s ,∥∥ϕ(−3i−1(5x),3i−1(7x)

)∥∥≤ δ+ε13(i−1)p5p‖x‖p+ε23(i−1)q7q‖x‖q

+ε33(i−1)p5r‖x‖r +ε43(i−1)q7s‖x‖s .
(3.16)

As in the proof of [12, Theorem 3], we infer from (3.4) that

1
3n
f
(
3nx

)−f(x)= n∑
k=1

Ψ
(
3k−1x

)
3k

(3.17)

holds for any n∈N, where Ψ(x)= Φ(x,−x)−Φ(−x,3x)−2f(θ).
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Consequently, for any n∈N,

1
3n
f
(
3nx

)−f(x)+2
n∑
k=1

f(θ)
3k

=
n∑
k=1

Φ
(
3k−1x,−3k−1x

)−Φ(−3k−1x,3kx
)

3k

= 1
2

n∑
k=1

ϕ
(
3kx,−3kx

)−ϕ(−3k−1(5x),3k−1(7x)
)

3k+1
.

(3.18)

It is easy to see that

1
2

∞∑
k=1

ϕ
(
3kx,−3kx

)−ϕ(−3k−1(5x),3k−1(7x)
)

3k+1
(3.19)

exists for every x ∈G. Indeed, from the above, we conclude that

f
(
3mx

)
3m

− f
(
3nx

)
3n

= 1
3n

[
f
(
3m−n

(
3nx

))
3m−n

−f (3nx)]

= 1
3n

m−n∑
k=1

Ψ
(
3n+k−1x

)
3k

=
m∑

k=n+1

Ψ
(
3k−1x

)
3k

= 1
2

m∑
k=n+1

ϕ
(
3kx,−3kx

)−ϕ(−3k−1(5x),3k−1(7x)
)

3k+1
−2

m∑
k=n+1

f(θ)
3k

(3.20)

for any m>n, where m,n∈N, and so

∥∥∥∥∥f
(
3mx

)
3m

− f
(
3nx

)
3n

∥∥∥∥∥
≤ 1

2β

m∑
k=n+1

2δ+ε1
(
3kp+3(k−1)p5p

)‖x‖p+ε2
(
3kq+3(k−1)q7q

)‖x‖q
3(k+1)β

+ 1
2β

m∑
k=n+1

ε3
(
3kr +3(k−1)r5r

)‖x‖r +ε4
(
3ks+3(k−1)s7s

)‖x‖s
3(k+1)β

+2
∥∥f(θ)∥∥ m∑

k=n+1

1
3k

≤
m∑

k=n+1

21−βδ
3(k+1)β +

ε1

2β

m∑
k=n+1

[
1
3β

3k(p−β)+ 5p

32β 3(k−1)(p−β)
]
‖x‖p

+ ε2

2β

m∑
k=n+1

[
1
3β

3k(q−β)+ 7q

32β 3(k−1)(q−β)
]
‖x‖q
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+ ε3

2β

m∑
k=n+1

[
1
3β

3k(r−β)+ 5r

32β 3(k−1)(r−β)
]
‖x‖r

+ ε4

2β

m∑
k=n+1

[
1
3β

3k(s−β)+ 7s

32β 3(k−1)(s−β)
]
‖x‖s+2

∥∥f(θ)∥∥ m∑
k=n+1

1
3k

(3.21)

for any m> n, where m,n ∈ N. Since p,q,r ,s < β, {f(3nx)/3n} is a Cauchy

sequence of E. By the completeness of E, {f(3nx)/3n} converges to an element

of E.

Thus, by Theorem 3.1, T(x)= limn→∞(f (3nx)/3n) and it is additive. In ad-

dition, from (3.18), inequality (3.12) holds for all x ∈G.

In order to prove the uniqueness of T , suppose that U : G → E is another

additive mapping which satisfies

∥∥U(x)−f(x)+f(θ)∥∥≤Aδ+ε1B1‖x‖p+ε2B2‖x‖q
+ε3B3‖x‖r +ε4B4‖x‖s

(3.22)

for all x ∈G. On account of the last two inequalities, we conclude that, for all

x ∈G,

∥∥U(x)−T(x)∥∥
= 1
nβ
∥∥U(nx)−T(nx)∥∥

= 1
nβ
∥∥U(nx)−f(nx)+f(θ)−T(nx)+f(nx)−f(θ)∥∥

≤ 1
nβ
[∥∥U(nx)−f(nx)+f(θ)∥∥+∥∥T(nx)−f(nx)+f(θ)∥∥]

≤ 2
nβ
(
Aδ+ε1B1‖nx‖p+ε2B2‖nx‖q+ε3B3‖nx‖r +ε4B4‖nx‖s

)

= 2
[
Aδ
nβ

+ ε1B1

nβ−p
‖x‖p+ ε2B2

nβ−q
‖x‖q+ ε3B3

nβ−r
‖x‖r + ε4B4

nβ−r
‖x‖s

]
,

(3.23)

and so, ‖U(x)−T(x)‖ → 0 as n → ∞ since p,q,r ,s < β. As a consequence,

U(x)= T(x) for all x ∈G.

Therefore, the result holds.

In order to show that Corollary 3.3 is valid in the case that p,q,r ,s > 1/β,

we need the following theorem, which can be proved in the same manner as

Theorem 1.1.
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Theorem 3.4. The approximate remainder φ :G×G→ E of (1.1) satisfies

lim
n→∞3nφ

(
3−nx,3−ny

)= θ ∀x,y ∈G,
∞∑
k=1

3k−1[φ(3−kx,−3−kx
)−φ(−3−kx,3−k+1x

)]= η(x)∈ E ∀x ∈G
(3.24)

if and only if the limit T(x) = limn→∞3n[f(3−nx)−f(θ)] exists for all x ∈ G,

and T is additive. In this case (1.5) holds.

Proof. Note that if set g(x) = f(x)−f(θ) for any x ∈ G, then g(θ) = θ
and the approximate remainders φg and φf of (1.1) with respect to g and f ,

respectively, are equal. We still write it as φ. As in the proof of Theorem 1.1,

we can conclude that, for every x in G with x ≠ 0 and every n in N,

g(x)−3n
(
3−nx

)= n∑
k=1

[
φ
(
3−kx,−3−kx

)−φ(−3−kx,3−k+1x
)]
. (3.25)

We may see that it is possible that T(x) = limn→∞3n[f(3−nx)−f(θ)] exists,

in particular, if f is differentiable at θ in G.

Corollary 3.5. Suppose that G is a β-homogeneous F∗-space (0 < β ≤ 1)
and E an F -space with a nondecreasing F -norm. Given ε1,ε2,ε3,ε4 ∈ [0,+∞)
and p,q,r ,s ∈ (1/β,+∞), if φ satisfies

∥∥φ(x,y,z,w)∥∥≤ ε1‖x‖p+ε2‖y‖q
+ε3‖z‖r +ε4‖w‖s ∀x,y,z,w ∈G, (3.26)

then there exists a unique additive mapping T :G→ E such that

∥∥T(x)−f(x)+f(θ)∥∥≤ ε1B1‖x‖p+ε2B2‖x‖q
+ε3B3‖x‖r +ε4B4‖x‖s ∀x ∈G, (3.27)

where

B1
def=
(
3pβ+5pβ

)
(
3pβ−3

) , B2
def=
(
3qβ+7qβ

)
(
3qβ−3

) ,
B3

def=
(
3rβ+5rβ

)
(
3rβ−3

) , B4
def=
(
3sβ+7sβ

)
(
3sβ−3

) .
(3.28)
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Proof. Let g(x)= f(x)−f(θ) for any x ∈G. Using Theorem 3.4, as in the

proofs of Theorem 3.1 and Corollary 3.3, we can achieve that

1
6

∞∑
k=1

3k−1[ϕ(3−k+1x,−3−k+1x
)−ϕ(−3−k(5x),3−k(7x)

)]
(3.29)

exists for every x ∈G and

g(x)−3ng
(
3−nx

)

= 1
6

n∑
k=1

3k−1[ϕ(3−k+1x,−3−k+1x
)−ϕ(−3−k(5x),3−k(7x)

)]
.

(3.30)

Finally, we can evaluate the error formula.

We may also deal with the Hyers-Ulam stability of (1.2) as usual.

Theorem 3.6. The approximate remainder φ satisfies

lim
n→∞

φ
(
3nx,3ny,3nz,3nw

)
3n

= θ ∀x,y,z,w ∈G, (3.31)

∞∑
k=1

ψ
(
3kx

)
3k

= η(x)∈ E ∀x ∈G (3.32)

if and only if the limit T(x) = limn→∞f(3nx)/3n exists for all x ∈ G, and T is

additive. Moreover, (1.5) holds, where

ψ(x) def= 1
4
φ(x,x,−x,−x)+ 1

6

[
φ(−x,−x,−x,3x)−φ(x,x,x,−3x)

]
.

(3.33)

Proof. It is enough to show the necessity. Define g as above.

Let any x ∈G. Put y = x and z =w =−x in (1.3) to yield

g(x)+g(−x)−3
[
g
(
x
3

)
+g

(
− x

3

)]
= 1

2
φ(x,x,−x,−x). (3.34)

Put y = z = x and w =−3x in (1.3) to give

g(x)+4g(−x)−9g
(
− x

3

)
=φ(x,x,x,−3x). (3.35)
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Replacing x by −x in the above equality, we have

g(−x)+4g(x)−9g
(
x
3

)
=φ(−x,−x,−x,3x). (3.36)

Adding the last two formulas together, we conclude that

5
[
g(x)+g(−x)]−9

[
g
(
x
3

)
+g

(
− x

3

)]

=φ(x,x,x,−3x)+φ(−x,−x,−x,3x).
(3.37)

Hence, from (3.34) and the above equality, we know that

g(x)+g(−x)= 1
2

[
φ(x,x,x,−3x)+φ(−x,−x,−x,3x)]

− 3
4
φ(x,x,−x,−x).

(3.38)

It follows from (3.36) and (3.38) that

g(x)−3g
(
x
3

)
= 1

4
φ(x,x,−x,−x)

+ 1
6

[
φ(−x,−x,−x,3x)−φ(x,x,x,−3x)

]
=ψ(x).

(3.39)

With 3x in place of x in the above equality and dividing by 3, we obtain

1
3
g(3x)−g(x)= 1

3
ψ(3x). (3.40)

We will prove by induction that

1
3n
g
(
3nx

)−g(x)= n∑
k=1

ψ
(
3kx

)
3k

∀n∈N. (3.41)

For n = 1 this is trivial according to (3.40). Suppose that (3.41) holds for a

certain m−1. Then (3.40) and the induction hypothesis imply that

1
3m
g
(
3mx

)−g(x)= 1
3

[
1

3m−1
g
(
3m−1(3x)

)−g(3x)]+ 1
3
g(3x)−g(x)

= 1
3

m−1∑
k=1

ψ
(
3k(3x)

)
3k

+ 1
3
ψ(3x)=

m∑
k=1

ψ
(
3kx

)
3k

,
(3.42)

that is, (3.41) holds for n=m.
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We define T(x)= limn→∞g(3nx)/3n. Obviously, T(x)= limn→∞f(3nx)/3n,

and so, by (3.32) and (3.41), T(x) exists and

T(x)−g(x)= η(x). (3.43)

Substituting the definition of g into the last equality implies that

T(x)−f(x)+f(θ)= η(x). (3.44)

Finally, we verify that T is additive. Indeed, the definition of T implies that

T(θ)= lim
n→∞

g
(
3nθ

)
3n

= θ. (3.45)

Because of (3.31), T is a solution of (1.2). Hence T(x)= T∗(x)+T(θ)= T∗(x)
by Theorem 2.1, where T∗ is additive. It follows that T is additive.

To show the following corollary, we may use a manner analogous to that

used in Corollary 3.3.

Corollary 3.7. Keeping all the hypotheses of Corollary 3.3, there exists a

unique additive mapping T :G→ E such that (3.12) holds, where

A def= 3β+2β+1

12β
(
3β−1

) , B1
def= 3p

(
3β+2β+1

)
12β

(
3β−3p

) , B2
def= 3q

(
3β+2β+1

)
12β

(
3β−3q

) ,

B3
def= 3r

(
3β+2β+1

)
12β

(
3β−3r

) , B4
def= 3s

(
3β+2β+13s

)
12β

(
3β−3s

) .

(3.46)

If there exists at least one of p, q, r , and s such that it is strictly less than 0, it

is supposed that (3.11) holds for all x,y,z,w ∈G\{θ}. Then the domain of T is

G\{θ} instead of G.

As earlier, we consider the case of p,q,r ,s > 1/β.

Theorem 3.8. The approximate remainder φ satisfies

lim
n→∞3nφ

(
3−nx,3−ny,3−nz,3−nw

)= θ ∀x,y,z,w ∈G,
∞∑
k=1

3k−1ψ
(
3−(k−1)x

)= η(x)∈ E ∀x ∈G
(3.47)
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if and only if the limit T(x) = limn→∞3n[f(3−nx)−f(θ)] exists for all x ∈ G,

and T is additive, where ψ is as above. Moreover,

T(x)−f(x)+f(θ)= η(x) ∀x ∈G. (3.48)

Proof. Let g(x)= f(x)−f(θ). Note that, by virtue of (3.39), we conclude

by induction that

g(x)−3ng
(
3−nx

)= n∑
k=1

3k−1ψ
(
3−(k−1)x

) ∀x ∈G, n∈N. (3.49)

Corollary 3.9. Keeping all the hypotheses of Corollary 3.5, then there ex-

ists a unique additive mapping T :G→ E such that

∥∥T(x)−f(x)∥∥≤ ε1B1‖x‖p+ε2B2‖x‖q
+ε3B3‖x‖r +ε4B4‖x‖s ∀x ∈G, (3.50)

where

B1
def= 3pβ+1(

3pβ−3
) , B2

def= 3qβ+1(
3qβ−3

) ,
B3

def= 3rβ+1(
3rβ−3

) , B4
def= 3sβ

(
1+2

(
3sβ
))

(
3sβ−3

) .

(3.51)

We still mention the following immediate consequence of Corollary 3.3.

Remark 3.10. Let E be a β-homogeneous F -space (0< β≤ 1). If φ satisfies

the property that there exists δ ∈ [0+∞) such that ‖φ(x,y,z,w)‖ ≤ δ for

any x,y,z,w ∈G, then there exists a unique additive mapping T :G→ E such

that

∥∥T(x)−f(x)+f(θ)∥∥≤ 2δ
6β
(
3β−1

) ∀x ∈G. (3.52)

As in [13], in the last of this section we give an example by means of Rassias

and Šemrl [8] who constructed a function f :R→R (f(x) def= x log2(1+|x|)) to

show that (1.2) does not have Hyers-Ulam-Rassias stability property if p, q, r ,

and s satisfy any one condition of (
1) p = q = r = s = β, (
2) p = q = r = s =
1/β, and (
3) β ≤ p = q = r = s = 1 ≤ 1/β (0 < β ≤ 1). What if p, q, r , and s
satisfy that β ≤ p,q,r ,s ≤ 1/β, where p ≠ 1, q ≠ 1, r ≠ 1, and s ≠ 1 under the

assumption that G and E are β-homogeneous F -space (0< β< 1)?
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Theorem 3.11. The function f : R → R defined by f(x) def= x log2(1+|x|)
satisfies the inequality

∣∣φ(x,y,z,w)∣∣≤ 14
(|x|+|y|+|z|+|w|) ∀x,y,z,w ∈R, (3.53)

but

sup
{∣∣∣∣f(x)−T(x)x

∣∣∣∣ : x ∈R\{0}
}
=∞ (3.54)

for each additive mapping T :R→R.

Proof. For all x,y,z,w ∈ R, it follows from |f(x+y)−f(x)−f(y)| ≤
|x|+|y| in [8] and |f(x+y+z)−f(x)−f(y)−f(z)| ≤ (5/3)(|x|+|y|+|z|)
in [10] that

φ(x,y,z,w)=
[

4f
(
x+y+z+w

4

)
−f(x+y+z+w)

]

+[f(x+y+z+w)−f(x+z)−f(y+w)]

+
[
f(x+z)−2f

(
x+z

2

)]
+
[
f(y+w)−2f

(
y+w

2

)]

−
[

3f
(
x+y+z

3

)
−f(x+y+z)

]

−
[
f(x+y+z)−f

(
x+y

2

)
−f

(
y+z

2

)
−f

(
z+x

2

)]

−
[

3f
(
y+z+w

3

)
−f(y+z+w)

]

−
[
f(y+z+w)−f

(
y+z

2

)
−f

(
z+w

2

)
−f

(
w+y

2

)]

−
[

3f
(
z+w+x

3

)
−f(z+w+x)

]

−
[
f(z+w+x)−f

(
z+w

2

)
−f

(
w+x

2

)
−f

(
x+z

2

)]

−
[

3f
(
w+x+y

3

)
−f(w+x+y)

]

−
[
f(w+x+y)−f

(
w+x

2

)
−f

(
x+y

2

)
−f

(
y+w

2

)]
.

(3.55)
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Furthermore, we evaluate that

∣∣φ(x,y,z,w)∣∣≤ 8
∣∣∣∣x+y+z+w4

∣∣∣∣+|x+z|+|y+w|+2
∣∣∣∣x+z2

∣∣∣∣
+2
∣∣∣∣y+w2

∣∣∣∣+ 5
3

3
∣∣∣∣x+y+z3

∣∣∣∣
+ 5

3

[∣∣∣∣x+y2

∣∣∣∣+
∣∣∣∣y+z2

∣∣∣∣
∣∣∣∣z+x2

∣∣∣∣
]

+ 15
3

∣∣∣∣y+z+w3

∣∣∣∣+ 5
3

[∣∣∣∣y+z2

∣∣∣∣+
∣∣∣∣z+w2

∣∣∣∣
∣∣∣∣w+y2

∣∣∣∣
]

+ 15
3

∣∣∣∣z+w+x3

∣∣∣∣+ 5
3

[∣∣∣∣z+w2

∣∣∣∣+
∣∣∣∣w+x2

∣∣∣∣
∣∣∣∣x+z2

∣∣∣∣
]

+ 15
3

∣∣∣∣w+x+y3

∣∣∣∣+ 5
3

[∣∣∣∣w+x2

∣∣∣∣+
∣∣∣∣x+y2

∣∣∣∣
∣∣∣∣y+w2

∣∣∣∣
]

≤ 14
(|x|+|y|+|z|+|w|)

(3.56)

for all x,y,z,w ∈R. The rest of the proof has been proved in [10].

Remark 3.12. Let f be as in Theorem 3.11.

(i) If G = (R,‖·‖1) with the Euclidean metric ‖·‖1 = |·|, and E = (R,‖·‖2)
with the β-homogeneous norm ‖·‖2 = |·|β, then∥∥φ(x,y,z,w)∥∥2

≤ 14β
(
‖x‖β1+‖y‖β1+‖z‖β1+‖w‖β1

)
∀x,y,z,w ∈G, (3.57)

but

sup

{∥∥f(x)−T(x)∥∥2

‖x‖β1
: x ∈R\{0}

}
=∞ (3.58)

for each additive mapping T :G→ E.

(ii) If G = (R,‖ · ‖1) with the β-homogeneous norm ‖ · ‖1 = | · |β, and E =
(R,‖·‖2) with the Euclidean metric ‖·‖2 = |·|, then∥∥φ(x,y,z,w)∥∥2

≤ 14
(
‖x‖1/β

1 +‖y‖1/β
1 +‖z‖1/β

1 +‖w‖1/β
1

)
∀x,y,z,w ∈G, (3.59)

but

sup

{∥∥f(x)−T(x)∥∥2

‖x‖1/β
1

: x ∈R\{0}
}
=∞ (3.60)

for each additive mapping T :G→ E.

(iii) If G = E = (R,‖·‖) with the β-homogeneous norm ‖·‖ = |·|β, then

∥∥φ(x,y,z,w)∥∥≤ 14β
(‖x‖+‖y‖+‖z‖+‖w‖) ∀x,y,z,w ∈G, (3.61)
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but

sup
{∥∥∥∥f(x)−T(x)x

∥∥∥∥ : x ∈R\{0}
}
=∞ (3.62)

for each additive mapping T :G→ E.
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