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We construct one-parameter complex analytic families whose special fibers are
complete toric varieties. Under appropriate assumptions, the general fibers of
these families also become toric varieties, and the corresponding fans are explicitly
described by the data of the fans associated to the special fibers. Using these fam-
ilies, we construct a deformation family for a certain toric weakened Fano 3-fold.
Moreover, we obtain certain examples of toric weakened Fano 4-folds.

2000 Mathematics Subject Classification: 14M25, 14J45, 32G05.

1. Introduction. It is well known that the Hirzebruch surface Fa (a≥ 0) of

degree a is deformed in a one-parameter family to Fa−2k, where k is a positive

integer such that a−2k ≥ 0. In particular, if a ≡ a′(mod2), then Fa and Fa′
are homeomorphic. In this paper, we generalize this classical result to certain

nonsingular complete toric varieties. Namely, for a nonsingular complete toric

d-fold V which has a toric fibration onto P1 such that its general fiber has at

least one symmetric pair of toric prime divisors (see Definition 3.2), we con-

struct a complex analytic family {Vt}t∈C such that V0 � V . Moreover, under

appropriate assumptions, the fan corresponding to the general fiber of this

family is explicitly described by the data of the fan corresponding to V , and

{Vt}t≠0 are mutually isomorphic.

As an application of this construction of families, we construct a deforma-

tion family for a certain toric weakened Fano 3-fold, that is, a nonsingular toric

weak Fano variety which is not Fano but is deformed to a Fano variety. Toric

weakened Fano d-folds are classified for d ≤ 3 (see Sato [8]). Moreover, we

obtain certain examples of toric weakened Fano 4-folds.

The content of this paper is as follows. In Section 2, we review the homo-

geneous coordinate of a toric variety, which is a key to our main result. In

Section 3, we construct complex analytic families of nonsingular complete va-

rieties over C as stated above. In Section 4, as an application of the construc-

tion, we study deformations among Pd−1-bundles over P1. In Section 5, we give

certain examples of toric weakened Fano 3-folds and 4-folds using the families

constructed in Section 3.

2. Homogeneous coordinates of toric varieties. In this section, we recall

homogeneous coordinates of toric varieties (see Cox [3] and Oda [6]).
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Let N = Zd with elements regarded as column vectors, M := HomZ(N,Z),
NR := N⊗R, MR :=M⊗R, and Σ a fan in N. Throughout this paper, we mean

by a cone a nonsingular rational cone and by a fan inN a nonsingular fan which

contains at least one d-dimensional cone. For 0 ≤ i ≤ d, we put Σ(i) := {σ ∈
Σ | dimσ = i}. Each τ ∈ Σ(1) determines a unique element e(τ) ∈ N which

generates the semigroup τ∩N. Let

G(Σ) := {e(τ)∈N | τ ∈ Σ(1)} (2.1)

and G(σ) := σ ∩G(Σ). We introduce variables {�ρ | ρ ∈ G(Σ)} and consider

the polynomial ring S := C[�ρ | ρ ∈ G(Σ)], which we call the homogeneous

coordinate ring of the nonsingular toric d-fold V corresponding to Σ. Let

Z :=
(Xρ)ρ∈G(Σ) ∈ CG(Σ)

∣∣∣∣∣∣ ∏
ρ∈G(Σ)\G(σ)

Xρ = 0 for any σ ∈ Σ
⊂ CG(Σ). (2.2)

On the other hand, by the exact sequence

0 �→M �→ ZG(Σ) �→ Pic(V) �→ 0, (2.3)

we have an exact sequence

1 �→G :=HomZ
(
Pic(V),C×

)
�→ (C×)G(Σ) �→ TN �→ 1. (2.4)

Since (C×)G(Σ) acts naturally on CG(Σ), the subgroup G ⊂ (C×)G(Σ) acts on CG(Σ)

as

gt := (g([Dρ])tρ)ρ∈G(Σ), (2.5)

where g ∈G, t = (tρ)ρ∈G(Σ) ∈ CG(Σ), and [Dρ]∈ Pic(V) is the class of the toric

prime divisor Dρ corresponding to ρ. In this setting, the following proposition

holds.

Proposition 2.1 (Cox [3, Theorem 2.1]). The subset CG(Σ) \ Z ⊂ CG(Σ) is

invariant under the action of G, and V is the geometric quotient of CG(Σ) \Z by

G. The subset CG(Σ) \Z is denoted by U(Σ).

We need the following proposition for this description.

Proposition 2.2 (Cox [3, Theorem 2.1]). For any σ ∈ Σ,

Uσ �
U(Σ)σ :=

(Xρ)ρ∈G(Σ) ∈U(Σ)

∣∣∣∣∣∣ ∏
ρ∈G(Σ)\G(σ)

Xρ ≠ 0


/G, (2.6)

where Uσ ⊂ V is the affine toric subvariety associated to σ .
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3. Constructions of families. In this section, we construct one-parameter

complex analytic families whose fibers are nonsingular complete varieties. In

particular, the special fibers are nonsingular complete toric varieties. This is

a generalization of the classical results on deformations among Hirzebruch

surfaces.

Let Ñ := {n ∈ N | the dth coordinate of n is 0} and Σ̃ a complete fan in Ñ.

For a complete fan Σ in N containing Σ̃ as a subfan, we define subfans of Σ as

follows:

Σ+ := {σ ∈ Σ | the dth coordinate of n is nonnegative for any n∈ σ},
Σ− := {σ ∈ Σ | the dth coordinate of n is nonpositive for any n∈ σ}. (3.1)

Then, we have Σ̃= Σ+∩Σ−. We denote by V (resp., V+ and V−) the nonsingular

toric d-fold corresponding to the fan Σ (resp., Σ+ and Σ−), while we denote by

Ṽ the nonsingular toric (d−1)-fold corresponding to the fan Σ̃.

Remark 3.1. The variety V has a toric fibration V → P1 whose general fiber

is isomorphic to Ṽ .

For a nonsingular complete fan Σ in N, we can define the abstract simpli-

cial complex Γ(Σ) whose vertex set is G(Σ), naturally. We need the following

definition.

Definition 3.2. Let S be a nonsingular complete toric variety and ΣS the

corresponding fan in N. Then, a pair (D1,D2) of distinct toric prime divisors

on S is called a symmetric pair if the following conditions hold:

(i) D1 =D2 in Pic(S);
(ii) the bijection φ :G(ΣS)→G(ΣS), defined by

φ
(
n1
)= n2, φ

(
n2
)= n1, φ|G(Σ)\{n1,n2} = id, (3.2)

induces the automorphism of Γ(ΣS), where n1 and n2 are the elements

in G(ΣS) corresponding to D1 and D2, respectively.

Remark 3.3. There exists a linear subspace H ⊂NR of codimension 1 such

that G(ΣS)\{n1,n2} ⊂H.

Example 3.4. The d-dimensional projective space Pd has a symmetric pair

of toric prime divisors, while a toric bundle over P1 also has a symmetric pair

of toric prime divisors.

Example 3.5. One can easily check that every nonsingular toric Fano 3-fold

has a symmetric pair of toric prime divisors by the classification. There exists

a toric Fano 3-fold which is neither P3 nor a toric bundle over P1 (see Batyrev

[2] and Watanabe-Watanabe [9]).
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Suppose that Ṽ has at least one symmetric pair of toric prime divisors.

In the above situation, let

G
(
Σ̃
)= {e1, . . . ,ed−1,a1, . . . ,aρ

}
,

G
(
Σ+
)= {b1, . . . ,bm

}∪G(Σ̃), G
(
Σ−
)= {c1, . . . ,cn

}∪G(Σ̃), (3.3)

{e1, . . . ,ed−1,b1} the standard basis for N, and

(
a1, . . . ,aρ,b2, . . . ,bm,c1, . . . ,cn

)

=


a1,1 ··· aρ,1 b2,1 ··· bm,1 c1,1 ··· cn,1

...
. . .

...
...

. . .
...

...
. . .

...

a1,d ··· aρ,d b2,d ··· bm,d c1,d ··· cn,d

 . (3.4)

Suppose that the pair of the toric prime divisors on Ṽ corresponding to e1

and a1 is a symmetric pair. Suppose further that {e1, . . . ,ed−1,b1} generates

a d-dimensional cone in Σ+, while {e1, . . . ,ed−1,c1} generates a d-dimensional

cone in Σ−. For a nonnegative integer k, we construct a complex analytic family.

Since {a1, . . . ,aρ} ⊂ G(Σ̃), we have a1,d = ··· = aρ,d = 0. We have c1,d = −1,

by the assumption that {e1, . . . ,ed−1,c1} generates a d-dimensional cone in Σ−.

Let D1, . . . ,Dd−1; A1, . . . ,Aρ ; B1, . . . ,Bm; and C1, . . . ,Cn be the toric prime divi-

sors corresponding to e1, . . . ,ed−1; a1, . . . ,aρ ; b1, . . . ,bm; and c1, . . . ,cn; respec-

tively. Then, by computing the divisors of the rational functions e(e∗1 ), . . . ,
e(e∗d−1),e(b

∗
1 )∈ C(V), where {e∗1 , . . . ,e∗d−1,b

∗
1 } ⊂M is the dual basis of {e1, . . . ,

ed−1,b1}, we have

D1+a1,1A1+···+aρ,1Aρ+b2,1B2+···
+bm,1Bm+c1,1C1+···+cn,1Cn = 0,

D2+a1,2A1+···+aρ,2Aρ+b2,2B2+···
+bm,2Bm+c1,2C1+···+cn,2Cn = 0,

...

Dd−1+a1,d−1A1+···+aρ,d−1Aρ+b2,d−1B2+···
+bm,d−1Bm+c1,d−1C1+···+cn,d−1Cn = 0,

B1+b2,dB2+···+bm,dBm−C1+c2,dC2+···+cn,dCn = 0

(3.5)

in Pic(V), respectively. Using these equalities, we calculate the homogeneous

coordinates of V , V+, V−, and Ṽ .

Let (X1, . . . ,Xd−1,Y1, . . . ,Yρ,Z1, . . . ,Zm,W1, . . . ,Wn) be a homogeneous coordi-

nate of

V �U(Σ)/G with G :=HomZ
(
Pic
(
V
)
,C×

)
(3.6)
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corresponding to e1, . . . ,ed−1; a1, . . . ,aρ ; b1, . . . ,bm; and c1, . . . ,cn; respectively,

and (X+1 , . . . ,X
+
d−1,Y

+
1 , . . . ,Y+ρ ,Z

+
1 , . . . ,Z+m) a homogeneous coordinate of

V+ �U
(
Σ+
)
/G+ with G+ :=HomZ

(
Pic
(
V+
)
,C×

)
(3.7)

corresponding to e1, . . . ,ed−1; a1, . . . ,aρ ; and b1, . . . ,bm; respectively. Since

W1, . . . ,Wn ≠ 0 on
⋃
σ∈Σ+ U(Σ)σ , we can define a surjective morphism

ϕ+ :
⋃
σ∈Σ+

U(Σ)σ ⊂U(Σ) �→U
(
Σ+
)

(3.8)

given by

X+1 =X1W
c1,1
1 ···Wcn,1

n , . . . ,X+d−1 =Xd−1W
c1,d−1
1 ···Wcn,d−1

n ,

Y+1 = Y1, . . . ,Y+ρ = Yρ,
Z+1 = Z1W

c1,d
1 ···Wcn,d

n ,Z+2 = Z2, . . . ,Z+m = Zm.
(3.9)

Lemma 3.6. The morphism ϕ+ induces an isomorphism

ϕ̃+ :

 ⋃
σ∈Σ+

U(Σ)σ

/G �→ V+. (3.10)

Proof. By relations (3.5), for g ∈G, we have(
g
(
Di
)
Xi
)(
g
(
C1
)
W1
)c1,i ···(g(Cn)Wn)cn,i

= g(Di+c1,iC1+···+cn,iCn
)
XiW

c1,i
1 ···Wcn,i

n

= g(−(a1,iA1+···+aρ,iAρ+b2,iB2+···+bm,iBm
))
XiW

c1,i
1 ···Wcn,i

n

(3.11)

for any 1≤ i≤ d−1, while we have(
g
(
B1
)
Z1
)(
g
(
C1
)
W1
)c1,d ···(g(Cn)Wn)cn,d

= g(B1+c1,dC1+···+cn,dCn
)
Z1W

c1,d
1 ···Wcn,d

n

= g(−(b2,dB2+···+bm,dBm
))
Z1W

c1,d
1 ···Wcn,d

n .

(3.12)

Therefore,ϕ+ is compatible with the action ofG andG+, and henceϕ+ induces

an isomorphism

ϕ̃+ :

 ⋃
σ∈Σ+

U(Σ)σ

/G ⊂ V �→ V+ �U
(
Σ+
)/
G+. (3.13)

On the other hand, let (X−1 , . . . ,X
−
d−1,Y

−
1 , . . . ,Y−ρ ,W

−
1 , . . . ,W−

n ) be a homoge-

neous coordinate of V− � U(Σ−)/G− with G− := HomZ(Pic(V−),C×) corre-

sponding to e1, . . . ,ed−1; a1, . . . ,aρ ; and c1, . . . ,cn; respectively. Similarly as above,
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the surjective morphism

ϕ− :
⋃
σ∈Σ−

U(Σ)σ ⊂U(Σ) �→U
(
Σ−
)
, (3.14)

given by

X−1 =X1Z
c1,1
1 Z

b2,dc1,1+b2,1
2 ···Zbm,dc1,1+bm,1m ,. . . ,

X−d−1 =Xd−1Z
c1,d−1
1 Z

b2,dc1,d−1+b2,d−1
2 ···Zbm,dc1,d−1+bm,d−1

m ,

Y−1 = Y1, . . . ,Y−ρ = Yρ, W−
1 = Z−1

1 Z
−b2,d
2 ···Z−bm,dm W1,W−

2 =W2, . . . ,W−
n =Wn,

(3.15)

induces an isomorphism

ϕ̃− :

 ⋃
σ∈Σ−

U(Σ)σ

/G ⊂ V �→ V− �U
(
Σ−
)/
G−. (3.16)

Next, let (x+1 , . . . ,x
+
d−1,y

+
1 , . . . ,y+ρ ) and (x−1 , . . . ,x

−
d−1,y

−
1 , . . . ,y−ρ ) be homoge-

neous coordinates of Ṽ corresponding to e1, . . . ,ed−1 and a1, . . . ,aρ , respec-

tively, and z,w ∈ C×. By similar argument as above, we obtain two isomor-

phisms ⋃
σ∈Σ̃

U
(
Σ+
)
σ

/G+ ⊂ V+ �→ Ṽ ×C×,
 ⋃
σ∈Σ̃

U
(
Σ−
)
σ

/G− ⊂ V− �→ Ṽ ×C×,
(3.17)

given by

x+1 =X+1
(
Z+2
)b2,1 ···(Z+m)bm,1 , . . . ,x+d−1 =X+d−1

(
Z+2
)b2,d−1 ···(Z+m)bm,d−1 ,

y+1 = Y+1 , . . . ,y+ρ = Y+ρ , z = Z+1
(
Z+2
)b2,d ···(Z+m)bm,d ,

x−1 =X−1
(
W−

2

)c2,1+c1,1c2,d ···(W−
n
)cn,1+c1,1cn,d , . . . ,

x−d−1 =X−d−1

(
W−

2

)c2,d−1+c1,d−1c2,d ···(W−
n
)cn,d−1+c1,d−1cn,d ,

y−1 = Y−1 , . . . ,y−ρ = Y−ρ , w =W−
1

(
W−

2

)−c2,d ···(W−
n
)−cn,d ,

(3.18)

respectively. These two coordinates of Ṽ ×C× are related as follows:

x+1 = x−1wc1,1 , . . . ,x+d−1 = x−d−1w
c1,d−1 , y+1 =y−1 , . . . ,y+ρ =y−ρ , z = 1

w
.

(3.19)

We construct a one-parameter family of nonsingular complete algebraic va-

rieties parameterized by t ∈ C by changing this relation: let {Vt}t∈C be the

family we obtain by patching V+ and V− along Ṽ ×C× by the automorphism
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(x−1 , . . . ,x
−
d−1,y

−
1 , . . . ,y−ρ ,w)� (x

+
1 , . . . ,x

+
d−1,y

+
1 , . . . ,y+ρ ,z), defined by

x+1 = x−1wc1,1+ty−1 wk,x+2 = x−2wc1,2 , . . . ,x+d−1 = x−d−1w
c1,d−1 ,

y+1 =y−1 , . . . ,y+ρ =y−ρ , z = 1
w
.

(3.20)

This is well defined since (D1,A1) is a symmetric pair of toric prime divisors

on Ṽ . Thus, we have the following theorem.

Theorem 3.7. The family {Vt}t∈C is a complex analytic family whose special

fiber V0 is isomorphic to V .

Finally, we calculate the general fibers of this family under appropriate as-

sumptions. We introduce certain notation.

For any q = (q1, . . . ,qd−1) ∈ Zd−1, we can define a complete fan q−Σ in N as

follows:

q−Σ := Σ+∪{q−σ | σ ∈ Σ−}, (3.21)

where q−σ is the image of σ under the automorphism of NR corresponding

to the matrix 

1 0 ··· 0 q1

0 1 ··· 0 q2

...
...

. . .
...

...

0 0 ··· 1 qd−1

0 0 ··· 0 1


, (3.22)

acting from the left on the elements of N = Zd regarded as column vectors. We

denote by q−V the nonsingular toric d-fold corresponding to the fan q−Σ.

Theorem 3.8. For any t ∈ C×,

Vt �
(
2k,−ka1,2, . . . ,−ka1,d−1

)−V, (3.23)

if the following conditions are satisfied:

(i) m=n= 1,

(ii) kc1,d+c1,1 = c1,1−k≥ 0.

Remark 3.9. Theorem 3.8(i) implies that V has a toric bundle structure

V → P1 whose fiber is isomorphic to Ṽ .

Proof of Theorem 3.8. Let (x̂+1 , . . . , x̂
+
d−1, ŷ

+
1 , . . . , ŷ+ρ , ẑ) be a coordinate of

Ṽ ×C×. By assumption, we can define an automorphism ψ+ : (x+1 , . . . ,x
+
d−1,

y+1 , . . . ,y+ρ ,z)� (x̂
+
1 , . . . , x̂

+
d−1, ŷ

+
1 , . . . , ŷ+ρ , ẑ) of Ṽ ×C× by

x̂+1 := x+1 zk−ty+1 , x̂+2 := x+2 , . . . , x̂+d−1 := x+d−1,

ŷ+1 := tx+1 , ŷ+2 :=y+2 , . . . , ŷ+ρ :=y+ρ , ẑ := z. (3.24)
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In fact, we can easily construct the inverse of this morphism. Then, the coordi-

nates (x̂+1 , . . . , x̂
+
d−1, ŷ

+
1 , . . . , ŷ+ρ , ẑ) and (x−1 , . . . ,x

−
d−1,y

−
1 , . . . ,y−ρ ,w) are related

as follows:

x̂+1 =
(
x−1w

c1,1+ty−1 wk
)
w−k−ty−1 = x−1wc1,1−k,

x̂+2 = x−2wc1,2 , . . . , x̂+d−1 = x−d−1w
c1,d−1 ,

ŷ+1 = t
(
x−1w

c1,1+ty−1 wk
)
, ŷ+2 =y−2 , . . . , ŷ+ρ =y−ρ , ẑ = 1

w
.

(3.25)

By considering the action of G̃ :=HomZ(Pic(Ṽ ),C×), these relations are equiv-

alent to

x̂+1 = x−1wc1,1−2k, x̂+2 = x−2wc1,2+ka1,2 , . . . , x̂+d−1 = x−d−1w
c1,d−1+ka1,d−1 ,

ŷ+1 = t
(
x−1w

c1,1−k+ty−1
)
, ŷ+2 =y−2 , . . . , ŷ+ρ =y−ρ , ẑ = 1

w
.

(3.26)

Similarly, we can define another automorphism

ψ− :
(
x−1 , . . . ,x

−
d−1,y

−
1 , . . . ,y

−
ρ ,w

)  �→ (x̂−1 , . . . , x̂−d−1, ŷ
−
1 , . . . , ŷ

−
ρ ,ŵ

)
(3.27)

of Ṽ ×C× by

x̂−1 := x−1 , . . . , x̂−d−1 := x−d−1,

ŷ−1 := t(x−1wc1,1−k+ty−1 ), ŷ−2 :=y−2 , . . . , ŷ−ρ :=y−ρ , ŵ :=w. (3.28)

These new coordinates (x̂+1 , . . . , x̂
+
d−1, ŷ

+
1 , . . . , ŷ+ρ , ẑ) and (x̂−1 , . . . , x̂

−
d−1, ŷ

−
1 , . . . ,

ŷ−ρ ,ŵ) of Ṽ ×C× are related as follows:

x̂+1 = x̂−1 ŵc1,1−2k, x̂+2 = x̂−2 ŵc1,2+ka1,2 , . . . , x̂+d−1 = x̂−d−1ŵ
c1,d−1+ka1,d−1 ,

ŷ+1 = ŷ−1 , . . . , ŷ+ρ = ŷ−ρ , ẑ = 1
ŵ
.

(3.29)

We show that the automorphisms ψ+ and ψ− are extended to the automor-

phisms of V+ and V−, respectively. Let

X̂+1 :=X+1
(
Z+1
)k−tY+1 , X̂+2 :=X+2 , . . . , X̂+d−1 :=X+d−1,

Ŷ+1 := tX+1 , Ŷ+2 := Y+2 , . . . , Ŷ+ρ := Y+ρ , Ẑ+1 := Z+1 .
(3.30)

By the assumptions m = 1 and (D1,A1) is a symmetric pair of toric prime

divisors on Ṽ , this defines an automorphism (X+1 , . . . ,X
+
d−1,Y

+
1 , . . . ,Y+ρ ,Z

+
1 ) �

(X̂+1 , . . . , X̂
+
d−1, Ŷ

+
1 , . . . , Ŷ+ρ , Ẑ

+
1 ) of V+ whose restriction to Ṽ×C× isψ+. Similarly,
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by the assumption kc1,d+c1,1 ≥ 0, by putting

X̂−1 :=X−1 , . . . , X̂−d−1 :=X−d−1,

Ŷ−1 := tX−1
(
W−

1

)kc1,d+c1,1 , Ŷ−2 := Y−2 , . . . , Ŷ−ρ := Y−ρ , Ŵ−
1 :=W−

1 ,
(3.31)

we obtain an automorphism (X−1 , . . . ,X
−
d−1,Y

−
1 , . . . ,Y−ρ ,W

−
1 ) � (X̂−1 , . . . , X̂

−
d−1,

Ŷ−1 , . . . , Ŷ−ρ ,Ŵ
−
1 ) of V− whose restriction to Ṽ ×C× is ψ−.

On the other hand, let c′1 be the element in G(q−Σ) corresponding to c1,

where q= (2k,−ka1,2, . . . ,−ka1,d−1). Then,

c′1 =



c1,1+2kc1,d

c1,2−ka1,2c1,d
...

c1,d−1−ka1,d−1c1,d

c1,d


. (3.32)

On V−, equalities (3.5) are

D1+a1,1A1+···+aρ,1Aρ+c1,1C1 = 0,

D2+a1,2A1+···+aρ,2Aρ+c1,2C1 = 0,

...

Dd−1+a1,d−1A1+···+aρ,d−1Aρ+c1,d−1C1 = 0,

−C1 = 0

(3.33)

in Pic(V−). Obviously, these equalities are equivalent to

D1+a1,1A1+···+aρ,1Aρ+
(
c1,1+2kc1,d

)
C1 = 0,

D2+a1,2A1+···+aρ,2Aρ+
(
c1,2−ka1,2c1,d

)
C1 = 0,

...

Dd−1+a1,d−1A1+···+aρ,d−1Aρ+
(
c1,d−1−ka1,d−1c1,d

)
C1 = 0,

−C1 = 0

(3.34)

in Pic(V−). Therefore, the action of G− on U(Σ−) coincides with the action of

G′ :=HomZ(Pic(V ′),C×) on U(Σ′), where

Σ′ = (q−Σ\Σ+)∪ Σ̃ (3.35)

and V ′ is the toric d-fold corresponding to Σ′.
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Thus, for any t ∈C×, we have

Vt �
(
2k,−ka1,2, . . . ,−ka1,d−1

)−V. (3.36)

4. Projective space bundles over the projective line. The classical results

for deformations among Hirzebruch surfaces are well known. As a generaliza-

tion of this results, for P2-bundles over P1, Nakamura [5] showed the following

proposition.

Proposition 4.1 (Nakamura [5]). For integers a,b,c,a′,b′,c′, let

V = PP1
(
�(a)⊕�(b)⊕�(c)

)
, V ′ = PP1

(
�(a′)⊕�(b′)⊕�(c′)

)
. (4.1)

Then the following are equivalent:

(i) a+b+c ≡ a′ +b′ +c′(mod3);
(ii) there exist P2-bundles V0, . . . ,Vm over P1 such that V0 � V , Vm � V ′, and

Vi−1 is deformed to Vi for any 1≤ i≤m;

(iii) V and V ′ are homeomorphic.

We generalize the implication (i)⇒(ii) of Proposition 4.1 for Pd−1-bundles

over P1 using the one-parameter families constructed in Theorem 3.7. Harris

[4] studied this case. For fundamental properties of primitive collections and

primitive relations, see Batyrev [1, 2] and Sato [7]. We use the notation as in

Section 3.

Let V be a Pd−1-bundle over P1, that is,

V = V(p1, . . . ,pd−1
)

:= PP1
(
�⊕�

(
p1
)⊕···⊕�

(
pd−1

))
, (4.2)

where p1, . . . ,pd−1 are nonnegative integers. Then, the primitive relations of

the corresponding fan Σ are

e1+···+ed−1+a1 = 0, b1+c1 = p1e1+···+pd−1ed−1, (4.3)

where G(Σ) = {e1, . . . ,ed−1,a1,b1,c1}. For a nonnegative integer k such that

a1−k≥ 0, the conditions in Theorem 3.8 are satisfied. Therefore, there exists

a one-parameter complex analytic family {Vt}t∈C such that

Vt �
V if t = 0,

(2k,k, . . . ,k)−V if t ≠ 0.
(4.4)

We show that for V(p1, . . . ,pd−1) and V(p′1, . . . ,p
′
d−1), if p1+···+pd−1 ≡ p′1+

···+p′d−1(modd), then there exist nonsingular toric d-folds V0, . . . ,Vm such

that eachVi is a Pd−1-bundle over P1,V0 � V(p1, . . . ,pd−1),Vm � V(p′1, . . . ,p′d−1),
and Vi−1 is deformed by a one-parameter family to Vi for any 1≤ i≤m.
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Let k = 1. Suppose that there exists 1 ≤ i ≤ d−1 such that pi ≥ 2. So, we

may assume that p1 ≥ p2 ≥ ··· ≥ pl > pl+1 = ··· = pd−1 = 0 by changing the

order of the indices, where p1 ≥ 2. Then, by the family (4.4), V is deformed to

(2,1, . . . ,1)−V . The primitive relations of (2,1, . . . ,1)−Σ are

e1+···+ed−1+a1 = 0,

b1+C′1 =



p1−2

p2−1
...

pl−1

pl+1−1
...

pd−1−1

0



=

(
p1−1

)
e1+p2e2+···+plel+a1 if l < d−1,(

p1−2
)
e1+

(
p2−1

)
e2+···+

(
pl−1

)
el if l= d−1,

(4.5)

where G((2,1, . . . ,1)−Σ) = {e1, . . . ,ed−1,a1,b1,C′1}. We can replace V by

(2,1, . . . ,1)−V and carry out this operation again. This operation terminates

in finite steps, and V becomes V(p1, . . . ,pd−1) such that p1 ≤ 1, . . . ,pd−1 ≤ 1. In

each step, p1+···+pd−1 ∈ Z/dZ does not change. Thus, we have the following

proposition.

Proposition 4.2. For integers a1, . . . ,ad,a′1, . . . ,a
′
d, let V = PP1(�(a1)⊕···⊕

�(ad)) andV ′ = PP1(�(a′1)⊕···⊕�(a′d)). Ifa1+···+ad ≡ a′1+···+a′d(modd),
then there exist Pd−1-bundles V0, . . . ,Vm over P1 such that V0 � V , Vm � V ′, and

Vi−1 is deformed to Vi for any 1 ≤ i ≤m. In particular, V and V ′ are homeo-

morphic.

5. Weakened Fano varieties. The following definition is important for the

birational geometry.

Definition 5.1. Let V be a nonsingular projective variety. Then, V is called

a Fano (resp., weak Fano) variety if its anticanonical divisor−KV is ample (resp.,

nef and big).

The following definition was proposed by Minagawa in connection with

“Reid’s fantasy” for weak Fano 3-folds.

Definition 5.2. Let V be a nonsingular weak Fano variety over C and ∆ε :=
{t ∈ C | |t| < ε} for a sufficiently small real number ε > 0. Then, V is called a

weakened Fano variety if V is not a nonsingular Fano variety and there exists a

small deformation ϕ : �→ ∆ε such that �0 :=ϕ−1(0)� V , while �t :=ϕ−1(t)
is a nonsingular Fano variety for any t ∈∆ε \{0}.



3112 HIROSHI SATO

In this section, we give a deformation family for a certain toric weakened

Fano 3-fold using the families constructed in Section 3. Toric weakened Fano

3-folds are completely classified by Sato [8]. Moreover, we obtain nine examples

of toric weakened Fano 4-folds. We use the notation as in Section 3.

Example 5.3. Let V be the nonsingular toric weakened Fano 3-fold of type

X3
0 in the sense of Sato [8], that is, the primitive relations of Σ are

e1+a1 = e2, e2+a2 = 0, b1+C1 = 2e1, (5.1)

whereG(Σ)= {e1,e2,a1,a2,b1,C1}. The variety V is an F1-bundle over P1, where

F1 is the Hirzebruch surface of degree 1. Therefore, by Theorems 3.7 and 3.8,

there exists a complex analytic family {Vt}t∈C such that

V0 � V, (5.2)

while

Vt � (2,−1)−V (t ≠ 0). (5.3)

The primitive relations of (2,−1)−Σ are

e1+a1 = e2, e2+a2 = 0, b1+C′1 = e2, (5.4)

where G(Σ)= {e1,e2,a1,a2,b1,C′1}. The toric Fano 3-fold we want is (2,−1)−V
(see [8, Section 4]).

In the same way as in Example 5.3, we obtain certain examples of toric weak-

ened Fano 4-folds which does not decompose into direct products of lower-

dimensional varieties. In the following, G(Σ)= {n1,n2, . . .} and the fans corre-

sponding to toric weakened Fano 4-folds are described in terms of primitive

relations. We also give the types of general fibers. The symbols of types of

nonsingular toric Fano 4-folds are those of Batyrev [2] and Sato [7]:

(i) n1+n4 = n2, n2+n3+n5 = 0, and n6+n7 = 2n1 (type D7);

(ii) n1+n4 = n2, n2+n6 = 0, n3+n5 = n2, and n7+n8 = 2n1 (type L1);

(iii) n1+n4 = n2, n2+n6 = 0, n3+n5 = n6, and n7+n8 = 2n1 (type L13);

(iv) n1+n4 = n2, n2+n5 = n3, n3+n6 = 0, and n7+n8 = 2n1 (type L2);

(v) n5+n6 = 0, n3+n7 = 0, n2+n3 = n5, n5+n7 = n2, n2+n6 = n7, n1+n4 =
n2, and n8+n9 = 2n1 (type Q1);

(vi) n5+n6 = 0, n3+n7 = 0, n2+n3 = n5, n5+n7 = n2, n2+n6 = n7, n1+n4 =
n3, and n8+n9 = 2n1 (type Q13);

(vii) n5+n6 = 0, n3+n7 = 0, n2+n3 = n5, n5+n7 = n2, n2+n6 = n7, n1+n4 =
n5, and n8+n9 = 2n1 (type Q8);

(viii) n5+n6 = 0, n3+n7 = 0, n2+n3 = n5, n5+n7 = n2, n2+n6 = n7, n1+n4 =
0, and n8+n9 = 2n1 (type Q11);
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(ix) n5+n8 = 0, n2+n5 = n3, n3+n8 = n2, n3+n6 = n5, n3+n7 = 0, n2+n6 =
0, n6+n8 = n7, n2+n7 = n8, n5+n7 = n6, n1+n4 = n2, and n9+n10 = 2n1

(type U1).
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