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For a class of uncertain nonlinear systems (UNSs), the flow-invariance of a time-
dependent rectangular set (TDRS) defines individual constraints for each compo-
nent of the state-space trajectories. It is shown that the existence of the flow-
invariance property is equivalent to the existence of positive solutions for some
differential inequalities with constant coefficients (derived from the state-space
equation of the UNS). Flow-invariance also provides basic tools for dealing with the
componentwise asymptotic stability as a special type of asymptotic stability, where
the evolution of the state variables approaching the equilibrium point (EP){0} is
separately monitored (unlike the standard asymptotic stability, which relies on
global information about the state variables, formulated in terms of norms). The
EP{0} of a given UNS is proved to be componentwise asymptotically stable if and
only if the EP{0} of a differential equation with constant coefficients is asymptot-
ically stable in the standard sense. Supplementary requirements for the individ-
ual evolution of the state variables approaching the EP{0} allow introducing the
stronger concept of componentwise exponential asymptotic stability, which can be
characterized by algebraic conditions. Connections with the componentwise as-
ymptotic stability of an uncertain linear system resulting from the linearization
of a given UNS are also discussed.
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1. Introduction. Flow-invariance theory emerged from the pioneering re-

search developed by Nagumo [8] and Hukuhara [4] at the middle of the pre-

ceding century, and further significant contributions have been brought by

many well-known mathematicians, among which are Brezis [1], Crandall [2],

and Martin [5]. Two remarkable monographs on this field are due to Pavel

[11] and Motreanu and Pavel [7]. Voicu, in [12, 13], proposes the use of flow-

invariant hyperrectangles for continuous-time linear systems, resulting in the

definition and analysis of a special type of (exponential) asymptotic stabil-

ity, namely, the componentwise (exponential) asymptotic stability. Later on, an

overview on the applications of the flow-invariance method in control theory

and design was presented in [14]. Recent results have extended these new con-

cepts for linear systems with time-delay [3] and for linear systems with interval

matrix [9]. Robustness problems for componentwise asymptotic stability have

been addressed in [10].
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The current paper focuses on a class of nonlinear systems with uncertain-

ties and uses the powerful tool offered by the flow-invariance theory to reveal

some important properties of state trajectories around the equilibrium points,

which remain unexplored within the standard framework of stability analysis.

These properties allow a componentwise refinement of the dynamics, and, con-

sequently, they present a particular interest for real-life engineering problems,

where individual information about the evolution of each state variable is more

valuable than a global characterization of trajectories (expressed in terms of

a certain norm). Moreover, our results are able to cover a whole family of non-

linear systems, corresponding to the uncertainties that can affect the model

construction.

The exposition gradually displaces its gravity center from the qualitative

analysis of the time-dependent rectangular sets which are flow invariant with

respect to the nonlinear uncertain system towards the componentwise (expo-

nential) asymptotic stability of the equilibrium point according to the following

plan. Section 2 deals with the existence of flow-invariant time-dependent rect-

angular sets constraining the state trajectories and prepares the background

for a detailed exploration of the whole family of such hyperrectangles that are

flow-invariant with respect to a given nonlinear uncertain system (Section 3).

Componentwise asymptotic stability and componentwise exponential asymp-

totic stability are addressed in Sections 4 and 5, respectively. In Section 6, the

componentwise asymptotic stability for linear approximation is discussed, and

Section 7 illustrates the overall approach by two examples commented ade-

quately.

Taking into consideration the mathematical nature of the problems raised

by the flow-invariance method, we are going to use componentwise (element-

by-element) matrix inequalities P <Q and P ≤Q , P,Q ∈Rn×m meaning for all

i = 1, . . . ,n, for all j = 1, . . . ,m, (P)ij < (Q)ij , and (P)ij ≤ (Q)ij , respectively.

These notations preserve their signification when handling vectors or vector

functions.

2. Flow-invariance property of the free response. Consider the class of

uncertain nonlinear systems (UNSs) defined as

ẋ= f(x), x∈Rn, x
(
t0
)= x0, t ≥ t0;

fi(x)=
n∑
j=1

aijx
pij
j , pij ∈N, i= 1, . . . ,n,

(2.1)

where the interval-type coefficients

a−ij ≤ aij ≤ a+ij (2.2)

are chosen to cover the inherent errors which frequently affect the accuracy of

model construction. For any concrete value of the coefficients aij , belonging
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to the intervals (2.2), the Cauchy problem associated to UNS (2.1) has a unique

local solution for any t0 and x(t0) = x0 since the vector function f(x) fulfills

the local Lipschitz condition.

We also consider the n-valued vector function γ(t), with differentiable and

positive components γi(t) > 0, i = 1, . . . ,n. Using these γi(t) > 0, i = 1, . . . ,n,

define a time-dependent rectangular set (TDRS)

Hγ(t)=
[−γ1(t),γ1(t)

]×···×[−γn(t),γn(t)], (2.3)

where [,]×[,] denotes the Cartesian product.

We are now interested in exploring the free response of UNS (2.1) along

the lines of the componentwise constrained evolution of the state trajectories

induced by the concept of flow-invariance (FI) [7, 11].

Definition 2.1. TDRS (2.3) is FI with respect to UNS (2.1) if there exists

T > t0 such that for any initial condition x(t0)= x0 ∈Hγ(t0), the correspond-

ing state trajectory x(t)= x(t;t0,x0) remains (for all possible values resulting

from the interval-type coefficients) inside Hγ(t), for t ∈ [t0,T ), that is,

∃T >t0, ∀x
(
t0
)=x0∈Hγ

(
t0
)
, x(t)=x

(
t;t0,x0

)∈Hγ(t), t ∈ [t0,T). (2.4)

Theorem 2.2. TDRS (2.3) is FI with respect to UNS (2.1) if and only if the

following inequalities hold for t ∈ [t0,T ), T > t0:

γ̇(t)≥ ḡ(γ); ḡ :Rn �→Rn, ḡi(γ)=
n∑
j=1

c̄ijγ
pij
j , i= 1, . . . ,n, (2.5)

γ̇(t)≥ g̃(γ); g̃ :Rn �→Rn, g̃i(γ)=
n∑
j=1

c̃ijγ
pij
j , i= 1, . . . ,n, (2.6)

where c̄ij and c̃ij have unique values derived from the interval-type coefficients

aij of UNS (2.1) as follows:

c̄ij=a+ii, for pii odd or even; c̄ij
i≠j
=
max

{∣∣a−ij∣∣,∣∣a+ij∣∣}, if pij odd,

max
{
0,a+ij

}
, if pij even;

(2.7)

c̃ij=
a

+
ii, if pii odd,

−a−ii, if pii even;
c̃ij
i≠j
=
max

{∣∣a−ij∣∣,∣∣a+ij∣∣}, if pij odd,

max
{
0,−a−ij

}
, if pij even.

(2.8)

Proof. A necessary and sufficient condition for TDRS Hγ(t) in (2.3) to be

FI with respect to UNS (2.1) can be formulated, according to [11, pages 74–75],
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as follows:

n∑
j=1
j≠i

aijv
pij
j (t)+aiiγpiii (t)≤ γ̇i(t), i= 1, . . . ,n,

−γ̇i(t)≤
n∑
j=1
j≠i

aijv
pij
j (t)+aii(−1)piiγpiii (t), i= 1, . . . ,n,

(2.9)

for

−γi(t)≤ vi(t)≤ γi(t), t ∈ [t0,T), i= 1, ...,n. (2.10)

For i≠ j and pij odd, we can write

−max
{∣∣a−ij∣∣,∣∣a+ij∣∣}γpijj (t)≤ aijvpijj (t)≤max

{∣∣a−ij∣∣,∣∣a+ij∣∣}γpijj (t), (2.11)

and, similarly, for i≠ j and pij even,

−max
{−a−ij ,0}γpijj (t)≤ aijvpijj (t)≤max

{
a+ij ,0

}
γ
pij
j (t). (2.12)

For i= j and pii odd, we have

aiiγ
pii
i (t)≤ a+iiγpiii (t), −a+iiγpiii (t)≤−aiiγpiiii (t)= aii

(−γi(t))pii . (2.13)

For i= j and pii even, we have

aiiγ
pii
i (t)≤ a+iiγpiii (t),

−(−a−ii)γpiii (t)= a−iiγpiii (t)≤ aiiγpiiii (t)= aii(−γi(t))pii . (2.14)

The fulfillment of the first set of differential inequalities formulated above

means

n∑
j=1
j≠i

pij odd

max
{∣∣a−ij∣∣,∣∣a+ij∣∣}γpijj (t)

+
n∑
j=1
j≠i

pij even

max
{
a+ij ,0

}
γ
pij
j (t)+a+iiγpiii (t)≤ γ̇i(t), i= 1, . . . ,n,

(2.15)

which is identical to (2.5) with coefficients (2.7).
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The fulfillment of the second set of differential inequalities formulated above

means

n∑
j=1
j≠i

pij odd

max
{∣∣a−ij∣∣,∣∣a+ij∣∣}γpijj (t)

+
n∑
j=1
j≠i

pij even

max
{−a−ij ,0}γpijj (t)+φiiγpiii (t)≤ γ̇i(t), i= 1, . . . ,n,

(2.16)

where

φii =
a+ii, if pii odd,

−a−ii, if pii even,
(2.17)

which is identical to (2.6) with coefficients (2.8).

Theorem 2.3. There exist TDRSs (2.3) which are FI with respect to UNS (2.1)

if and only if there exist common positive solutions (PSs) for the following dif-

ferential inequalities (DIs):

ẏ≥ ḡ(y), ẏ≥ g̃(y). (2.18)

Proof. It is a direct consequence of Definition 2.1 and Theorem 2.2.

Theorem 2.4. There exist TDRSs (2.3) which are FI with respect to UNS (2.1)

if and only if there exist PSs for the following DI:

ẏ≥ g(y); g :Rn �→Rn, gi(y)=max
y∈Rn

{
ḡi(y), g̃i(y)

}
, i= 1, . . . ,n. (2.19)

Proof. DI (2.19) replaces the two DIs (2.18) from Theorem 2.3 in an equiv-

alent manner.

3. The family of flow-invariant TDRSs. In order to investigate the family

of TDRSs, which are FI with respect to a given UNS, we will first focus on some

relevant characteristics of the PSs of DI (2.19) since Theorem 2.4 emphasizes

a bijective link between the two types of mathematical objects. We start with

the qualitative exploration of the solution of the following differential equation

(DE):

ż= g(z), (3.1)

which is obtained from DI (2.19) by replacing “≥” with “=”.

Lemma 3.1. DE (3.1), with arbitrary t0 and arbitrary initial condition z(t0)=
z0, has a unique solution z(t)= z(t;t0,z0) defined on [t0,T ) for some T > t0.
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Proof. We prove that g(z), defined according to (2.19), fulfills the Lipschitz

condition.

Both ḡi and g̃i, i = 1, . . . ,n, can be written by separating the even and odd

powers as follows:

ḡi(z)= ϕ̄i(z)+ψ̄i(z), g̃i(z)= ϕ̃i(z)+ψ̃i(z), (3.2)

where

ϕ̄i(z)=
n∑
j=1

pij odd

c̄ijz
pij
j ; ϕ̃i(z)=

n∑
j=1

pij odd

c̃ijz
pij
j ,

ψ̄i(z)=
n∑
j=1

pij even

c̄ijz
pij
j ; ψ̃i(z)=

n∑
j=1

pij even

c̃ijz
pij
j .

(3.3)

Based on the expression derived in Theorem 2.2 for coefficients c̄ij (2.7) and

c̃ij (2.8), it results that ϕ̄i(z) and ϕ̃i(z) are identical, and, therefore, both of

them can be replaced by a unique function

ϕ̄i(z)= ϕ̃i(z)=:ϕi(z), i= 1, . . . ,n. (3.4)

Thus, we get

gi(z)=max
z∈Rn

{
ϕi(z)+ψ̄i(z),ϕi(z)+ψ̃i(z)

}=ϕi(z)+max
z∈Rn

{
ψ̄i(z),ψ̃i(z)

}
.

(3.5)

Denote by ψi(z) the function defined as

ψi(z)=max
z∈Rn

{
ψ̄i(z),ψ̃i(z)

}
. (3.6)

Hence, we can write

gi(z)=ϕi(z)+ψi(z), i= 1, . . . ,n, (3.7)

and, consequently, the vector function g is given by

g(z)=ϕ(z)+ψ(z). (3.8)

Function ϕ(z) satisfies the Lipschitz condition. In order to have the Lips-

chitz property for g(z), we have to show that ψ(z) also fulfills the Lipschitz

condition.

For arbitrary x,y∈K (K ⊂Rn a compact set), we have

∥∥ψ(x)−ψ(y)∥∥2
2 =

n∑
i=1

∣∣ψi(x)−ψi(y)∣∣2, (3.9)
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where

∣∣ψi(x)−ψi(y)∣∣= ∣∣∣∣max
x∈K

{
ψ̄i(x),ψ̃i(x)

}−max
y∈K

{
ψ̄i(y),ψ̃i(y)

}∣∣∣∣. (3.10)

Both ψ̄i(z) and ψ̃i(z) meet the Lipschitz condition on K. Hence, there exist

L̄i > 0 and L̃i > 0 such that

∀x,y∈K,
∣∣ψ̄i(x)−ψ̄i(y)∣∣≤ L̄i‖x−y‖2,

∀x,y∈K,
∣∣ψ̃i(x)−ψ̃i(y)∣∣≤ L̃i‖x−y‖2.

(3.11)

Thus, there exists a positive constant Li =max{L̄i, L̃i} such that

∀x,y∈K,
∣∣ψ̄i(x)−ψ̄i(y)∣∣≤ Li‖x−y‖2,

∣∣ψ̃i(x)−ψ̃i(y)∣∣≤ Li‖x−y‖2.
(3.12)

On the other hand, the compact set K can be regarded as a union of the

subsets

K = K̄∪K̃∪K̂, (3.13)

where

K̄ = {z∈K | ψ̄i(z) > ψ̃i(z)
}
,

K̃ = {z∈K | ψ̄i(z) < ψ̃i(z)
}
,

K̂ = {z∈K | ψ̄i(z)= ψ̃i(z)
}
.

(3.14)

Obviously, we are interested in exploring the general case when K̄, K̃, and K̂

are nonempty, which covers all other possible situations.

When x,y belong to the same subset, and ψi(x) and ψi(y) are defined by

the same function (i.e., either ψ̄i or ψ̃i), we, therefore, can write

∣∣ψi(x)−ψi(y)∣∣< Li‖x−y‖2. (3.15)

We deal with the other cases when x and y belong to different subsets.

(1) For x∈ K̄, y∈ K̃, we have

∣∣ψi(x)−ψi(y)∣∣= ∣∣ψ̄i(x)−ψ̃i(y)∣∣, (3.16)

which means one of the following two situations:

(1a) ψ̄i(x)≥ ψ̃i(y) implies |ψi(x)−ψi(y)| = ψ̄i(x)−ψ̃i(y).
On the other hand, y∈ K̃⇒ ψ̃i(y) > ψ̄i(y).
Thus, we conclude that |ψi(x)−ψi(y)|< ψ̄i(x)−ψ̄i(y)≤ Li‖x−y‖2.

(1b) ψ̄i(x) < ψ̃i(y) implies |ψi(x)−ψi(y)| = ψ̃i(y)−ψ̄i(x).
On the other hand, x∈ K̄⇒ ψ̄i(x) > ψ̃i(x).
Thus, we conclude that |ψi(x)−ψi(y)|< ψ̃i(y)−ψ̃i(x)≤ Li‖x−y‖2.
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(2) For x∈ K̄, y∈ K̂, we have

∣∣ψi(x)−ψi(y)∣∣= ∣∣ψ̄i(x)−ψ̄i(y)∣∣≤ Li‖x−y‖2. (3.17)

For the remaining cases (x ∈ K̂, y ∈ K̃; x ∈ K̃, y ∈ K̄; x ∈ K̂, y ∈ K̄), the

approach is similar, and, consequently, we get

∀x,y∈K,
∣∣ψi(x)−ψi(y)∣∣≤ Li‖x−y‖2, i= 1, . . . ,n. (3.18)

Thus, for the vector function ψ, we can write

∥∥ψ(x)−ψ(y)∥∥2
2 =

n∑
i=1

∣∣ψi(x)−ψi(y)∣∣2 ≤
n∑
i=1

(
L2
i ‖x−y‖2

2

)
=
( n∑
i=1

L2
i

)
‖x−y‖2

2,

(3.19)

which means

∀x,y∈K,
∥∥ψ(x)−ψ(y)∥∥2 ≤

√√√√ n∑
i=1

L2
i ‖x−y‖2, (3.20)

showing that ψ(z) satisfies the Lipschitz condition. Consequently, g(z) satis-

fies the Lipschitz condition.

This completes the proof for the existence and uniqueness of the solution

of the Cauchy problem.

Lemma 3.2. For any t0 and any positive initial condition z(t0) = z0 > 0, the

unique solution z(t) = z(t;t0,z0) of DE (3.1) remains positive for its maximal

interval of existence [t0,T ).

Proof. First, we prove that, for any t0 and any nonnegative initial condi-

tion z(t0) = z0 ≥ 0, the unique solution z(t) = z(t;t0,z0) of DE (3.1) remains

nonnegative as long as it exists.

The uniqueness of z(t) is guaranteed by Lemma 3.1.

On the other hand, for any z ≥ 0, the definition of gi in (2.19) ensures the

fulfillment of the inequality

0≤ gi(z) with zi = 0, zj ≥ 0, i≠ j, for i= 1, . . . ,n. (3.21)

This means that, for the vector function v(t)= [v1(t)···vn(t)]′ = [0···0]′,
where [···]′ denotes transposition, the inequality

v̇i(t)≤ gi
(
z1, . . . ,zi−1,vi(t),zi+1, . . . ,zn

)
, i= 1, . . . ,n, (3.22)
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holds for arbitrary nonnegative z≥ 0, which is a necessary and sufficient con-

dition for the flow invariance of the set Rn+ with respect to DE (3.1), that is,

∀t0 ≤ t, ∀z
(
t0
)= z0 ≥ 0, z

(
t;t0,z0

)≥ 0. (3.23)

Now, for any t0 and any positive initial condition z(t0) = z0 > 0, we can

write the following inequalities for the corresponding unique solution z(t) =
z(t;t0,z0) of DE (3.1):

żi(t)≥ ĉiizpiii (t), ĉii =max
{
c̄ii, c̃ii

}
, i= 1, . . . ,n, (3.24)

because, according to the definition of gi in (2.19), all the coefficients c̄ij , c̃ij ,
j ≠ i, j = 1, . . . ,n, are nonnegative, and all zj(t) are also nonnegative (from the

first part of the current proof).

We start with the case when ĉii ≥ 0. As zi(t) ≥ 0 (from the first part of the

current proof), we have

żi(t)≥ 0, zi
(
t0
)
> 0, (3.25)

which shows that zi(t) is nondecreasing as long as it exists, yielding

zi(t)≥ zi
(
t0
)
> 0 (3.26)

for its maximal interval of existence.

Now, we deal with the case when ĉii < 0. Consider the differential equation

ṙi(t)= ĉiirpiii (t), (3.27)

with the initial condition

ri
(
t0
)= zi(t0)> 0. (3.28)

According to a well-known property of the scalar differential inequalities

(e.g., [6, page 57]), we have

zi(t)≥ ri(t), t ∈ [t0,T), (3.29)

where [t0,T ) denotes the maximal interval of existence for both zi(t) and ri(t).
For pii = 1, ri(t) is given by

ri(t)= zi
(
t0
)
eĉii(t−t0), t ∈ [t0,∞), (3.30)

and, therefore,

zi(t)≥ zi
(
t0
)
eĉii(t−t0) > 0 (3.31)

for the maximal interval of existence of zi(t).
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For pii ≥ 2, ri(t) is given by

ri(t)= 1
pii−1
√
−ĉii

(
pii−1

)(
t−t0

)+1/zpii−1
i

(
t0
) , t ∈ [t0,∞), (3.32)

and, therefore,

zi(t)≥ 1
pii−1
√
−ĉii

(
pii−1

)(
t−t0

)+1/zpii−1
i

(
t0
) > 0 (3.33)

for the maximal interval of existence of zi(t). The proof is completed since t0
and z(t0)= z0 > 0 were arbitrarily taken.

We can easily see that Lemma 3.2 guarantees the existence of PSs for DI

(2.19) in the particular case when “≥” is replaced by “=.” However, DI (2.19)

might have PSs that do not satisfy DE (3.1), and, therefore, we further establish

a connection between the PSs of DI (2.19) and the PSs of DE (3.1).

Lemma 3.3. Let y(t) > 0 be an arbitrary PS of DI (2.19) with the maximal

interval of existence [t0,T ). Denote by z(t) an arbitrary PS of DE (3.1), corre-

sponding to an initial condition z(t0) that satisfies the componentwise inequality

0< z
(
t0
)≤ y

(
t0
)
. (3.34)

Denote by z∗(t) the unique PS of DE (3.1) corresponding to the initial condition

taken by y(t), that is,

z∗
(
t0
)≡ y

(
t0
)
. (3.35)

For t ∈ [t0,T ), the following inequalities hold:

0< z(t)≤ z∗(t)≤ y(t). (3.36)

Proof. The fulfillment of the inequality 0 < z(t) for 0 < z(t0) is guaran-

teed by Lemma 3.2. Suppose that there exists a vector function h(t) ∈ Rn,

which is differentiable and positive for t ∈ [t0,T ), with the following property:

any solution of DE (3.1) z(t)= z(t;t0,z0), whose initial condition satisfies the

inequality

0< z
(
t0
)= z0 ≤ h

(
t0
)
, (3.37)

satisfies the inequality

0< z(t)= z
(
t;t0,z0

)≤ h(t), t ∈ [t0,T). (3.38)
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According to [11, pages 74–75], a necessary and sufficient condition for such

a property to take place is that

gi
(
z1, . . . ,zi−1,hi,zi+1, . . . ,zn

)≤ ḣi, i= 1, . . . ,n, (3.39)

for all z with 0< z≤ h.

Using the definition of gi in (2.19), we can write, for 0< z≤ h(t),

gi
(
z1, . . . ,zi−1,hi,zi+1, . . . ,zn

)

= max
hi,zj , j≠i

ciih
pii
i +

n∑
j=1
j≠1

cijz
pij
j , c̃iih

pii
i +

n∑
j=1
j≠1

c̃ijz
pij
j


≤max

h∈Rn

ciih
pii
i +

n∑
j=1
j≠1

cijh
pij
j , c̃iih

pii
i +

n∑
j=1
j≠1

c̃ij


≤ hi, i= 1, . . . ,n,

(3.40)

which actually means

g(h)≤ ḣ, t ∈ [t0,T). (3.41)

In other words, the vector function h(t), we have considered above, should

be an arbitrary PS y(t) > 0 of DI (2.19). Hence,

0< z(t)≤ y(t), t ∈ [t0,T), (3.42)

for all PSs z(t)= z(t;t0,z0) of DE (3.1), corresponding to initial conditions that

satisfy the inequality

0< z
(
t0
)= z0 ≤ y

(
t0
)
. (3.43)

The PS solution z∗(t) = z(t,t0,y(t0)) of DE (3.1), which corresponds to the

initial condition y(t0) > 0, satisfies the inequality

0< z∗(t)≤ y(t), t ∈ [t0,T), (3.44)

but, at the same time, it is one of the PSs of DI (2.19) with the initial condition

y(t0) > 0, and, consequently, it is able to ensure

0< z(t)≤ z∗(t), t ∈ [t0,T). (3.45)

Theorem 3.4. If Hy(t), Hz∗(t), and Hz(t) denote three TDRSs, which are FI

with respect to UNS (2.1), generated by the following three types of PSs of DI
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(2.19), y(t)-arbitrary PS of DI (2.19), z∗(t)-unique PS of DE (3.1), with z∗(t0)=
y(t0), and z(t)-arbitrary PS of DE (3.1), with z(t0)≤ y(t0), then

Hz(t)⊆Hz∗(t)⊆Hy(t) ∀t ∈ [t0,T), (3.46)

where [t0,T ) denotes the maximal interval of existence for Hy(t).

Proof. The construction procedure of Hy(t), Hz∗(t), and Hz(t) guarantees,

according to Lemma 3.3, the following inclusions:

[−zi(t),zi(t)]⊆ [−z∗i (t),z∗i (t)]⊆ [−yi(t),yi(t)], t ∈ [t0,T), i= 1, . . . ,n.
(3.47)

Now, taking the Cartesian product (2.3) that defines the TDRSs, we complete

the proof.

Given a TDRS which is FI with respect to UNS (2.1), we can formulate a con-

dition for the existence of other TDRSs, strictly included in the former one,

which are FI with respect to UNS (2.1) too.

Theorem 3.5. Denote by Hy(t) a TDRS, which is FI with respect to UNS (2.1)

for its maximal interval of existence [t0,T ). If there exist n functions δi(t)∈C1,

which are nondecreasing, positive, and subunitary 0< δi(t) < 1, i = 1, . . . ,n,

such that

g
(
∆(t)y(t)

)≤∆(t)g(y(t)); ∆(t)= diag
{
δi(t), . . . ,δn(t)

}
, (3.48)

then the TDRS H∆y(t), generated by the vector function ∆(t)y(t), is also FI with

respect to UNS (2.1) and

H∆y(t)⊂Hy(t), t ∈ [t0,T). (3.49)

Proof. As Hy(t) is FI with respect to UNS (2.1), the vector function y(t) is a

PS of DI (2.19), and, consequently, the following inequality holds for t ∈ [t0,T ):

∆(t)g
(
y(t)

)≤∆(t)ẏ(t), (3.50)

due to the positiveness of δi(t), i= 1, . . . ,n.

Taking into account the monotonicity of δi(t), i= 1, . . . ,n, and the positive-

ness of y(t), we can also write

∆(t)g
(
y(t)

)≤∆(t)ẏ(t)+∆̇(t)y(t)= d
dt
(
∆(t)y(t)

)
, t ∈ [t0,T), (3.51)

which is further exploited, together with inequality (3.48), to show that∆(t)y(t)
is a PS of DI (2.19). Hence, TDRS H∆y(t) is FI with respect to UNS (2.1).
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On the other hand, the conditions δi(t) < 1, i = 1, . . . ,n, imply the strict

inclusions

[−δi(t)yi(t),δi(t)yi(t)]⊂ [−yi(t),yi(t)], i= 1, . . . ,n, t ∈ [t0,T), (3.52)

which, in accordance with the definition of TDRSs in (2.3), complete the proof.

Remark 3.6. Functions δi(t) can be chosen as positive, subunitary con-

stants, a case in which the resulting TDRS H∆y(t) is homotetic with Hy(t),
taking different transformation factors for each component. When all δi, i =
1, . . . ,n, are equal to the same positive, subunitary constant, the transforma-

tion factors are identical for all the components.

A great interest for practice presents those TDRSs, FI with respect to UNS

(2.1), which are defined on [t0,∞) and remain bounded for any t ∈ [t0,∞).
Therefore, our next theorem deals with the case of infinite-time horizon, for

which it gives a necessary condition formulated directly in terms of interval-

type coefficients aii and exponents pii in UNS (2.1).

Theorem 3.7. For the existence of TDRSs, FI with respect to UNS (2.1), which

are bounded on [t0,∞), it is necessary (but not sufficient) that aii and pii of UNS

(2.1) meet the following requirement, for i= 1, . . . ,n:

(
if pii odd, then a+ii≤0

)
or

(
if pii even, then a−ii=a+ii=0

)
. (3.53)

Proof. The boundedness on [t0,∞) of a TDRS Hy(t) which is FI with re-

spect to UNS (2.1) means, according to Theorem 2.4, the existence of PSs for DI

(2.19) which are bounded on [t0,∞). Denote by y(t) such a solution of DI (2.19).

Denote by z∗(t) the PS of DE (3.1) which corresponds to the initial condition

z∗(t0)= y(t0) > 0. From Lemma 3.3, it follows that z∗(t) is also bounded.

On the other hand, the second part of the proof of Lemma 3.2 shows that

z∗i (t), i= 1, . . . ,n, should satisfy the inequality

ż∗i (t)≥ ĉii
(
z∗i (t)

)pii , ĉii =max
{
c̄ii, c̃ii

}
. (3.54)

If, for arbitrary i, i= 1, . . . ,n, we attach the differential equation

ṙi(t)= ĉiirpiii (t) (3.55)

with the initial condition

ri
(
t0
)= z∗i (t0), i= 1, . . . ,n, (3.56)
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we can use the link between z∗i (t) and ri(t) (e.g., [6, page 57]). Consequently,

for the maximal interval of existence of both z∗i (t) and ri(t), we get

z∗i (t)≥ ri(t), (3.57)

which, corroborated with the boundedness requirement for z∗i (t), implies the

boundedness of ri(t) on [t0,T ).
For the solutions ri(t), we have the following analytical expressions:

(i) if ĉii = 0, ri(t)= ri(t0),
(ii) if ĉii ≠ 0 and pii = 1, ri(t)= ri(t0)eĉii(t−t0),

(iii) if ĉii ≠ 0 and pii ≥ 2, ri(t)= 1/ pii−1
√
−ĉii(pii−1)(t−t0)+1/rpii−1

i (t0),
showing that, for the boundedness of ri(t) on [t0,∞), we need ĉii ≤ 0.

Now, taking into account formulation (2.7) and (2.8) of c̄ii, c̃ii in terms of the

interval type coefficients aii of UNS (2.1), we see that there exist the following

possibilities:

(i) if pii odd, then, with necessity, a+ii ≤ 0,

(ii) if pii even, then, with necessity, a−ii = a+ii = 0.

The proof is completed because the previous discussion is valid for any i,
i= 1, . . . ,n.

The next step in refining the conditions imposed on the TDRS FI with respect

to UNS (2.1) aims at forcing the boundedness property by adding a supplemen-

tary request for the time-dependence of TDRS, namely, to approach {0} for

t→∞. Thus, the concept of FI induces a particular type of asymptotic stability

(AS) for the equilibrium point (EP){0} of UNS (2.1) (stronger than the standard

concept based on vector norms in Rn), which is going to be separately studied

in the following section.

4. Componentwise asymptotic stability. Let γ(t) : [t0,∞)→Rn be a differ-

entiable vector function with γi(t) > 0, i= 1, . . . ,n, (as considered in Definition

2.1, which introduces the FI concept), and suppose that γ(t) also has the prop-

erty

lim
t→∞
γ(t)= 0. (4.1)

Definition 4.1. EP{0} of UNS (2.1) is called componentwise asymptotically

stable with respect to γ(t) (CWASγ) if, for any x(t0)= x0 with |x0| ≤ γ(t0), the

following inequality holds:

∣∣x(t)∣∣≤ γ(t), t ∈ [t0,∞). (4.2)

Remark 4.2. Definition 4.1 can be restated in terms of FI by taking Definition

2.1 with T =∞ in (2.4) supplemented with condition (4.1) for the behavior at

the infinity.
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In the light of the above remark, the results presented in Theorems 2.3 and

2.4 can be immediately transformed to characterize CWASγ of EP{0} of UNS

(2.1), yielding the following two theorems.

Theorem 4.3. P{0} of UNS (2.1) is CWASγ if and only if there exist common

PSs γ(t) > 0 for DI (2.18), with limt→∞γ(t)= 0.

Proof. It is a direct consequence of Theorem 2.3 for the particular case of

TDRSs meeting condition (4.1).

Theorem 4.4. EP{0} of UNS (2.1) is CWASγ if and only if there exist PSs

γ(t) > 0 for DI (2.19), with limt→∞γ(t)= 0.

Proof. It is a direct consequence of Theorem 2.4 for the particular case of

TDRSs meeting condition (4.1).

As the boundedness of TDRSs on [t0,∞) introduces some restrictions for

the exponents pii and interval-type coefficients aii of UNS (2.1) (formulated in

Theorem 3.7), more restrictive conditions are expected when replacing bound-

edness with the stronger requirement (4.1).

Theorem 4.5. A necessary condition for EP{0} of UNS (2.1) to be CWASγ is

that pii odd and a+ii < 0 for all i= 1, . . . ,n.

Proof. From the fact that EP{0} of UNS (2.1) is CWASγ , it follows that, for

each i, i = 1, . . . ,n, there exists a number of points where γi(t) is decreasing.

Let t∗ be one of them, meaning that γ̇i(t∗) < 0. Taking into account that γ(t)
is a PS of DI (2.18), we get the inequalities

0> γ̇i
(
t∗
)≥ ḡi(γ̇i(t∗))≥ c̄iiγi(t∗),

0> γ̇i
(
t∗
)≥ g̃i(γ̇i(t∗))≥ c̃iiγi(t∗), (4.3)

which, because of the positiveness of γ(t∗), yield the necessary condition

ĉii =max
{
c̄ii, c̃ii

}
< 0. (4.4)

The proof continues along the lines of the proof of Theorem 3.7 in order

to restate this condition in terms of pii and aii, i= 1, . . . ,n, of the considered

UNS (2.1).

We now resume our qualitative analysis of the solutions of DI (2.19) and DE

(3.1) to develop a refined interpretation of the result stated in Theorem 4.4.

Lemma 4.6. Let pii odd and a+ii < 0 for all i= 1, . . . ,n. Consider an arbitrary

PS y(t) > 0 of DI (2.19) with its maximal interval of existence [t0,T ). If z(t)
denotes an arbitrary solution of DE (3.1), corresponding to the initial condition

z(t0), satisfying

−y
(
t0
)≤ z

(
t0
)≤ y

(
t0
)
, (4.5)
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then the following inequalities hold for t ∈ [t0,T ):

−y(t)≤ z(t)≤ y(t). (4.6)

Proof. Suppose that there exists a vector function h(t)∈Rn, differentiable

and positive for t∈[t0,T ), with the following property: any solution of DE (3.1)

z(t)=z(t;t0,z0), whose initial condition satisfies the inequality

−h
(
t0
)≤ z

(
t0
)≤ h

(
t0
)
, (4.7)

satisfies the inequality

−h(t)≤ z(t)≤ h(t), t ∈ [t0,T). (4.8)

According to [11, pages 74–75], a necessary and sufficient condition for such

a property to take place is that

gi
(
z1, . . . ,zi−1,hi,zi+1, . . . ,zn

)≤ ḣi, i= 1, . . . ,n,

gi
(
z1, . . . ,zi−1,−hi,zi+1, . . . ,zn

)≥−ḣi, i= 1, . . . ,n,
(4.9)

for all z(t), with −h(t) ≤ z(t) ≤ h(t). Using the definition of gi in (2.19), we

can write

gi
(
z1, . . . ,zi−1,hi,zi+1, . . . ,zn

)

= max
hi,zj , j≠i

c̄iih
pii
i +

n∑
j=1
j≠i

c̄ijz
pij
j , c̃iih

pii
i +

n∑
j=1
j≠i

c̃ijz
pij
j


≤max

h∈Rn

c̄iih
pii
i +

n∑
j=1
j≠i

c̄ijh
pij
j , c̃iih

pii
i +

n∑
j=1
j≠i

c̃ijh
pij
j


≤ ḣi, i= 1, . . . ,n,

(4.10)

which actually means DI (2.19) (written in h instead of y) and

gi
(
z1, . . . ,zi−1,−hi,zi+1, . . . ,zn

)

= max
hi,zj , j≠i

c̄ii
(−hi)pii+ n∑

j=1
≠i

c̄ijz
pij
j , c̃ii

(−hi)pii+ n∑
j=1
j≠i

c̃ijz
pij
j


≥

n∑
j=1

pij odd

cij
(−hj)pij ≥−ḣi, i= 1, . . . ,n,

(4.11)

where cij = c̄ij = c̃ij because all pij are odd.
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The last set of inequalities means

ḣi ≥
n∑
j=1

pij odd

cij
(
hj
)pij , i= 1, . . . ,n, (4.12)

which is automatically satisfied whenever DI (2.19) is met because each inequal-

ity in DI (2.19) also includes a positive amount given by the sum corresponding

to the even pij .
Thus, we have shown that the vector function h(t), considered above, should

be a PS of DI (2.19), a fact that completes the proof.

Lemma 4.6 creates a deeper insight into the topology of the solutions (not

only positive) of DE (3.1) in the vicinity of EP{0}, which permits revealing the

link between condition (4.1) and the nature of EP{0} for DE (3.1).

Theorem 4.7. EP{0} of UNS (2.1) is CWASγ if and only if EP{0} of DE (3.1)

is AS.

Proof

Sufficiency. The statement “EP{0} of DE (3.1) is AS” ensures the existence

of a vicinity of {0}, denoted by V (0), such that, for any z(t0) = z0 ∈ V(0), the

solution z(t) = z(t;t0,z0) of DE (3.1) has the property limt→∞z(t) = 0. If, in

V(0), we take a positive initial condition z∗(t0) = z∗0 > 0, then, in accordance

with Lemma 3.2, the corresponding solution z∗(t) of DE (3.1) will remain pos-

itive on [t0,∞) with limt→∞z∗(t) = 0. Thus, we have found a PS for DI (2.19),

which also meets condition (4.1); from Theorem 4.4, it results that EP{0} of

UNS (2.1) is CWASγ with γ(t)= z∗(t).
Necessity. The statement “EP{0} of UNS (2.1) is CWASγ” ensures the ex-

istence of a PS γ(t) for DI (2.19), defined on [t0,∞) and with limt→∞γ(t) = 0.

According to Lemma 4.6, this means that, for any z(t0) = z0 with −γ(t0) ≤
z(t0) ≤ γ(t), the corresponding solution z(t) = z(t;t0,z0) of DE (3.1) has the

property

−γ(t)≤ z(t)≤ γ(t), t ∈ [t0,∞), (4.13)

with limt→∞γ(t)= 0. It results that EP{0} of DE (3.1) is AS.

Remark 4.8. Clearly, the concept of CWASγ for EP{0} of UNS (2.1) is not

equivalent to the standard AS. If EP{0} of UNS (2.1) is CWASγ, then it is AS,

but the converse statement is not true. However, Theorem 4.7 can be used as a

sufficient condition for approaching the standard problem of AS for UNS (2.1),

where the presence of uncertainties (expressed by interval-type coefficients)

makes rather difficult the usage of classical procedures.
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For practice, it is hard to handle DE (3.1) in order to check its AS analytically.

A more attractive approach is to find just a sufficient condition for CWASγ,

based on an operator with a more tractable form than g in DE (3.1).

Theorem 4.9. Consider the DE

ż= ĝ(z); ĝi(z)=
n∑
j=1

ĉijz
pij
j , i= 1, . . . ,n, (4.14)

where the coefficients ĉijare defined by

ĉij =max
{
c̄ij , c̃ij

}
, i,j = 1, . . . ,n. (4.15)

(i) If EP{0} is AS for DE (4.14), then EP{0} is CWASγ for UNS (2.1).

(ii) In the particular case when the interval-type coefficients aij of UNS (2.1)

satisfy the inequalities given below, for each i, i= 1, . . . ,n,

if pij
i≠j

even then
(
a+ij ≥−a−ij ∀j or a+ij ≤−a−ij ∀j

)
, (4.16)

the sufficient condition stated at (i) is also necessary for EP{0} of UNS (2.1) to

be CWASγ.

Proof. (i) We can easily see that the techniques used in the proof of Lemma

3.2 can be immediately applied to show that, for any positive initial condition

y(t0) = y0 > 0, the corresponding solution y(t) of DE (4.14) remains positive

as long as it exists. Thus, from the AS of EP{0} of DE (4.14), it results that

DE (4.14) has PSs, generically denoted by y(t) defined on [t0,∞) and meeting

condition (4.1).

On the other hand, the following inequality

ĝ(y)≥ g(y) (4.17)

holds for all y ∈ Rn+. Finally, we see that, for any PS of DE (4.14) with the

properties mentioned above, we can write

ẏ= f̂(y)≥ g(y). (4.18)

This means that y(t) > 0 is a PS for DI (2.19), also meeting condition (4.1),

that is, UNS (2.1) is CWASγ, with γ(t)= y(t).
(ii) A quick exploration of the definition of ĝ in (4.14) shows that the dif-

ference from g in (2.19) actually refers to the sums corresponding to pij even,
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that is,

n∑
j=1
j≠i

pij even

ĉijz
pij
j which appears in ĝi;

n∑
j=1
j≠i

pij even

c̄ijz
pij
j which appears in ḡi;

n∑
j=1
j≠i

pij even

c̃ijz
pij
j which appears in g̃i; i= 1, . . . ,n.

(4.19)

Condition (4.16), expressed in terms of c̄ij and c̃ij , means, for each i =
1, . . . ,n,

(a) c̄ij ≥ c̃ij for all j corresponding to pij even, or

(b) c̃ij ≥ c̄ij for all j corresponding to pij even.

The inequalities in case (a) show that

ḡi(z)≥ g̃i(z), z∈Rn, (4.20)

yielding the conclusion (because pij are even)

gi(z)=max
z

{
ḡi(z), g̃i(z)

}= ḡi(z)= ĝi(z), z∈Rn. (4.21)

The inequalities in case (b) show that

g̃i(z)≥ ḡi(z), z∈Rn, (4.22)

yielding the conclusion (because pij are even)

gi(z)=max
z

{
ḡi(z), g̃i(z)

}= g̃i(z)= ĝi(z), z∈Rn. (4.23)

Thus, taking all i= 1, . . . ,n, we can write

g(z)= ĝ(z), z∈Rn. (4.24)

This equality allows the replacement of g(z) by ĝ(z) in Theorem 4.7, which

is a necessary and sufficient condition.

The advantage of Theorem 4.9 consists in dealing with a single DE (4.14)

whose coefficients have unique and constant values. Moreover, inequalities

(4.16) may be frequently fulfilled in practical studies, a fact that ensures a

complete answer to the CWASγ investigation.
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5. Componentwise exponential asymptotic stability. Consider the vector

function

γ(t)=αert, α= [α1, . . . ,αn
]′ ∈Rn, αi > 0, i= 1, . . . ,n, r < 0. (5.1)

Definition 5.1. EP{0} of UNS (2.1) is called componentwise exponential

asymptotically stable (CWEAS) if there exist α∈Rn, α> 0, and r < 0 such that,

for any x(t0)= x0 with |x0| ≤αert0 , the following inequality holds

∣∣x(t)∣∣≤αert, t ∈ [t0,∞). (5.2)

Remark 5.2. Definition 5.1 can be restated in terms of Definition 4.1 by

taking for γ(t) the particular form given by (5.1).

It is natural to understand this particularization of the function γ(t) as a

new restriction on the time-dependence of TDRS (2.3), which imposes a certain

decreasing rate that should be followed by the state trajectories of UNS (2.1).

Such a restriction is reflected by more severe conditions on the exponents pii
and interval-type coefficients aii of UNS (2.1) than stated in Theorem 4.5.

Theorem 5.3. A necessary condition for the EP{0} of UNS (2.1) to be CWEAS

is that pii = 1 and a+ii < 0, i= 1, . . . ,n, in UNS (2.1).

Proof. If EP{0} of UNS (2.1) is CWEAS, then, according to Theorem 4.3 and

Remark 5.2, there exist α∈Rn, α> 0, and r < 0 such that

0>αirert ≥ ḡi
(
αert

)= c̄iiαpiii epiirt n∑
j=1
j≠i

cijα
pij
j e

piirt

≥ c̄iiαpiii epiirt , t ∈ [t0,∞), i= 1, . . . ,n,

0>αirert ≥ g̃i
(
αert

)= c̃iiαpiii epiirt+ n∑
j=1
j≠i

cijα
pij
j e

piirt

≥ c̃iiαpiii epiirt , t ∈ [t0,∞), i= 1, . . . ,n.

(5.3)

It follows that we necessarily have

c̄ii < 0, c̃ii < 0, piir = r , (5.4)

which, in terms of UNS (2.1), means a+ii < 0 and pii = 1.
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Theorem 5.4. EP{0} of UNS (2.1) is CWEAS if and only if the following non-

linear algebraic inequalities are compatible (have solutions αi > 0, i = 1, . . . ,n,

r < 0):

n∑
j=1

c̄ijα
pij
i

αi
≤ r ; i= 1, . . . ,n, (5.5)

n∑
j=1

c̃ijα
pij
j

αi
≤ r ; i= 1, . . . ,n. (5.6)

Proof. The statement “EP{0} of UNS (2.1) is CWEAS” is equivalent with the

existence of αi > 0, i= 1, . . . ,n, and r < 0 such that

n∑
j=1

c̄ijα
pij
j e

pijrt ≤αirert, t ∈ [t0,∞), i= 1, . . . ,n,

n∑
j=1

c̃ijα
pij
j e

pijrt ≤αirert, t ∈ [t0,∞), i= 1, . . . ,n.

(5.7)

The necessity of (5.5) results from the above inequalities by taking t = 0. For

the sufficiency of (5.5), we take into account that pii = 1, i= 1, . . . ,n, (according

to Theorem 5.3), and for arbitrary t ∈ [t0,∞), we can write

n∑
j=1

c̄ijepijrtα
pij
j = c̄iiertαi+

n∑
j=1
j≠i

c̄ijepijrtα
pij
j ≤ c̄iiertαi+

n∑
j=1
j≠i

c̄ijertα
pij
j

=


n∑
j=1
j≠i

c̄ijα
pij
j

ert ≤ (αir)ert =αirert, i= 1, . . . ,n,

(5.8)

and, similarly,

n∑
j=1

c̃ijepijrtα
pij
j ≤αirert, i= 1, . . . ,n. (5.9)

Theorem 5.5. EP{0} of UNS (2.1) is CWEAS if and only if the following non-

linear algebraic inequalities are compatible (have solutions αi > 0, i= 1, . . . ,n):

n∑
j=1

c̄ijα
pij
i

αi
< 0; i= 1, . . . ,n, (5.10)

n∑
j=1

c̃ijα
pij
j

αi
< 0; i= 1, . . . ,n. (5.11)

Proof. It is an immediate consequence of Theorem 5.4 due to negativity

of r .
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Conditioning the existence of CWEAS to the values of pii in UNS (2.1) (as

stated in Theorem 5.3) raises a direct question about the link between CWEAS

and CWASγ.

Theorem 5.6. For pii = 1 and a+ii < 0, i= 1, . . . ,n, the EP{0} of UNS (2.1) is

CWASγ if and only if it is CWEAS.

Proof

Sufficiency. This is obvious according to Definition 5.1 and Remark 5.2.

Necessity. According to Theorem 5.5, when multiplying each inequality

(5.10) and (5.11) by αi > 0, i = 1, . . . ,n, we get that the CWEAS condition for

EP{0} of UNS (2.1) is equivalent to

ḡ(α) < 0, g̃(α) < 0, (5.12)

where ḡ and g̃ are defined in (2.19).

Now, assume that EP{0} of UNS (2.1) is CWASγ, but it is not CWEAS. As EP{0}
of UNS (2.1) is not CWEAS (in accordance with our assumption), it results that

there exists no α∈Rn, α> 0, such that ḡ(α) < 0 and g̃(α) < 0.

On the other hand, the EP{0} of UNS (2.1) is CWASγ, meaning that (according

to Theorem 4.3) there exists at least one γ(t) > 0 with limt→∞γ(t)= 0, which

is a PS of DI (2.18). It follows that there exists at least one point t∗ ∈ [t0,∞)
for which we can write

ḡi
(
γ
(
t∗
))≤ γ̇i(t∗)< 0, i= 1, . . . ,n,

g̃i
(
γ
(
t∗
))≤ γ̇i(t∗)< 0, i= 1, . . . ,n,

(5.13)

and, moreover, (since γ(t) > 0, t ∈ [t0,∞)) that there exists at least one α,

namely, α = γ(t∗) > 0, such that both inequalities ḡ(α) < 0 and g̃(α) < 0 are

satisfied.

We have obviously reached a contradiction due to our assumption that EP{0}
of UNS (2.1) is not CWEAS. This means that our assumption is false and EP{0}
of UNS (2.1) is CWEAS.

The nonlinear algebraic inequalities (5.5) can be written compactly in a ma-

trix form, using norm∞, by considering the square matrices M̄,M̃∈Rn×n with

the following entries:

(
M̄
)
ij =

c̄ijα
pij
j

αi
,

(
M̃
)
ij =

c̃ijα
pij
j

αi
, (5.14)

and a positive real number:

s >
∣∣ĉii∣∣, i= 1, . . . ,n. (5.15)
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Theorem 5.7. EP{0} of UNS (2.1) is CWEAS if and only if there exist αi > 0,

i= 1, . . . ,n, and r < 0 such that

max
{∥∥M̄+sI∥∥∞,∥∥M̃+sI∥∥∞}≤ r +s. (5.16)

Proof. Taking s as in (5.15), inequalities (5.5) can be rewritten, equivalently

(since pii = 1), in the following form:

(
c̄ii+s

)+ n∑
j=1

c̄ijα
pij
j

αi
≤ r +s, i= 1, . . . ,n,

(
c̃ii+s

)+ n∑
j=1

c̃ijα
pij
j

αi
≤ r +s, i= 1, . . . ,n,

(5.17)

which, using a matrix formulation, means exactly (5.16) because all the entries

of matrices M̄+sI and M̃+sI are nonnegative.

Theorem 5.8. EP{0} of UNS (2.1) is CWEAS if and only if there exist αi > 0,

i= 1, . . . ,n, and r < 0 such that

max
{∥∥M̄+sI∥∥∞,∥∥M̃+sI∥∥∞}< s. (5.18)

Proof. It is a direct consequence of Theorem 5.7 due to the negativity of r .

Remark 5.9. Theorems 5.7 and 5.8 present the advantage of a more tract-

able formulation from the computational point of view than inequalities (5.5)

and (5.6), respectively. Thus, the determination of αi, i= 1, . . . ,n, and r can be

approached as a nonlinear optimization problem with adequate constraints.

As already discussed in the general case of CWASγ , it might be preferable to

use a sufficient condition generated from DE (4.14) in Theorem 4.9. Therefore,

consider the square matrix P̂∈Rn×n with the following entries:

(
P̂
)
ij = ĉijεpij−1, ε > 0, (5.19)

where ĉij , i,j = 1, . . . ,n, are defined by (4.15) in Theorem 4.9. Denote by λmax(P̂)
the eigenvalue of P̂ (simple or multiple) with the greatest real part. As ĉij ≥ 0,

i≠ j, i,j = 1, . . . ,n, according to [9], λmax(P̂) is a real number.

Theorem 5.10. If, for a given ε > 0, matrix P̂ is Hurwitz stable, then the

EP{0} of UNS (2.1) is CWEAS for some 0<αi ≤ ε, i= 1, . . . ,n, and λmax(P̂)≤r <0.
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Proof. Consider the square matrix M̂ whose entries are defined as

(
M̂
)
ij =

ĉijα
pij
j

αi
, i= 1, . . . ,n, (5.20)

where ĉij are defined according to (4.15). This means that we can write

max
{∥∥M̄+sI∥∥∞,∥∥M̃+sI∥∥∞}≤ ∥∥M̂+sI∥∥∞. (5.21)

Now, for any 0<αi ≤ ε, we have

(
M̂
)
ij =

αj
(
ĉijα

pij−1

j

)
αi

≤αjĉijεpij−1/αi

= αi
(
P̂
)
ij

αi
=αi, ∀i,j = 1, . . . ,n, i≠ j,

(
M̂
)
ii =

(
P̂
)
ii, i= 1, . . . ,n,

(5.22)

which can be globally written as

M̂≤D−1P̂D, (5.23)

where D= diag{α1, . . . ,αn}. It follows that

∥∥M̂+sI∥∥∞ ≤ ∥∥D−1P̂D+sI∥∥∞, (5.24)

where, for the right-hand side, we have

min
D>0

∥∥D−1P̂D+sI∥∥∞ = ρ(P̂+sI)= λmax
(
P̂
)+s. (5.25)

It follows that, for any 0<αi ≤ ε, i= 1, . . . ,n, we can write

max
{∥∥M̄+sI∥∥∞,∥∥M̂+sI∥∥∞}≤ λmax

(
P̂
)+s, (5.26)

which shows that, whenever P̂ is Hurwitz stable, condition (5.16) is met for

λmax(P̂)≤ r . Thus, according to Theorem 5.7, EP{0} of UNS (2.1) is CWEAS for

any 0<αi ≤ ε and λmax(P̂)≤ r .

The advantage of Theorem 5.10 consists in a quick test on the stability of

matrix P̂ which depends on a single parameter ε > 0.

Remark 5.11. According to Theorem 4.9, whenever inequalities (4.16) are

satisfied, the existence of a positive ε > 0, for which matrix P̂ is Hurwitz stable,

represents a necessary and sufficient condition for the EP{0} of UNS (2.1) to

be CWEAS.
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6. CWASγ and CWEAS in linear approximation. The linear approximation

of UNS (2.1) is an uncertain system with interval matrix, preserving only those

elements aijx
pij
j in fi(x), i,j ≥ 1, . . . ,n, for which pij = 1. Thus, it is necessary

to have pij = 1, i = 1, . . . ,n, because, otherwise, the linear approximation of

UNS (2.1) cannot be CWASγ (or equivalently CWEAS), according to [9]. In other

words, CWASγ and CWEAS in linear approximation are equivalent concepts,

and the linear approximation inherits the CWEAS property from UNS (2.1) as

shown below.

Theorem 6.1. Let pii = 1 and a+ii < 0, i = 1, . . . ,n. EP{0} of UNS (2.1) is

CWEAS if and only if the linear approximation of UNS (2.1) is CWEAS.

Proof. UNS (2.1) in the first approximation is described by the equations

ẋi =
n∑
j=1
pij=1

aijx
pij
j , i= 1, . . . ,n, (6.1)

which, according to [9], is CWEAS if and only if the square matrix B ∈ Rn×n,

built with the common coefficients of ḡi and g̃i in (2.19) as

(B)ij = bij =
c̄ij = c̃ij , if pij = 1,

0, if pij ≥ 2,
(6.2)

is Hurwitz stable. Equivalently, there exist αi > 0, i = 1, . . . ,n, such that the

following inequalities are true:

n∑
j=1

bijαj
αi

< 0, i= 1, . . . ,n. (6.3)

Necessity. If EP{0} of UNS (2.1) is CWEAS, then the above inequalities are

fulfilled because

n∑
j=1

bijαj
αi

≤max

{ n∑
j=1

c̄ijα
pij
j

αi
,
n∑
j=1

ĉijα
pij
j

αi

}
, i= 1, . . . ,n. (6.4)

Sufficiency. If UNS (2.1) in the first approximation is CWEAS, then there

exists a small q > 0 such that the inequalities

n∑
j=1

bijαj
αi

<−q, i= 1, . . . ,n, (6.5)

are satisfied for some αi > 0, i = 1, . . . ,n. We can choose (because of linear-

ity) a set {α∗1 , . . . ,α∗n} with all α∗i ≥ 1, i = 1, . . . ,n. Denote by α∗max and α∗min

the maximum and minimum value, respectively, for the set {α∗1 , . . . ,α∗n}. Obvi-

ously, any other set of αi, i= 1, . . . ,n, with αi = ηα∗i , η > 0, satisfies the above

inequality.
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Denote by c the maximum value of the coefficients c̄ij and c̃ij for pij ≥ 2

and by p the maximum value of the pij ≥ 2 for all i,j = 1, . . . ,n. Thus, for any

αi = ηα∗i , η∈ (0,1], we can write

n∑
j=1
pij≥2

c̄ijα
pij
j

αi
=

n∑
j=1
pij≥2

c̄ij
[
ηpij−1(α∗j )pij−1

](α∗j
α∗i

)

≤
n∑
j=1
pij≥2

c
[
ηpij−1(α∗j )pij−1

]α∗max

α∗min

≤ cα
∗
max

α∗min

n∑
j=1
pij≥2

η
(
α∗max

)p−1

= ηcn
(
α∗max

)p
α∗min

, i= 1, . . . ,n,

(6.6)

and, similarly,

n∑
j=1
pij≥2

c̃ijα
pij
j

αi
≤ ηcn

(
α∗max

)p
α∗min

, i= 1, . . . ,n. (6.7)

Now, taking η∗ = qα∗min/cn(α∗max)p < 1 for αi = η∗α∗i , i = 1, . . . ,n, we can

write

n∑
j=1
pij≥2

c̄ijα
pij
j

αi
≤ q,

n∑
j=1
pij≥2

c̃ijα
pij
j

αi
≤ q, (6.8)

and, moreover,

n∑
j=1

c̄ijα
pij
j

αi
< 0,

n∑
j=1

c̃ijα
pij
j

αi
< 0, (6.9)

meaning the fulfillment of the necessary and sufficient condition for EP{0} of

UNS (2.1) to be CWEAS that was formulated in Theorem 5.5.

Remark 6.2. The equivalence stated by the previous theorem should be

understood just in qualitative terms around the EP{0} since, for the linear

approximation of UNS (2.1), CWEAS is a global property (due to the linearity—

see [9]), whereas both direct and converse proofs in Theorem 6.1 refer to a

local property of UNS (2.1).

7. Examples. The following two examples illustrate the applicability of FI

theory to a componentwise investigation of the dynamics around the EPs of
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UNSs, able to reveal characteristics which remain hidden for the standard tools

of stability analysis.

Example 7.1. Consider the second-order UNS described by the equations

ẋ1 = [−5,−2]x1+[4,7]x2; ẋ2 = [−3,−1]x3
1 . (7.1)

EP{0} of UNS (2.1) is globally asymptotically stable. Indeed, for any con-

stant value belonging to the interval-type coefficients, we get a system of the

following form:

ẋ1 = a11x1+a12x2; ẋ2 = a21x3
1 , (7.2)

where a11 ∈ [−5,−2], a12 ∈ [4,7], and a21 ∈ [−3,−1]. If we take the Lyapunov

function

V(x)=− 1
4a11

x4
1+

a12

2a11a21
x2

2 > 0 ∀x1,x2 ≠ 0, (7.3)

it results V̇ (x)=−x4
1 < 0 for any nontrivial state-space trajectory, that is, the

EP{0} is globally asymptotically stable.

However, the EP{0} of this UNS (regarded as a family of systems) cannot be

CWASγ because the coefficient of x2 in the second equation is 0, violating the

necessary condition formulated in Theorem 4.5. Moreover, none of the nonlin-

ear constant systems belonging to the family generated by this UNS is CWASγ
(since Theorem 4.5 is violated for all possible constant values belonging to the

interval-type coefficients).

A graphical representation can be given for any set of constant values of the

coefficients corresponding to the UNS considered in this example, showing

that the state trajectories leave any stationary TDRS. For instance, Figure 7.1

plots the evolution of the vertices of a TDRS with γ1(t) = 1, γ2(t) = 2 in the

right-hand side of equality (2.3) (solid line), and the evolution of the four state

trajectories initialized in the vertices of this TDRS at t = 0, for a11 =−2, a12 =
7, and a21 =−1 (dotted line).

The first example clearly shows that the CWASγ concept is far from triviality

once the UNS is globally AS, but the CWASγ condition cannot be satisfied by any

member of the family generated by this UNS. Unlike this example, the second

one demonstrates the existence of the CWEAS property for a UNS whose EP{0}
is only locally AS.

Example 7.2. Consider the second-order UNS described by the equations

ẋ1 = [−4,−2]x1+[−1,2]x2
2 ; ẋ2 = [−3,1]x2

1+[−6,−5]x2. (7.4)
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Figure 7.1. Plots corresponding to the UNS considered in Example
7.1 for constant coefficients a11 = −2, a12 = 7, and a21 = −1 and
TDRS with γ1(t) = 1, γ2(t) = 2. Solid line is used for the evolution
of the vertices of TDRS and dotted line for the evolution of the four
selected state trajectories. (a) A 2D visualisation for state variable
x1 versus time. (b) A 2D visualisation for state variable x2 versus
time. (c) A 3D visualisation.
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We immediately see that p11 = p22 = 1 and a+11 =−2< 0, and a+22 =−5 < 0,

and, therefore, the CWASγ condition for EP{0} of UNS is equivalent to CWEAS

(according to Theorem 5.6). Thus, we investigate the compatibility of the fol-

lowing nonlinear algebraic inequalities:

−2α1+2α2
2 < 0, α2

1−5α2 < 0, corresponding to (5.10) in Theorem 5.5,

−2α1+α2
2 < 0, 3α2

1−5α2 < 0, corresponding to (5.11) in Theorem 5.5,
(7.5)

which can be reduced to

−2α1+2α2
2 < 0, 3α2

1−5α2 < 0, (7.6)

or, equivalently, to

α2
2 <α1;

3
5
α2

1 <α2. (7.7)

It is obvious that there exist α1 > 0, α2 > 0 ensuring compatibility. Hence,

EP{0} of this UNS is CWEAS.

The CWEAS problem of EP{0} of this UNS can also be approached using

Theorem 6.1 and the linear approximation of UNS

ẋ1 = [−4,−2]x1; ẋ2 = [−6,−5]x2, (7.8)

which yields the linear inequalities

−2α1 < 0; −5α2 < 0. (7.9)

The solution set {α1,α2} previously obtained for the UNS is, obviously,

smaller than the solution set got for the linear approximation. However, each

solution {α1,α2} of the linear approximation, multiplied by an adequately

small positive constant (i.e., η in the proof of Theorem 6.1) becomes a solution

of the initial UNS.

If a set of constant values is selected for the coefficients of the UNS in this

example, we can construct relevant graphical plots for the dynamics under

flow-invariance constraints. For instance, if a11 = −2, a22 = 2, a21 = 1, and

a22 = −5, then a TDRS ensuring CWEAS for the nonlinear system is obtained

by taking α1 = 1, α2 = 0.74, and r = −0.9 in the right-hand side of equality

(5.1). Figure 7.2 plots the evolution of the vertices of TDRS (solid line) and of

the four state trajectories initialized in the vertices of TDRS at t = 0 (dotted

line).

8. Conclusions. Given UNS (2.1), we have defined the FI of TDRS H(t) (2.3)

with respect to this UNS (Definition 2.1), and we have derived a characteriza-

tion of FI in terms of differential inequalities (Theorem 2.2). Two results (The-

orems 2.3 and 2.4) emphasize the equivalence between the existence of TDRSs
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Figure 7.2. Plots corresponding to the UNS considered in Example
7.2 for constant coefficients a11 = −2, a22 = 2, a21 = 1, and a22 =
−5. Solid line is used for the evolution of the vertices of TDRS with
γ1(t) = e−0.9t , γ2(t) = 0.74e−0.9t and dotted line for the evolution
of the four selected state trajectories. (a) A 2D visualisation for state
variable x1 versus time. (b) A 2D visualisation for state variable x2

versus time. (c) A 3D visualisation.
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possessing the FI property and the existence of PSs for differential inequalities

(2.7) and (2.19), respectively. This equivalence allows, further, exploring the

structure of the whole family of TDRSs which are FI with respect to UNS (2.1)

(Theorems 3.4, 3.5, and 3.7).

The FI concept provides basic tools for dealing with CWASγ (Definition 4.1)

as a special type of AS, where the evolution of the state variables approaching

the EP{0} is characterized individually (unlike the standard AS, which relies on

a global knowledge stated in terms of norms). Thus, after some intermediary

results (Theorems 4.3, 4.4, and 4.5), we prove (Theorem 4.7) that the CWAS of

EP{0} for UNS (2.1) is equivalent to the standard AS of EP{0} for DE (3.1). More-

over, we show that a sufficient (and, in some cases, also necessary) condition

is the standard AS of EP{0} for DE (4.14), whose form is simpler than DE (3.1)

(Theorem 4.9).

Supplementary requirements for the individual evolution of the state vari-

ables approaching the EP{0} allow introducing CWEAS (Definition 5.1), repre-

senting a particular type of CWASγ , which may exist only for specific structures

of UNS (2.1) (Theorem 5.3). These requirements make it possible to formulate

algebraic conditions that are necessary and sufficient for the CWEASγ of EP{0}
of UNS (2.1) (Theorems 5.4, 5.5, 5.6, and 5.7). It is shown that, whenever the

structure of UNS (2.1) permits the existence of CWEAS, CWASγ is equivalent

to CWEAS. Simplified algebraic conditions can be derived (Theorem 5.10) as

sufficient (and, in some cases, also necessary) conditions. Finally, for all those

structures of UNS (2.1) allowing the existence of CWEAS, we reveal the link

between the CWEAS of EP{0} for UNS (2.1) and the CWEAS of the linear system

with interval matrix, representing the first approximation of UNS (2.1). Two

examples illustrate the applicability of FI theory to the componentwise inves-

tigation of the dynamics around the EPs of UNSs, able to reveal characteristics,

which remain hidden for the standard tools of stability analysis.
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