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AN EQUALITY FOR THE CURVATURE FUNCTION
OF A SIMPLE AND CLOSED CURVE

ON THE PLANE

BIAO OU

Received 22 October 2002

We prove an equality for the curvature function of a simple and closed curve on
the plane. This equality leads to another proof of the four-vertex theorem in differ-
ential geometry. While examining the regularity assumption on the curve for the
equality, we make comments on the relation between the boundary regularity of a
Riemann mapping and two important subjects, the Schauder theory and the strong
maximum principle, for elliptic partial differential equations of second order. We
take a note on the curvature function itself in recognizing people’s handwriting
by a calculating device, as an afterthought on the equality.
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1. The equality for the curvature function. Let C be a simple and closed

curve on the plane. For the convenience of presentation we assume in the

beginning that C is analytic. Let G(z) be a one-to-one conformal mapping from

the unit disk centered at the origin to the bounded domain enclosed by C .

Standard complex analysis tells us that G(z) is analytic and

∣∣G′(z)∣∣≥ µ > 0 (1.1)

for a constant µ on the closed unit disk (cf. [1] or other textbooks). Let

F(z)=G
(
z−i
z+i

)
(1.2)

and let

u(z)= Re
(
ln
(
F ′(z)

))= ln
∣∣F ′(z)∣∣,

v(z)= Im
(
ln
(
F ′(z)

))= arg
(
F ′(z)

)
.

(1.3)

Then F(z) maps one-to-one the upper half-plane

R2
+ =

{
z = (x1,x2

)= x1+ix2 | x2 ≥ 0
}

(1.4)

to the bounded domain enclosed by C , and u(z), v(z) are harmonic functions

on R2+ functions.
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On the boundary x2 = 0, u(z) satisfies

ux2

(
x1,0

)=−k(x1
)
eu(x1,0), (1.5)

where k(x1) is the curvature of C at F(x1,0). This boundary condition follows

from the following calculation of the curvature of C :

k
(
x1
)= Im

(
F ′(z)F ′′(z)

)
∣∣F ′(z)∣∣3

(
z = x1 =

(
x1,0

))

= Im
exp

(
u(z)−iv(z))exp

(
u(z)+iv(z))(ux1+ivx1

)
exp

(
3u(z)

)
= Im

1
exp

(
u(z)

)(ux1+ivx1

)

= 1
exp

(
u(z)

)(vx1

)

= 1
exp

(
u(z)

)(−ux2

)
.

(1.6)

Our object is to prove the following equality.

Theorem 1.1. With u(x1,x2) and k(x1) defined as above,

∫∞
−∞
x1k′

(
x1
)
eu(x1,0)dx1 = 0. (1.7)

Proof. We first establish the asymptotic behavior ofu(z),v(z), and∇u(z)
at infinity by showing that as z→∞,

u(z)=−2ln|z|+O(1),
v(z)=−2arg(z)+arg

(
G′(1)

)+ π
2
+o(1),

∇u(z)=− 2z
|z|2 +o

(
1
|z|

)
.

(1.8)

For this purpose, note that by (1.2)

F ′(z)=G′
(
z−i
z+i

)
2i

(z+i)2 (1.9)

and that as z approaches infinity,

G′
(
z−i
z+i

)
�→G′(1), (1.10)
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with G′(1) being nonzero. Thus

u(z)= ln
∣∣F ′(z)∣∣= ln

∣∣∣∣2G′
(
z−i
z+i

)∣∣∣∣−2ln|z+i|

= −2ln|z|−2ln
∣∣∣∣1+ i

z

∣∣∣∣+ ln
∣∣∣∣2G′

(
z−i
z+i

)∣∣∣∣
=−2ln|z|+O(1),

v(z)= arg
(
F ′(z)

)= arg
(
G′
(
z−i
z+i

))
+ π

2
−2arg(z+i)

=−2arg(z)+arg
(
G′(1)

)+ π
2
−2arg

(
1+ i

z

)

+
(

arg
(
G′
(
z−i
z+i

))
−arg

(
G′(1)

))

=−2arg(z)+arg
(
G′(1)

)+ π
2
+o(1).

(1.11)

As for ∇u(z), we have

∂u
∂x1

−i ∂u
∂x2

= ∂u
∂x1

+i ∂v
∂x1

= ( lnF ′(z)
)′ = 1

F ′(z)
F ′′(z)

= 1
F ′(z)

(
G′
(
z−i
z+i

) −4i
(z+i)3 +G

′′
(
z−i
z+i

)(
2i

(z+i)2
)2
)

= −2
z+i +

G′′
(
(z−i)/(z+i))

G′
(
(z−i)/(z+i))

2i
(z+i)2

=−2
z
+ 2i
z(z+i) +

G′′
(
(z−i)/(z+i))

G′
(
(z−i)/(z+i))

2i
(z+i)2

=−2
z
+o

(
1
|z|

)
=− 2z̄

|z|2 +o
(

1
|z|

)
.

(1.12)

Thus we have completed the proof of (1.8).

Next, we recall that u(z) being a harmonic function implies

∂
∂xj

(
|∇u|2δij−2

∂u
∂xi

∂u
∂xj

)
= 0 for each i= 1,2. (1.13)

Here and later the convention of summing over a repeated index is assumed.

Even though it is straightforward to verify (1.13), this equation comes out of

a well-known argument of calculus of variations. We describe the argument

briefly. Let φ1 and φ2 be two functions that are smooth and have a bounded

support on R2+ and let φ = (φ1,φ2). For uε(z) = u(z+εφ(z)), consider the

integral
∫ |∇uε|2dx1dx2 on a bounded domain that contains the support ofφ.
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The derivative of this integral with respect to ε at ε= 0 equals

∫
2∇u·∇

(
∂u
∂xi

φi
)
dx1dx2

=
∫
∂
∂xj

(
|∇u|2δij−2

∂u
∂xi

∂u
∂xj

)
φidx1dx2,

(1.14)

after a few elementary manipulations. On the other hand, it equals zero be-

cause it is the first variation of the integral involving a harmonic function.

Equation (1.13) then follows.

The essential step to equality (1.7) is an integration involving (1.13). Let B+R be

the upper-half disk centered at the origin with radius R. By (1.13) and Green’s

theorem,

0=
∫
B+R
xi

∂
∂xj

(
|∇u|2δij−2

∂u
∂xi

∂u
∂xj

)
dx1dx2

=
∮
∂B+R

xi

(
|∇u|2δij−2

∂u
∂xi

∂u
∂xj

)
νj dl

−
∫
B+R
δij

(
|∇u|2δij−2

∂u
∂xi

∂u
∂xj

)
dx1dx2

=
∮
∂B+R

xi

(
|∇u|2δij−2

∂u
∂xi

∂u
∂xj

)
νj dl.

(1.15)

Above ν = (ν1,ν2) is the outward unit normal vector to ∂B+R , dl is the line

integral element, and the line integral is in the counterclockwise direction. Let

I1 be the line integral on the line segment {(x1,0) | −R ≤ x1 ≤ R} and let I2 be

the line integral on the upper-half circle {(Rcosθ,Rsinθ) | 0≤ θ ≤π}. For I1,

we have x = (x1,0) and ν = (0,−1); hence

I1 =
∫ R
−R
x1

(
|∇u|2δ12−2

∂u
∂x1

∂u
∂x2

)
(−1)dx1

=
∫ R
−R
x12

∂u
∂x1

(−k(x1
)
eu(x1,0)

)
dx1

(
by (1.5)

)

=−2x1k
(
x1
)
eu(x1,0) |R−R +

∫ R
−R

(
2k
(
x1
)+2x1k′

(
x1
))
eu(x1,0)dx1

=−2x1k
(
x1
)
eu(x1,0) |R−R −

∫ R
−R

2
∂u
∂x2

(
x1,0

)
dx1+

∫ R
−R

2x1k′
(
x1
)
eu(x1,0)dx1

= (−2Rk(R)eu(R,0)−2Rk(−R)eu(−R,0))+2
(
v(R,0)−v(−R,0))

+
∫ R
−R

2x1k′
(
x1
)
eu(x1,0)dx1.

(1.16)
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For I2, we have x = (Rcosθ,Rsinθ) and ν = x/R; hence

I2 =
∫ π

0

(
|∇u|2R2−2

∂u
∂xi

xi
∂u
∂xj

xj

)
dθ. (1.17)

AsR approaches infinity, because of (1.8) and that k(R) and k(−R) are bounded,

we conclude that

(−2Rk(R)eu(R,0)−2Rk(−R)eu(−R,0))
=−2Rk(R)

1
R2
eO(1)−2Rk(−R) 1

R2
eO(1) �→ 0,

2
(
v(R,0)−v(−R,0))
= 2

((
arg

(
G′(1)

)+ π
2
+o(1)

)
−
(
−2π+arg

(
G′(1)

)+ π
2
+o(1)

))
�→ 4π,

(1.18)

and consequently

I1 �→ 4π+
∫∞
−∞

2x1k′
(
x1
)
eu(x1,0)dx1. (1.19)

Similarly, as R approaches infinity,

I2 =
∫ π

0

(
∂u
∂xi

∂u
∂xi

R2−2
∂u
∂xi

xi
∂u
∂xj

xj
)
dθ

=
∫ π

0

((
− 2xi
R2

+o
(

1
R

))(
− 2xi
R2

+o
(

1
R

))
R2

−2
(
− 2xi
R2

+o
(

1
R

))
xi
(
− 2xj
R2

+o
(

1
R

))
xj
)
dθ

=
∫ π

0

((
4
R2
+o

(
1
R2

))
R2−2

(−2+o(1))(−2+o(1)))dθ
=
∫ π

0

(−4+o(1))dθ �→−4π.

(1.20)

Adding the limits of I1 and I2, we obtain equality (1.7).

2. Remarks on the equality. We make several remarks on the equality.

First, the integral in (1.7) is a proper integral. To see this, let

s =
∫ x1

−∞

∣∣F ′(x1,0
)∣∣dx1 =

∫ x1

−∞
eu(x1,0)dx1 (2.1)

be a length parameter of C . Then

k′
(
x1
)= dk

ds
eu(x1,0). (2.2)
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Since dk/ds is bounded,

x1k′
(
x1
)
eu(x1,0) = x1

dk
ds
e2u(x1,0) (2.3)

and is, by (1.8), bounded by a constant multiple of 1/(1+|x1|)3. That is, the

integral in (1.7) converges absolutely.

Next, we see how equality (1.7) leads to another proof of the four-vertex

theorem in differential geometry. Since we may choose G(z) and F(z) such

that k(0) equals the maximum and k(±∞) equal the minimum of the curvature

function of C , equality (1.7) implies that it is impossible that x1k′(x1) ≤ 0

for all x1. That is, it is impossible that k(x1) is an increasing function on

−∞ < x1 < 0 and a decreasing function on 0 < x1 < ∞. Thus k(x1) has at

least two more local maximum or minimum points in addition to 0 and ±∞.

It follows that C has at least four critical points, or vertices. We refer to the

papers of Osserman [7] and Tabachnikov [10] for proofs of the four-vertex

theorem in differential geometry as well as references to other relevant works.

At this point, we examine the regularity assumption on C . Since equality

(1.7) involves the first derivative of the curvature function of C , the natural

assumption is that C is C3. We will see that this is also sufficient for (1.7).

With (2.3) in mind, we recognize that it is sufficient for all our computations

that G(z) be C2,α for some α satisfying 0<α< 1 and (1.1) be satisfied on the

closed unit disk. Here we need to mention that although (1.13) involves the

third derivative of G(z), we have only used (1.13) in its integral form. Thus by

integrating on a half disk slightly above the real line and then taking a limit,

we may carry out all the same computations.

Now since C is assumed to be C3, it is C2,α for any constant α satisfying

0<α< 1. We need the case m= 2 of the following theorem.

Theorem 2.1. If C is Cm,α smooth, where m is a positive integer and 0 <
α< 1, then G(z) is Cm,α and |G′(z)|> 0 on the closed unit disk.

Theorem 2.1 is called Kellogg’s theorem in complex analysis. In [11] there is

a proof of Theorem 2.1 for the most difficult case m = 1. It is also known

to specialists that Kellogg’s theorem can be proved by using the Schauder

theory and the strong maximum principle for linear elliptic partial differen-

tial equations of second order. However, it is not easy to find a handy refer-

ence. My colleague Professor N. V. Rao (Rao Nagisetty) supplied the following

proof.

Consider ln|G−1(z)|, which is a Green’s function on the domain enclosed by

C with a singularity at G(0). In case m ≥ 2, applying the standard Schauder

theory and the strong maximum principle, as presented in [6], we conclude

that G−1(z) is Cm,α smooth and the gradient of G−1(z) does not vanish on

the closed domain enclosed by C . Then the same holds for G(z) on the unit

disk by the inverse function theorem. In case m = 1, the proof goes the same
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way because both the Schauder theory and the strong maximum principle are

still valid. Nevertheless, one has to look harder in the literature for a proof in

this case. Gilbarg and Trudinger discussed these subjects in the notes of their

book [6], and they particularly mentioned works of Finn-Gilbarg and Widman. It

seems to be true that it was the study of the boundary regularity of a Riemann

mapping that led to the development of the Schauder theory and the strong

maximum principle. We refer to the books of Chen and Wu [3] and Giaquinta

[5] for different ways to treat the Schauder theory. In addition, there are a lot

of works on the Schauder theory for more general elliptic PDEs and on the

boundary regularity for disk-type minimal surfaces bounded by a simple and

closed space curve. In a series of papers, Professor Friedman extended the

Schauder theory to parabolic PDEs, and his work was summarized in [4].

From these discussions, we see that the assumption of C being C3 is natural

and sufficient for equality (1.7). Consequently, our proof works for the four-

vertex theorem for a simple and closed curve that is C3 smooth.

With less regularity assumption on the curve, it would be interesting to see

what would come out to replace equality (1.7). For example, when a sequence

of simple and closed curves that are at least C3 smooth converges to a poly-

gon, it remains a problem that what the corresponding equalities (1.7) would

converge to.

The higher-dimensional counterpart of equality (1.7) should be the Kazdan-

Warner equality. As a matter of fact, our equality (1.7) is inspired by similar

equalities in different contexts. We refer the reader to [2, 9, 12], among many

contributions.

In a relevant work [8], the author proved a uniqueness theorem for a har-

monic function u(x1,x2) on the upper half-plane satisfying the boundary con-

dition ux2(x1,0) = −eu(x1,0) and the constraint
∫
R+2 e

2udx1dx2 < ∞. We also

refer the reader to a recent paper of Zhang [13].

3. A note on the curvature function itself in the recognition of people’s

handwriting. The author does not know any other use of equality (1.7). How-

ever, while pondering on equality (1.7), I came to think about the problem of

recognizing people’s handwriting by a calculating device, with the help of the

curvature function of a curve.

Let {(x(t),y(t)) | t1 ≤ t ≤ t2} be a parametric curve representing a stroke of

our handwriting. After discarding what we meant to be a dot or breaking what

we wrote into a few segments, we can assume that the curve is smooth. We

rescale the curve so that the length is one, and then we calculate the curvature

function k(s), 0 ≤ s ≤ 1, where s is the length parameter. The very first theo-

rem of differential geometry tells us that two curves are similar if and only if

their curvature functions are identical. Also, it would not be hard to show that

two curves resemble each other if their curvature functions are close, a mere

corollary of the stability for a linear ordinary differential equation. Thus with
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the help of the curvature function we can make a calculating device to iden-

tify what we write! That is, we could build a calculating peripheral that would

record what we write as parametric curves and the accompanying software

would then recognize what we write. Such a device would help mathemati-

cians to put in writing more easily mathematical symbols and characters that

are not convenient to be put into an electronic file on using a keyboard or a

mouse.
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