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Stochastic processes on totally disconnected topological groups are investigated.
In particular, they are considered for diffeomorphism groups and loop groups of
manifolds on non-Archimedean Banach spaces. Theorems about a quasi-invariance
and a pseudodifferentiability of transition measures are proved. Transition mea-
sures are used for the construction of strongly continuous representations includ-
ing the irreducible ones of these groups. In addition, stochastic processes on gen-
eral Banach-Lie groups, loop monoids, loop spaces, and path spaces of manifolds
on Banach spaces over non-Archimedean local fields are also investigated.
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1. Introduction. This paper is a continuation of [20, 21], where stochastic

processes on Banach spaces over local fields and stochastic antiderivational

equations on them were investigated. This paper is devoted to stochastic pro-

cesses on a totally disconnected topological group which is complete, separa-

ble, and ultrametrizable. In particular, stochastic processes on diffeomorphism

groups and loop groups of manifolds on Banach spaces over a local field are

considered. These groups were defined and investigated in [13, 15, 16, 18].

These groups are nonlocally compact and for them the Campbell-Hausdorff

formula is not valid (in an open local subgroup). In this paper, topological

groups locally satisfying the Campbell-Hausdorff formula are also considered.

Finite-dimensional Lie groups locally satisfy the Campbell-Hausdorff for-

mula. This is guaranteed, if to impose two conditions on a locally compact

topological Hausdorff group G: it is a C∞-manifold and the following mapping

(f ,g)� f ◦g−1 fromG×G intoG is of class C∞. But for infinite-dimensionalG,

the Campbell-Hausdorff formula does not follow from these conditions. Fre-

quently, topological Hausdorff groups satisfying these two conditions also are

called Lie groups, though they cannot have all properties of finite-dimensional

Lie groups, so that, the Lie algebras for them do not play the same role as in

the finite-dimensional case and therefore Lie algebras are not so helpful. If G
is a Lie group and its tangent space TeG is a Banach space, then it is called a

Banach-Lie group, sometimes it is undermined, that they satisfy the Campbell-

Hausdorff formula locally for a Banach-Lie algebra TeG. In some papers, the Lie

group terminology undermines, that it is finite-dimensional. It is worthwhile to

call Lie groups satisfying the Campbell-Hausdorff formula locally (in an open
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local subgroup) by Lie groups in the narrow sense; in the contrary case, to call

them by Lie groups in the broad sense.

In this paper, also theorems about a quasi-invariance and a pseudodifferen-

tiability of transition measures on the totally disconnected topological group

G relative to the dense subgroup G′ are proved. In each concrete case of G, it

is necessary to construct a stochastic process and G′. Below, path spaces, loop

spaces, loop monoids, loop groups, and diffeomorphism groups are considered

not only for finite-dimensional, but also for infinite-dimensional manifolds.

In particular, loop and diffeomorphism groups are important for the de-

velopment of the representation theory of nonlocally compact groups. Their

representation theory has many differences with the traditional representation

theory of locally compact groups and finite-dimensional Lie groups, because

nonlocally compact groups have notC∗-algebras associated with the Haar mea-

sures and they have not underlying Lie algebras and relations between repre-

sentations of groups and underlying algebras (see also [17]).

In view of the A. Weil theorem, if a topological Hausdorff groupG has a quasi-

invariant measure relative to the entire G, then G is locally compact. Since

loop groups (LMN)ξ are not locally compact, they cannot have quasi-invariant

measures relative to the entire group, but only relative to proper subgroups

G′ which can be chosen dense in (LMN)ξ , where an index ξ indicates a class

of smoothness. The same is true for diffeomorphism groups.

It is necessary to note that there are quite another groups with the same

name loop groups, but they are infinite-dimensional Banach-Lie groups of map-

pings f :M →H into a finite-dimensional Lie groupH with the pointwise group

multiplication of mappings with values in H. The loop groups considered here

are geometric loop groups.

On the other hand, representation theory of nonlocally compact groups is

little developed apart from the case of locally compact groups. For locally com-

pact groups, theory of induced representations is well developed due to works

of Frobenius, Mackey, and so forth. But for nonlocally compact groups, it is

very little known. In particular, geometric loop and diffeomorphism groups

have important applications in modern physical theories (see [16, 18]).

Then, measures are used for the study of associated unitary representations

of dense subgroups G′.
In this paper, notations and definitions from [18, 20, 21] are used.

2. Stochastic antiderivational equations and measures

on totally disconnected topological groups

Note 2.1. Let X be a Banach space over a local field K. Suppose M is an

analytic manifold modelled on X with an atlas At(M) consisting of disjoint

clopen charts (Uj,φj), j ∈ΛM , ΛM ⊂N. That is, Uj andφj(Uj) are clopen inM
and X, respectively, φj : Uj → φj(Uj) are homeomorphisms, and φj(Uj) are

bounded in X.
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Note 2.2. Let Ω{k}ξ (M,N) be the loop submonoid as in [18, Section I.3.5]

such that c > 0 and c′ > 0. Then, it generates the loop group G′ := L{k}ξ (M,N)
as in [18, Section II.2.1] such that G′ is the dense subgroup in G = Lξ(M,N).

Remark 2.3. LetM be a manifold on the Banach spaceX with an atlas At(M)
consisting of disjunctive charts (Uj,φj), j ∈ Λ, Λ ⊂ N, where Uj and φj(Uj)
are clopen in M and X, respectively, φj : Uj → φj(Uj) is a homeomorphism,

also φj(Uj)= B(X,xj,rj) is a ball in X with a radius 0< rj <∞ for each j (see

also [18, Sections I.2.1–8]).

For Λ=ω0, we define a Banach space

C̃∗(t,M �→X) :=
{
f |Uj ∈ C∗

(
t,Uj �→X

)
,

‖f‖C∗(t,M→X) := sup
j∈Λ

(∥∥f |Uj∥∥C∗(t,Uj→X)/min
(
1,rj

))
<∞,

(∥∥f |Uj∥∥C∗(t,Uj→X)/min
(
1,rj

))
�→ 0 while j �→∞

}
,

(2.1)

where 0≤ t <∞, ∗= 0 for spaces C0(t,U →X), ∗=∅ or simply is omitted for

C(t,U →X). For the finite atlas At(M), the spaces C̃∗(t,U →X) and C∗(t,U →
X) are linearly topologically isomorphic. By Cθ∗(t,M → M), for 0 ≤ t ≤ ∞ is

denoted the following space of functions f : M → M such that (fi − θi) ∈
C∗(t,M → X) for each i ∈ Λ and fi = ψi ◦ f , θi = ψi ◦ θ. We introduce the

following group:

G(t,M) := C̃ id
0 (t,M �→M)∩Hom(M), (2.2)

which is called the diffeomorphism group (and the homeomorphism group for

0≤ t < 1), where Hom(M) is the group of continuous homeomorphisms.

Each function f ∈ C0(t,M →X) has the following decomposition:

f(x)|Uj =
∑

(i∈N,n∈N0)
f i(n;x)|Uj eiz̃(n), (2.3)

and

{
eiz̃(n)

(
Q̄m(x)|Uj

)
: i,n,Ord(m)=n,j} (2.4)

is the orthogonal basis, moreover,

fn(x)|Uj :=
∑
i
f i(n;x)|Uj ei ∈ C0

(
t,Uj �→X

)
, (2.5)
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where

Xz̃(n) := {fn(x) : fn|Uj ∈ C0
(
t,Uj �→X

)}
(2.6)

is the Banach space with the norm induced from C0(t,M →X) such that

f i(n;x)|Uj :=
∑

(Ordm=n,m=(m(1),...,m(n)),m(j)∈N0)
a
(
m,f i|Uj

)
Q̄m(x)|Uj , (2.7)

where Q̄m(x)|Uj = 0 for x ∈M \Uj .
For the manifold M , we fix a subsequence {Mn :n∈N0} of submanifolds in

M such that Mn ↩ Mn+1 ↩ ···↩M for each n, dimKMn = β(n) ∈ N for each

n∈N0,
⋃
nMn is dense inM , where β(n) < β(n+1) for each n and there exists

n0 ∈N with β(n)=n for each n>n0, N0 :=N∪{0}.
We take the following subgroup:

G′ := {f ∈G(t,M) :
(
f i(n;x)− idi(n;x)

)=: gi(n;x)∈ C0
(
tn,Mn �→K

)
,∣∣a(m;gi(n;x)|Uj

)∣∣Jj(tn,m)≤ c(f)pv′(m,j,i)}, (2.8)

where c(f) > 0 is a constant, v′(m,j,i) = −c′i−c′n−c′′j, n = Ord(m), c′ =
const > 0 and c′′ = const ≥ 0, c′′ > 0 for Λ =ω0, tn = t+ s(n) for 0 ≤ t <∞,

s(n) > n for each n, and liminfn→∞ s(n)/n =: ζ > 1. Then, there exists the

following ultrametric in G′:

d(f , id)= sup
m,n,j

{∣∣a(m;gi(n;x)|Uj
)∣∣Jj(tn,m)p−v′(m,j,i)}. (2.9)

Note 2.4. At first it is necessary to prove theorems about the quasi-

invariance and the pseudodifferentiability of transition measures of stochastic

processes on Banach spaces over local fields. We consider two types of mea-

sures on c0(ω0,K). The first is the q-Gaussian measure

µ = µJ,γ,q :=
∞�
j=1

µj
(
dxj

)
, (2.10)

where

µj
(
dxj

)= C|ζj |−q,γj ,qf|ζj |−q,γj ,qv(dxj) (2.11)

(see [20, Section 2]). The characteristic functional of the q-Gaussian measure is

positive definite, hence µ is nonnegative (see also [11, Section 2.6]). The second

is specified below and it is the particular case of measures considered in [21,

Theorem 4.2].

Letw be the real-valued nonnegative Haar measure on K withw(B(K,0,1))=
1. We consider the following measure µ on c0(ω0,K):

(i) µ(dx)=⊗∞
j=1µj(dxj), where x ∈ c0(ω0,K), x = (xj : j ∈ω0), xj ∈ K,

x =∑j xjej , ej is the standard orthonormal base in c0(ω0,K).
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Now, on the Banach space c0 := c0(ω0,K) there is an operator J ∈ L1(c0)
such that Jei = viei with vi �= 0 for each i. We consider a measure νi(dx) :=
fi(x)w(dx) on K, where fi : K → [0,1] is a function belonging to the space

L1(K,w,R) such that fi(x)= f(x/vi)+hi(x/vi), where f is a locally constant

positive function, f(x)=∑∞
j=1CjChBj (x), Bj := B(K,xj,rj) is a ball in K, ChV

is the characteristic function of a subset V in K, that is, ChV (x) = 1 for each

x ∈ V , ChV (x)= 0 for each x ∈K\V , x1 := 0, r1 := 1, infj rj = 1, {Bj : j} is the

disjoint covering of K, 1≥ Cj > 0, lim|x|→∞f(x)= 0, hi ∈ L1(K,w,R) such that

essw−supx∈K |hi(x)/f(x)| = δi < 1,
∑
i δi <∞, and νi(K)= 1. Then, νi(S) > 0

for each open subset S in K. There exists a σ -additive product measure;

(ii) µJ(dx) := ∏∞
i=1µi(dxi) on the σ -algebra of Borel subsets of c0 since

the Borel σ -algebras defined for the weak topology of c0 and for the norm

topology of c0 coincide, where µi(dxi) := ν(dxi/vi).
Let A : c0 → c0 be a linear topological isomorphism, that is, A, A−1 ∈ L(c0),

then for a measure µ on c0 there exists its image µA(S) := µ(A−1S) for each

Borel subset S in c0. In view of [21, Proposition 2.10] Lq(c0) is the ideal in L(c0).
This produces new q-Gaussian measures (µJ,γ,q)A =: µAJ,A∗γ,q and measures

of the second type (µJ)A =: µAJ . In view of [21, Remark 2.5], each injective

linear operator S ∈ Lq(c0) with S(c0) dense in c0 can be presented in the form

S = AJ. Hence, for each such S there exist the σ -additive measures µS,S∗γ,q
and µS . These measures are induced by the corresponding cylinder measures

µI,γ,q or µI on Kℵ0 , where I is the unit operator, since c0 in the weak topology

is isomorphic with Kℵ0 . Here, the algebra � of cylindrical subsets is generated

by subsets π−1
V (A), where A is a Borel subset in Kn, card(V)= n< ℵ0, V ⊂N,

πV : Kℵ0 →∏
i∈V Ki is the natural projection.

On the space C0
0 (T ,H)= C0

0 (T ,K)⊗H, let S = S1⊗S2 and γ = γ1⊗γ2, where

S1 is a linear operator on C0
0 (T ,K) and S2 is a linear operator on H,γ1 ∈

C0
0 (T ,K), γ2 ∈ H such that the measure µS,γ,q is the product of measures

µS1,γ1,q on C0
0 (T ,K) and µS2,γ2,q on H, analogously µS is the product of mea-

sures µS1 on C0
0 (T ,K) and µS2 on H. With the help of such measures on the

space C0
0 (T ,H), the stochastic process w(t,ω) is defined as in [21, Definition

4.1 and Theorem 4.2] and [20, Sections 3.1 and 3.2].

2.1. Let Y be a Banach space over the local field K and V a neighbourhood

of zero in Y . Consider either the measure µS,γ,ψ or µS outlined in Note 2.4.

Suppose that in stochastic antiderivational equations [20, (3.8) and Theorem

3.4(i)], mappings a and E are dependent on the parameter y ∈ V , that is,

a = a(t,ω,ξ,y) and E = E(t,ω,ξ,y); moreover, ak,l = ak,l(t,ξ,y) for each k
and l in the latter equation, [20, condition (LLC)] is satisfied for each 0< r <∞
with the constant Kr independent from y ∈ V for each y ∈ V . Evidently,

[20, (3.8)] is the particular case of [20, Theorem 3.4(i)], when in the latter equa-

tion the corresponding a0,1 and a1,0 are chosen with all the others ak,l = 0

(when k+l �= 1). Also let
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(i) a, E, and ak,l be of class C1 by y ∈ V such that

a∈ C1(V,Lq(Ω,�,λ;C0(BR,Lq(Ω,�,λ;C0(BR,H))))),
E ∈ C1(V,Lr (Ω,�,λ;C0(BR,L(Lq(Ω,�,λ;C0(BR,H)))))),

am−l,l ∈ C1(V,C0(BR1×B
(
Lq
(
Ω,�,λ;C0(BR,H)),0,R2

)
,Lm

(
H⊗m;H

)))
,

(2.12)

(continuous and bounded on its domain) for each n, l, 0<R2 <∞ and

lim
n→∞

sup
0≤l≤n

∥∥an−l,l∥∥C1(V ,C0(BR1×B(Lq(Ω,�,λ;C0(BR,H)),0,R2),Ln(H⊗n,H))) = 0 (2.13)

for each 0 < R1 ≤ R when 0 < R <∞, or each 0 < R1 < R when R = ∞,

for each 0<R2 <∞;

(ii) ker(E(t,ω,ξ,y))= 0 for each t, ξ, and y , also for λ-almost every ω;

(iii) ay(t,ω,ξ,y) and ∂a(t,ω,ξ,y)/∂y ∈ X0,d(H) := {z : S−1z ∈ Hd} and

∂E(t,ω,ξ,y)/∂y ∈ Lb(H) for λ-almost all ω and each t, ξ, and y ,

where Hd := {z : z ∈ H;
∑∞
j=1 |zj|d <∞} for each 0 < d <∞, H∞ := H,

with d = b =ψ for µS,γ,ψ; d =∞ and b = 0 for the measure of the sec-

ond type µS , zj are the coordinates of the vector z in the standard base

in H; in addition for [20, Theorem 3.4(i)];

(iv) ∂al,k(t,ω,ξ,y)/∂y ∈ Lk+l,b(H⊗(k+l);H) for each l and each k with ei-

ther b = ψ or b = 0 correspondingly, where parameters r , s, and q
are the same as in [20, Theorems 3.3 and 3.4], respectively. The fol-

lowing theorem states the quasi-invariance of the transition measure

µFt,t0 ({ω : ξ(t0,ω,y) = 0, ξ(t,ω,y) ∈ A}) =: Py(A), where Ft,u(ξ) :=
ξ(t,ω,y)−ξ(u,ω,y).

Theorem 2.5. Let either conditions (i), (ii), and (iii) or (i), (ii) , (iii), and (iv) be

satisfied, then the transition measure Py(A) of the stochastic process ξ(t,ω,y)
being the solution of [20, (3.8) or Theorem 3.4(i)] and depending on the param-

eter y ∈ V is quasi-invariant relative to each mapping U(y2,y ;ξ(t,ω,y)) :=
ξ(t,ω,y2) for each y and y2 ∈ V .

Proof. The Kakutani theorem (see [4, Section II.4.1]) states that, whether∏∞
k=1αk converges to a positive number or diverges to zero, the measure µ

is absolutely continuous or orthogonal with respect to ν , correspondingly,

where αk := ∫Xk(pk(xk))1/2νk(dxk), µk is absolutely continuous relative to νk,
µ =⊗kµk, ν =⊗kνk, µk and νk are probability measures on measurable spaces

Xk for each k ∈ N, pk(x) := µk(dx)/νk(dx). In the first case,
∏
kpk(xk) con-

verges in the mean to µ(dx)/ν(dx). In the considered case here, let Xk = K

for each k ∈ N. Let µk(dx) = Cf(x−y)v(dx) and νk(dx) = Cf(x)v(dx),
where v is the nonnegative Haar measure on K, f is a positive function such

that f ∈ L1(K,v,R), and C = const > 0 such that ν(K) = 1. Then, pk(x) =
f(x−y)/f(x) and αk =

∫
K(f (x−y)f(x))1/2v(dx). For the ψ-Gaussian mea-

sure f(x)= ∫K exp(−β|x|ψ)χγ(x)χ1(−zx)v(dx) (see [24] and [25, Section 7]).
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If |yx| ≤ 1, then χ1(yx)= 1. Therefore, there is a constant C1 > 0 independent

from β and γ such that |f(z−y)−f(z)| ≤ |f(z)|(1+C1 exp(−βr−ψ)) for each

y with |y| < r , where βr−ψ > 1, since due to Cauchy-Schwarz-Bunyakovskii

inequality

∣∣∣∣
∫
|x|>1/r

exp
(−β|x|ψ)χγ(x)χ1

(−(z−y)x)v(dx)
∣∣∣∣

≤
∣∣∣∣
∫
|x|>1/r

exp
(−β|x|ψ)χγ(x)χ1(−zx)v(dx)

∣∣∣∣g(y,z)
≤ ∣∣f(z)∣∣g(y,z),

(2.14)

where

g(y,z) :=
∣∣∣∣
∫
|x|>1/r

exp
(−β|x|ψ)χγ(x)χ1(−zx)χ1(2yx)v(dx)

∣∣∣∣. (2.15)

Let |yj/vj| =: rj < 1 for each j > j0, then |αj −1| ≤ C exp(−βjr−ψj ) for each

j > j0, where C = const > 0. In view of [21, Proposition 2.10] and the Kaku-

tani theorem, µzS,γ,ψ is equivalent to µS,γ,ψ for each z ∈ X0,ψ(C0
0 (T ,H)), where

µz(A) := µ(A−z) for each Borel subset A in C0
0 (T ,H), that is, µS,γ,ψ is quasi-

invariant relative to shifts z ∈X0,ψ(C0
0 (T ,H)).

For the measure µJ and |y| < 1/|v|, there is the equality f((x−y)/v) =
f(x/v) for each x ∈ K and 0 �= v ∈ K. In view of the definition of fk, there is

the equality

pk(x)= fk
(
x−yk

)
/fk(x)

= [f ((x−yk)/vk)/f (x/vk)]
×[1+hk((x−yk)/vk)/f ((x−yk)/vk)]/[1+hk(x/vk)/f (x/vk)].

(2.16)

If |yk/vk| ≤ 1, then f((x −yk)/vk)/f(x/vk) = 1 for each x ∈ K. From the

conditions imposed on hk and f , the Kakutani theorem, and [21, Proposition

2.10] it follows that µS is quasi-invariant relative to shifts z ∈X0,∞(C0
0 (T ,H)).

The quasi-invariance factor ρ(z,x) := µz(dx)/µ(dx) is Borel-measurable as

follows from the construction of µ, the Kakutani theorem, and the Lebesgue

theorem about majorized convergence (see [6, Section 2.4.9]), since this is true

for each of its one-dimensional projection. Banach theorem states that if G is

a topological group and A ⊂ G is a Borel measurable set of second category,

then A◦A−1 is a neighbourhood of the unit (see [3, Section 5.5]). The quasi-

invariance factor satisfies the cocycle condition:

ρ(z+h,x)= ρ(z,x−h)ρ(h,x) (2.17)

for each z and h ∈ X0,d(C0
0 (T ,H)) and each x ∈ C0

0 (T ,H). Therefore, in view

of the Lusin theorem (see [6, Section 2.3.5]), ρ(z,x) := µz(dx)/µ(dx) is such
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that µ(WL)= 1 for each finite-dimensional subspace L inX0,d(C0
0 (T ,H)), where

either µ = µS,γ,ψ or µ = µS , WL := {x : ρ(z,x) is defined and continuous by

z ∈ L}.
In view of the preceding consideration, limn→∞ρ(P̂nz,x) = ρ(z,x) for µ-

almost allx ∈ C0
0 (T ,H), moreover, this convergence is uniform by z in each ball

B(L,0,c) for each finite-dimensional subspace L in X0,s(C0
0 (T ,H)), where P̂n is

a projection on a subspace spK(e1, . . . ,en)=Kn, where {ej : j} is the orthonor-

mal base in X0,s(C0
0 (T ,H)). Evidently, X0,s(C0

0 (T ,H)) is dense in C0
0 (T ,H).

Stochastic antiderivational [20, (3.8)] is the particular case of [20, Theorem

3.4(i)]. Therefore, it is sufficient to consider the latter equation. Below, it is

shown that the one-parameter family of solutions ξ(t,ω,y) is of class C1 by

y ∈ V . Let X0(t,y)= x(y), . . . ,

Xn(t,y)= x(y)

+
∞∑

m+b=1

m∑
l=0

(
P̂ub+m−l,w(u,ω)l

[
am−l+b,l

(
u,Xn−1(u,ω,y),y

)

◦(I⊗b⊗a⊗(m−l)⊗E⊗l)])|u=t .
(2.18)

Consequently,

Xn+1(t,y)−Xn(t,y)

=
∞∑

m+b=1

m∑
l=0

(P̂ub+m−l,w(u,ω)l
[
am−l+b,l

(
u,Xn(u,y),y

)

−am−l+b,l
(
u,Xn−1(u,y),y

)]
◦(I⊗b⊗a⊗(m−l)⊗E⊗l))|u=t ,

(2.19)

where tj = σj(t) for each j = 0,1,2, . . . , for the shortening of the notation, Xn,

x, and al,k are written without the argument ω; a and E are written without

their variables. Then

M sup
y

∥∥P̂ub+m−l,w(u,ω)l[am−l+b,l(u,Xn(u,y),y)
−am−l+b,l

(
u,Xn−1(u,y),y

)]|(BR1×B(Lq,0,R2)×V)

◦(I⊗b⊗a⊗(m−l)⊗E⊗l)|u=t∥∥g
≤K(M∥∥P̂ub+m−l,w(u,ω)l∥∥g)∥∥am−l+b,l|(BR1×B(Lq,0,R2)×V)

∥∥g
×
(
M sup

u,y

∥∥Xn(u,y)−Xn−1(u,y)
∥∥g)(M sup

u,y
‖a‖m−l

)(
M sup

u,y
‖E‖l

)
,

(2.20)
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where Xn ∈ C0
0 (BR,H) for eachω,y ∈ V and for eachn, K is the same constant

as in [20, Theorem 3.4], 1≤ g <∞. On the other hand,

X1(t,y)= x(t,y)

+
∞∑

m+b=1

m∑
l=0

(
P̂ub+m−l,w(u,ω)l

[
am−l+b,l

(
u,x(u,y),y

)

◦(I⊗b⊗a⊗(m−l)⊗E⊗l)])|u=t ,
(2.21)

consequently,

∥∥X1(t,y)−X0(t,y)
∥∥g

≤ sup
m,l,b

(∥∥P̂ub+m−l,w(u,ω)l[am−l+b,l(u,x(u,y),y)
◦(I⊗b⊗a⊗(m−l)⊗E⊗l)])|u=t∥∥g.

(2.22)

Due to condition (ii) for each ε > 0 and 0 < R2 <∞ there exists Bε ⊂ BR such

that

K sup
m,l,b

(∥∥P̂ub+m−l,w(u,ω)l |Bε[am−l+b,l(u,∗,y)|(Bε×B(Lq,0,R2)×V)

◦(I⊗b⊗a⊗(m−l)⊗E⊗l)]∥∥)g =: c < 1.
(2.23)

On the other hand, the partial difference quotient has the continuous extension

Φ̄1(Xn+1 −Xn)(y ;h;ζ), that is expressible through Φ̄1 of al,k, a, and E, and

also through al,k, a, and E themselves, where y ∈ V , h ∈ Y , ζ ∈ K such that

y+ζh ∈ V , since analogous to (Xn+1−Xn) estimates are true for Φ̄1(Xn+1−
Xn). Therefore, there exists the unique solution on each Bε and it is of class

C1 by y ∈ V , since supu,ymax(‖X1(u,y)−X0(u,y)‖Lq(Ω,H), ‖Φ̄1(X1(u,y)−
X0(u,y))‖Lq(Ω,H)) <∞, and liml→∞ clC = 0 for each C > 0, hence there exists

limn→∞Xn(t,y)=X(t,y)= ξ(t,ω,y)|Bε , where

C :=M sup
u∈Bε,y∈V

max
(∥∥X1(u,y)−X0(u,y)

∥∥q
Lq(Ω,H),

∥∥Φ̄1(X1(u,y)−X0(u,y)
)∥∥q
Lq(Ω,H)

)≤ (c+1)K <∞,
(2.24)

here Bε is an arbitrary ball of radius ε in BR , t ∈ Bε. Therefore, ξ(t,ω,y) ∈
C1(V ,Lq(Ω,�,λ;C0(BR,H))).

From [20, Proposition 3.11] it follows that the multiplicative operator func-

tional T(t,v ;ω;y) is of class C1 by the parameter y ∈ V such that ξ(t,ω,y)=
T(t,v ;ω;y)ξ(v,ω,y) for each t and v ∈ T .

Due to the existence and uniqueness of the solution ξ(t,ω,y) for each

y ∈ V , there exists the operator U(y2,y ;ξ(t,ω,y)) := ξ(t,ω,y2), that may

be nonlinear by ξ. The variation of the family of solutions {ξ(t,ω,y) :y} cor-

responds to the differential Dyξ(t,ω,y). Since ξ(t,ω,y) is of class C1 by y ,
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then U(y2,y ;ξ(t,ω,y)) is of class C1 by y and y2. The operator U(y2,y ;∗)
has the inverse, since U(y,y2;U(y2,y ;ξ(t,ω,y))) = ξ(t,ω,y) for each y2

and y ∈ V , t ∈ T , and ω ∈ Ω. Therefore, U−1(y2,y ;∗) is also of class C1 by

y2 and y . In view of conditions (iii), (iv) and ξ(t,ω,y2)−ξ(t,ω,y)∈X0,d(H).
On the other hand, either µS,γ,ψ or µS is quasi-invariant relative to shifts z ∈
X0,d(C0

0 (T ,H)) and S = S1 ⊗ S2, consequently, the transition measure Py is

quasi-invariant relative to shifts z ∈X0,d(H). In view of conditions (ii), (iii), and

(iv), ∂U(y2,y ;η)/∂η−I ∈ Lb(H) for each y2 and y ∈ V , where η∈ {ξ(t,ω,y) :

y}, either b =ψ or b = 0, respectively. Since µS(C0
0 (T ,H))= 1, then Py(H)= 1,

henceU(y2,y ;∗) is defined Py -almost everywhere onH for eachy2 andy ∈ V .

Therefore, there exists n such that for each j > n the mappings V(j;x) :=
x + Pj(U−1(x) − x) and U(j;x) := x + Pj(U(x) − x) are invertible and

limj |detU ′x(j;x)|=|detU ′x(x)| and limj |detV ′x(j;x)|=1/|detU ′x(x)|, where

U(x) :=U(y2,y ;x), y2, and y ∈ V .

In view of [10, Theorem 3.28] for eachy2 and y ∈ V , the transition measures

Py2 and Py are equivalent.

Theorem 2.6. Let conditions (i), (ii), (iii), and (iv) in Section 2.1 be satisfied

and let φ be a C1-diffeomorphism of a subset V clopen in K onto the unit ball

B(K,0,1). Then

(1) the transition measure Py corresponding to µS,γ,d is pseudodifferentiable

by the parameter y = φ(z) of order b ∈ C for each Re(b) ≥ 0, where

z ∈ V ;

(2) Py corresponding to µS with hk such that
∑
k δk < ∞, where δk :=

supx∈B(K,0,1) |PDc(b,hk(x))|, is pseudodifferentiable by the parameter

y = φ(z) of order b for each b ≥ 0, moreover, Py is pseudodifferen-

tiable for each b ∈ C , when each fk is locally constant, that is, hk = 0 for

each k∈N.

Proof. Up to a constant multiplier, the operator PDc(b,h(x)) of [18, Sec-

tion I.3.1] coincides with the pseudodifferential operator

Db
(
h(x)ChB(K,0,1)(x)

)
(2.25)

from [25, Section 9], where ChA is the characteristic function of the subset A in

K. If ψ∈ L2(K,w,C) and b > 0, then due to the Cauchy-Schwarz-Bunyakovskii

inequality there exists∫
K\B(K,x,1)

[
ψ(x)−ψ(y)]|x−y|−1−bw(dy), (2.26)

where w is the Haar nonnegative measure on K. Then,

F
[
Db
(
h(x)

)]= |x|bF[h(x)], (2.27)

where F(h)(x) := ∫Kh(y)χ1((x,y))w(dx) is the Fourier transform (see also

[21, Section 3.4]). In view of [25, Theorem 7.4], the Fourier transform f � F[f]
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is the bijective continuous isomorphism of L2(K,w,C) onto itself such that

f(x) = limr→∞
∫
B(K,0,r ) F[f ](y)χ1(−(y,x))w(dy) and (f ,g) = (F[f],F[g])

for each f ,g ∈ L2(K,w,C). If F[ψ](x)= C exp(−β|x|d)χγ(x), then there exists

Dbψ(x) for each b ≥ 0. In accordance with [25, Example 4.3.9],
∫
Kχγ(x)w(dx)

= 0 for each γ �= 0. In view of [25, Example 4.3.10],

∫
Qp
|x|ndχ1(yx)w(dx)=

[
1−pnd][1−p−n(d+1)]−1|y|−n(d+1) (2.28)

for each d∈ C with Re(d) > 0 and n∈ {1,2,3, . . .}.
If f is a locally constant function as in Note 2.4, then PDc(b,f ) exists for

each b ∈ C. On the other hand, PDc(b,f +hk)= PDc(b,f )+PDc(b,hk).
Let g be a continuously differentiable function g :R→R such that

‖g‖C1(R,R) := sup
x

∣∣g(x)∣∣+sup
x

∣∣g′(x)∣∣<∞, (2.29)

that is, g ∈ C1
b(R,R). If for f : K→R and x ∈K, there exists [f (x)−f(y)]|x−

y|−1−b ∈ L1(K,w,C) as the function by y ∈K, then

∫
K

[
g◦f(x)−g◦f(y)]|x−y|−1−bw(dy)

=
∫
S(f ,x)

[
g◦f(x)−g◦f(y)][f(x)−f(y)]−1[f(x)−f(y)]|x−y|−1−bw(dy),

(2.30)

where S(f ,x) := {y :y ∈K, f(x) �= f(y)}, consequently, there exists PD(b,g◦
f)(x).

If instead of g there exists h∈ C1(K,K) such that

‖h‖C1(K,K) :=max
(

sup
x

∣∣h(x)∣∣,sup
x,y

∣∣Φ̄1h(x;1;y)
∣∣)<∞, (2.31)

that is h∈ C1
b(K,K), then

∫
K

[
f ◦h(x)−f ◦h(y)]|x−y|−1−bw(dy)

=
∫
S(h,x)

[
f ◦h(x)−f ◦h(y)]∣∣h(x)−h(y)∣∣−1−b

×∣∣h(x)−h(y)∣∣1+b|x−y|−1−bw(dy)

(2.32)

exists, hence there exists PD(b,f ◦h)(x). Analogous two statements are true

for the operator PDc instead of PD.

In view of [25, equation 9.1.5], DαDβψ=DβDαψ=Dα+βψ for each α �= −1,

β �= −1, and α+ β �= −1 for each ψ ∈ D′ such that there exist Dαψ, Dβψ,

and Dα+βψ, where D′ is the topologically dual space to the space D of locally

constant functions φ : K → R. On the other hand, D is dense in D′ in the
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weak topology (see [25, Section 6]). Evidently, L2∩D is dense in L2(K,w,R)
also. The characteristic functional of the Gaussian measure belongs to D′ and

is locally constant on K \ {0}. Due to [25, Sections 7.2 and 7.3], the Fourier

transform is the linear topological isomorphism of D on D and of D′ on D′.
Then, µgS,γ,d(dx)/w(dx)∈ L1(K,w,R)∩D′ for each g ∈ C0

0 (T ,H)∗.

In view of [11, Theorem 4.3] and using the Kakutani theorem as in Note

2.4, we get the statements of this theorem, since the quasi-invariance factor

Py(dx)/Pu(dx) is pseudodifferentiable as the function by y of order b for

each fixed u∈ B(K,0,1).

Theorem 2.7. Let G be either a loop group or a diffeomorphism group de-

fined as in [18, Section II.2.1] and Remark 2.3 above, then there exists a stochas-

tic process ξ(t,ω) on G which induces a quasi-invariant transition measure P
on G relative to G′, and P is pseudodifferentiable of order b for each b ∈ C such

that Re(b)≥ 0 relative to G′, where a dense subgroup G′ is given in [18, Section

II.2.4] and Remark 2.3 above.

Proof. These topological groups also have structures of C∞-manifolds,

which are infinite-dimensional over the local field K, but they do not satisfy

the Campbell-Hausdorff formula in any open local subgroup [16, 18]. Their

manifold structures and actions of G′ on G will be sufficient for the construc-

tion of the desired measures. These separable Polish groups have embeddings

as clopen subsets into the corresponding tangent Banach spaces Y ′ and Y in

accordance with [14, 18] and Remark 2.3, where Y ′ is the dense subspace of

Y . As usually TG =⋃x∈G TxG and TxG = (x,Y).
Let G be a complete separable relative to its metric ρ C∞-manifold on a

Banach space Y over K such that it has an embedding into Y as the clopen

subset. Let τG : TG→G be a tangent bundle on G. It is trivial, since TG =G×Y
for the considered case here. Let θ : ZG → G be a trivial bundle on G with the

fibre Z such that ZG = Z×G, then L1,2(θ,τG) will be an operator bundle with

a fibre L1,2(Z,Y) (see [21, Section 2.4]). Let Π := τG⊕L1,2(θ,τG) be a Whitney

sum of bundles τ and L1,2(θ,τG).
Since G is clopen in Y , the valuation group of K is discrete in (0,∞), then it

has a clopen disjoint covering by balls B(Y ,xj,rj), that is, the atlas At(G) of

G has a refinement At′(G) being a disjoint atlas.

On Y , consider the measure µS,γ,d or µS as in Note 2.4. Then in view of [21,

Theorem 4.2] and [20, Section 2.1], there exists the stochastic processw(t,ω)
corresponding to µS,γ,d or µS (see also [21, Definition 4.1] and [20, Section 3.1]).

Suppose that f and hk, for each k ∈ N defining the measure µS , satisfy the

conditions of Note 2.4 and of Theorem 2.6.

Now, let G be a loop or a diffeomorphism group of the corresponding man-

ifolds over the field K. Consider for G a field � with a principal part (aη,Eη),
where aη ∈ TηG and Eη ∈ L1,2(H,TηG) and ker(Eη)= {0}, θ :HG →G is a trivial

bundle with a Banach fiberH andHG :=G×H, L1,2(θ,τη) is an operator bundle
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with a fibre L1,2(H,TηG) such that (aη,Eη) satisfies conditions of [20, Theorem

3.3]. For [20, Theorem 3.4(i)], we take additionally (al,k)η for each l, k satisfy

the conditions of [20, Theorem 3.4]. To satisfy conditions of quasi-invariance

and pseudodifferentiability of transition measures theorems, we choose aη,
Eη, and (ak,l)η of class C1 and satisfy conditions (iii) and (iv) in Section 2.1 by

y := η∈G′ =: V for each k and l.
We can take initially µI,γ,d or µI as a cylindrical measure on a Banach space

X′ such that TηG′ ⊂X′ ⊂ TηG. If Aη is the Ld-operator or the L1-operator with

ker(Aη) = {0}, then Aη gives the σ -additive measure µAη,A∗η z,d or µAη in the

completion X′1,η of X′ with respect to the norm ‖x‖1 := ‖Aηx‖ (see Note 2.4).

There exists the solution ξ(t,ω,η)= ξη(t,ω) of stochastic antiderivational

equation [20, (3.8) or Theorem 3.4(i)]. When the embedding θ of TηG′ into TηG
is θ = θ1θ2 with θ1 and θ2 of class Ld for µS,γ,d or of class L1 for µS , then there

exists Aη such that µAη,Aηz,d or µAη is the quasi-invariant and pseudodifferen-

tiable of order b measure on TηG relative to shifts on vectors from TηG′ (see

Theorems 2.5 and 2.6). Henceforth, we impose such demand on Aη for each

η∈G′.
Consider left shifts Lh :G→G such that Lhη := h◦η. We take ae∈TeG′, Ae ∈

L1,d(TeG′,TeG), orAe∈L1,1(TeG′,TeG), respectively, (ak,l)η ∈ Lk+l((TeG)⊗(k+l);
TeG) for each k and each l, where H, TeG′, and TeG in their own norm uni-

formities are isomorphic with c0(ω0,K). Then, we put ax = (DLx)ae and

Ax = (DLx)◦Ae for each x ∈G, hence ax ∈ TeG and Ax ∈ L1,κ(Hx,(DLx)TeG),
where (DLx)TeG = TxG and TeG′ ⊂ TeG, Hx := (DLx)TeG′, κ = d or κ = 1. Op-

erators Lh are (strongly) C∞-differentiable diffeomorphisms of G such that

DhLh : TηG → ThηG is correctly defined, since DhLh = h∗ is the differen-

tial of h. In view of the choice of G′ in G, each partial difference quotient

Φ̄nLh(X1, . . . ,Xn;ζ1, . . . ,ζn) is of class C0 and DnLh is of class Ln+1,κ(TG′⊗n×
G′,TG) for each vector fields X1, . . . ,Xn on G′,ζ1, . . . ,ζn ∈ K with ζjp2(Xj)+
h∈G′ and h∈G′, since for each 0≤ l∈ Z the embedding of T lG′ into T lG is

the product of two operators of the Ld-class or the embedding is of the L1-class,

where T 0G := G, X = (x,Xx) ∈ TxG, x ∈ G′, Xx ∈ Y ′, p1(X) = x, p2(X) = Xx .

Take a dense subgroup G′ from Note 2.2 or Remark 2.3 correspondingly and

consider left shifts Lh for h∈G′.
The considered groups G are separable, hence the minimal σ -algebra gen-

erated by cylindrical subalgebras f−1(�n), n = 1,2, . . . , coincides with the σ -

algebra � of Borel subsets of G, where f : G → Kn are continuous functions,

�n is the Borel σ -algebra of Kn. Moreover, G is the topological Radon space

(see [4, Theorem I.1.2 and Proposition I.1.7]). Let

P
(
t0,ψ,t,W

)
:= P({ω : ξ

(
t0,ω

)=ψ,ξ(t,ω)∈W}) (2.33)

be the transition probability of the stochastic process ξ for t ∈ T , which is

defined on a σ -algebra � of Borel subsets in G,W ∈ �, since each measure
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µAη,A∗η z,q is defined on the σ -algebra of Borel subsets of TηG (see above). On the

other hand, T(t,τ,ω)gx = gT(t,τ,ω)x is the stochastic evolution family of

operators for each τ �= t ∈ T . There exists the transition measure P(t0,ψ,t,W)
such that it is a σ -additive quasi-invariant and pseudodifferentiable of order

b relative to the action of G′ by the left shifts Lh on µ measure on G, for

example, t0 = 0 and ψ = e with the fixed t0 ∈ T (see [18, Remark I.3.3 and

Definition I.3.4]).

Note 2.8. In Theorem 2.7,G′ is on the Banach space Y ′ andG on the Banach

space Y over K such that G′ and G are complete relative to their uniformities

�G′ and �G. There are inclusions TG′ = G′ ×Y ′ ⊂ G×Y ′ ⊂ G×Y = TG. The

completion of TG′ relative to the uniformity �G×�Y ′ produces the uniform

space G×Y ′. Therefore, each �G×�Y ′ -uniformly continuous vector field X =
(x,Xx) on G′ has the unique extension on G such that Xx ∈ Y ′ for each x ∈G
(see [5, Section 8.3]), where �G|G′ ⊂ �G′ . Thus, the �G ×�Y ′ -C∞-vector field

X on G′ has the �G×�Y ′ -C∞ extension on G and it provides the 1-parameter

group ρ : K×G→G of C∞-diffeomorphisms of G generated by a �G×�Y ′ -C∞-

vector field Xρ on G′ (see [12, 13]), that is, (∂ρ(v,x)/∂v)|v=0 =Xρ(x) for each

x ∈ G, where v ∈ K, Xρ(x) ∈ G×Y ′. In view of Theorem 2.7, the transition

measure P is quasi-invariant and pseudodifferentiable of order b relative to

the 1-parameter group ρ.

This approach is also applicable to the case of two Polish manifolds G′ and

G of class C∞ on Y ′ and Y over K. The quasi-invariance and pseudodifferen-

tiability of the measure P on G relative to the 1-parameter group ρ (by the

definition) mean such properties of P relative to the �G×�Y ′ -C∞-vector field

X on G′.
Evidently, considering different (a,E) and {ak,l : k,l}, we see that there exist

� = card(R) nonequivalent stochastic (in particular, Wiener) processes on G
and � orthogonal quasi-invariant pseudodifferentiable of order b ∈ C with

Re(b) > 0 measures on G relative to G′.
If M is compact, then in the case of the diffeomorphism group, its dense

subgroup G′ can be chosen such that G′ ⊃Diff(t′,M) for dimKM =n∈N and

t′ = t + s for 0 ≤ t ∈ R, s > nv , v = dimQp (K). Analogously, the manifold

M ⊂ B(Kn,0,r ) and the group G := Diff(anr ,M) of analytic diffeomorphisms

f :M →M can be considered having analytic extensions on B(K,0,r ) with the

corresponding norm topology, where r > 0 and r <∞. Then, there exists the

stochastic process ξ on TeG such that it generates the transition measure P on

TeG, its restriction on the clopen subset G embedded into TeG produces the

quasi-invariant and pseudodifferentiable, each of order b ∈ C with Re(b) ≥ 0

measure P |G relative to the dense subgroup G′ := Diff(anR,M) for R > r > 0,

since the embedding TeG′ into TeG is of class L1 (see also Theorem 2.9).

Theorem 2.9. Let G be a separable Banach-Lie group over a local field K.

Then there exists a probability quasi-invariant and pseudodifferentiable, each
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of order b ∈ C with Re(b) > 0, transition measure P on G relative to a dense

subgroup G′ such that P is associated with a non-Archimedean stochastic pro-

cess.

Proof. We consider the following two cases: (I) G locally satisfies the

Campbell-Hausdorff formula; (II) G does not satisfy it in any neighbourhood of

e in G. The first case permits to describe G′ more concretely. There exists the

embedding of G into TeG as the clopen subset, since G is the Polish group. The

second case can be considered quite analogously to Theorem 2.7, where the

dense subgroup G′ can be characterized by the condition that the embedding

of TeG′ into TeG is θ = θ1θ2 with θ1 and θ2 of class Ld or θ of class L1, where

d = ψ or d = 1 for stochastic processes associated either with µS,γ,ψ or µS ,
respectively.

It remains to consider the first case. For G, there exist a Banach-Lie alge-

bra g and the exponential mapping exp : V → U , where V is a neighbour-

hood of 0 in g and U is a neighbourhood of e in G such that exp(V) = U ,

where exp(X + Y) = exp(X)exp(Y) for commuting elements X and Y of g,

that is, [X,Y] = 0, exp(X)Y exp(−X) = exp(adX)Y , exp(λX) = ∑∞
j=0λjXj/j!,

V = B(g,0,r ) is a ball of radius 0 < r < ∞ in g, λ ∈ K, λX ∈ V , g = TeG.

The radii of convergence of the exponential and Hausdorff series correspond-

ing to log(exp(X) · exp(Y)) are positive such that for each 0 < R < p1/(1−p)

to a ball B(g,0,R) there corresponds a clopen subgroup G1 supplied with the

Hausdorff function (see [2, Sections II.6 and II.8]). Therefore, the exponential

mapping supplies G with the structure of the analytic manifold over K. The

analytic atlas ofN is denoted by At(G)= {(Uj,φj) : j ∈N}, that is,φj :Uj → Vj
are diffeomorphisms of Uj onto Vj , where Uj and Vj are clopen in G and in

g, respectively, connecting mappings φj ◦φ−1
i are analytic on φi(Ui∩Uj)⊂ g.

Therefore, the exponential mapping provides G with the covariant derivation

∇ and a bilinear tensor Γ such that ∇XY = L∇XY−LT(X,Y)/2, where the left-

invariant derivation on G is defined by L∇XỸ = 0 for an arbitrary left-invariant

vector field Ỹ and all vector fieldsX onG, a vector field Ỹ is called left-invariant

if TLgỸ (h) = Ỹ (gh), Lgh := gh for each g,h ∈ G, TLg is the tangent map-

ping of Lg , ∇XYu = DYu ·Xu + Γu(Xu,Yu). For such ∇, the torsion tensor is

zero (see [9, Section 1.7], [18], and [25, Section 14.7]). It defines the rigid ana-

lytic geometry and the corresponding atlas on G. Nevertheless, At(G) has the

refinement At′(G) such that charts of At′(G) compose the disjoint covering

of G.

Let ax be an analytic vector field and Ax be an analytic operator field on G
such that Ax is an injective compact operator of class Ld for each x ∈G, since

g is of separable type over a spherically complete field K and hence isomor-

phic with c0(ω0,K) (see [24, Chapter 5]), where d=ψ or d= 1. Letwx(t,ω) be

a non-Archimedean stochastic (or, in particular, Wiener) process in TxG such

that axt +Axwx(t) ∈ TxG, since the space C0
0 is isomorphic with c0. For a

ball BR := B(K,0,R) in K for 0 < R <∞, let B(K, tj ,r ) be a disjoint paving for
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sufficiently small 0< r <∞ for which

ξqx(t)= expξqx,k

{
aξqx,k

(
t−tk

)+Aξqx,k
[
wξqx,k(t)−wξqx,k

(
tk
)]}

(2.34)

is defined, where ξqx,k = ξqx(tk) for k= 0,1, . . . ,n, ξqx(0)= x, q denotes the par-

tition of BR into B(K, tj ,r ). Then there exists the process ξ = limq ξq(t) which

is by our definition a solution of the following stochastic equation:

dξ(t,ω)= expξ(t,ω)
{
aξ(t,ω)dt+Aξ(t,ω)dw(t,ω)

}
(2.35)

for t ∈ BR . A function f(t,x) such that f(t,ξ) := lnξ(t,ω) ξ(t,ω) satisfies the

condition of [21, Theorem 4.7] on the corresponding domainW , where (t,x)∈
W ⊂ T ×H. In view of [21, Theorem 4.7] after coordinate mapping of a chart

(U,φ), this equation takes the following form on g:

φ
(
ξ(t,ω)

)=φ(ξ(t0,ω))+(P̂uaφξ(u))|u=t+
(
P̂wφξ(u)(u,ω)

E
)∣∣∣∣
u=t

−
∞∑
m=2

(m!)−1
m∑
l=0

(
m
l

)(
P̂um−l,wφξ(u)(u,ω)l

[(
∂m−2Γφφ(ξ(u))
∂xm−2

)

◦
(
aφξ(u)(u)

⊗(m−l)⊗E⊗l
)])∣∣∣∣

u=t
,

(2.36)

where E =Aφξ(u,ω), aφ = (∂φx/∂x)ax , Aφx = (∂φx/∂x)Ax(∂φ−1
x /∂x), since

hφ =
(
∂gφ

∂x

)
fφ+Γφφ(x)

(
fφ,gφ

)
for h=∇f g,

fφ =
(
∂φ
∂x

)
f , gφ =

(
∂φ
∂x

)
g, hφ =

(
∂φ
∂x

)
h,

(2.37)

Γφ is a bilinear operator of Christoffel in g, which has the transformation prop-

erty D(ψ◦φ−1) · Γφφ(x) = D2(ψ◦φ−1)+ Γψψ(x) ◦(D(ψ◦φ−1)×D(ψ◦φ−1)) such

that ∇XYφ = DYφ ·Xφ+ Γφφ(x)(Xφ,Yφ), Γφφ(x) denotes Γ for the chart (U,φ), ψ
corresponds to another chart (V ,ψ) such that U∩V �= ∅, f , g, and h are vec-

tor fields, since [∂(ψ ◦φ−1)/∂t] = 0, that is, [21, Corollary 4.6] is applicable

instead of [21, Theorem 4.7] because f corresponds to (ψ◦φ−1) (see [1], [9,

Section 1.5]). Since ax and Ax are analytic, then a and E satisfy the conditions

of [20, Theorem 3.3].

The function Γ is analytic on the corresponding domain. On the other hand,

g is isomorphic with c0(ω0,K) as the Banach space. If Z is the center of g,

then ad : g/Z → gl(c0(ω0,K)) is the injective representation, where gl(c0)
denotes the general linear algebra on c0, ad(x)y := [x,y] for each x,y ∈ g.

Since Z is commutative, it also has an injective representation in gl(c0), con-

sequently, g has an embedding into gl(c0(ω0,K)), since c0⊕c0 is isomorphic
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with c0. Therefore, eachx ∈ g can be written in the formx =∑i,j xi,jXi,j , where

{Xi,j : i,j ∈ N} is the orthonormal basis of g as the Banach space, xi,j ∈ K,

limi+j→∞xi,j = 0, consequently, g has an embedding into L0(c0(ω0,K)). Then,

Γ can be written in local coordinates xs(i,j) := xi,j , where s :N2 →N is a bijec-

tion for which limi+j→∞ s(i,j)=∞, Xi,j =: qs(i,j), since

(
xn
)j,k = ∑

l1,...,ln−1

xj,l1xl1,l2 ···xln−1,kXj,k, (2.38)

when Xj,k = (δa,jδb,k : a,b ∈ N), ψ ◦φ−1(x) = ∑s qsasmxm with asm ∈ K and

lims+|m|+Ord(m)→∞asm = 0, since exp(x) has a radius of convergence 0 < r̃ =
p−1 for the characteristic char(K) = 0 (see [23, Theorem 25.6]), where m =
(m1, . . . ,mk), k=Ord(m), 0≤m1 ∈ Z, . . ., 0≤mk−1 ∈ Z, 0<mk ∈ Z, 0≤ k∈ Z.

Evidently, there exists 0 < r < ∞ such that the series for ψ ◦φ−1 converges

in B(c0,0,r ) for V ∩U �= ∅. Hence, each am−l,l := (∂m−2Γφφ(x)/∂m−2x)/m! for

m ≥ 2 and a1,0 = a0,1 = (∂φ/∂x) satisfies [20, Theorem 3.4(ii)]. Due to [20,

Theorem 3.4] there exists the unique solution of [20, Theorem 3.4(i)]. Consider

G′ corresponding to g′ such that the embedding θ of g′ into g is of class L1

for µS or θ = θ1θ2, where θ1 and θ2 are of class Lψ for µS,γ,ψ.

Let T ∈ Ld(g) or T = T1T2 with T1 and T2 ∈ Ld(g), whered= 1 ord=ψ. Con-

siderh1 := T(g),h2 := spK([h1,g]∪h1) and by inductionhn+1 := spK([hn,g]∪
hn), thenhn+1 ⊃ hn andhn is the subalgebra in g for eachn∈N. In view of [21,

Proposition 2.10], the space Ld(g) is the ideal in L(g). Therefore, h := ⋃nhn
is the ideal in g due to the anticommutativity and the Jacobi identity. Since

K is spherically complete, there exists hn+1�hn =: tn+1 for each n ∈ N and

t1 := h1 such that tn is the K-linear subspace of g (see [24]). The completion

in g of vectors z is denoted by �0(g,{tn : n}) =: y such that z =∑nzn with

zn ∈ tn for each n and limn→∞zn = 0. Evidently, y is the proper ideal in g
such that h ⊂ y , since g is infinite dimensional over K. Then, the embedding

θ of y into g is of class either L1 or θ = θ1θ2 such that θ1 and θ2 belong to

Ld.

Due to this, let a and A be such that [ax,y] ⊂ y and [Ax,ad(y)] ⊂ ad(y)
for each x ∈G, where ad(x)g := [x,g] for each x,g ∈ g, that is, ad(x)∈ L(g).
If g ∈ y∩V , then exp(ad(g))− I is either of the class L1 or of the product of

two operators each of which is of the class Ld.

There exists a countable family (gj,Wj) : j ∈ N of elements gj ∈ G \W
for each j > 1 and clopen subsets e ∈ Wj ⊂ W such that g1 = e, W1 = W ,

and {gjWj : j} is a locally finite covering of G, since G is separable and ul-

trametrizable (see [5, Section 5.3]). If P is a quasi-invariant and pseudodif-

ferentiable of order b measure on a clopen subgroup W relative to a dense

subgroup W ′, then P(S) := (∑j P((g−1
j S)∩Wj)2−j)(

∑
j P(Wj)2−j)−1 for each

Borel subset S in G is quasi-invariant and pseudodifferentiable of order bmea-

sure on G relative to the dense subgroup G′ := ⋃j gj(Wj ∩W ′). The group G
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is totally disconnected and is left-invariantly ultrametrizable (see [8, Section

8 and Theorem 5.5] and [5, Section 6.2]), consequently, in each neighbour-

hood of e there exists a clopen subgroup in G. Then, conditions of Section 2.1

and Theorem 2.6 are satisfied. Therefore, analogously to Theorem 2.7, there

are S, γ, and the stochastic process corresponding to µS,γ,ψ or µS such that

the transition measure P is quasi-invariant and pseudodifferentiable relative

to G′.

2.2. Theorem 2.7 gives the subgroup G′ concretely for the given group G,

but Theorem 2.9 describes concretely G′ only for the case of G satisfying the

Campbell-Hausdorff formula. For a Banach-Lie group not locally satisfying the

Campbell-Hausdorff formula, Theorem 2.9 gives only the existence of G′.
These transition measures P =: ν on G induce strongly continuous uni-

tary regular representations of G′ given by the following formula: Tνh f(g) :=
(νh(dg)/ν(dg))1/2f(h−1g) for f ∈ L2(G,ν,C) =: H, Tνh ∈ U(H), U(H) de-

notes the unitary group of the Hilbert space H. For the strong continuity of

Tνh the continuity of the mapping G′ � h� ρν(h,g)∈ L1(G,ν,C) and that ν is

the Borel measure are sufficient, where g ∈G, since G is the Polish space and

hence the Radon space (see [4, Theorem I.1.2]). On the other hand, the conti-

nuity of ρν(h,g) by h from the Polish group G′ into L1(G,ν,C) follows from

ρν(h,g) ∈ L1(G,ν,C) for each h ∈ G′ and G′ being the topological subgroup

of G (see [3, 7]).

Then, analogously to Theorem 2.7 there can be constructed quasi-invariant

and pseudodifferentiable measures on the manifold M relative to the action

of the diffeomorphism group GM such that G′ ⊂ GM . Then, Poisson measures

on configuration spaces associated with either G orM can be constructed [19].

There exists the stochastic process corresponding to µS,γ,ψ with the certain

choice of a, E, and ak,l such that the regular representation is irreducible, for

the stochastic process corresponding to µS the family of {fk : k} and a, E, and

ak,l can be taken such that the regular representation is irreducible.

More generally, it is possible to consider instead of the groupG a Polish topo-

logical space X on which G′ acts jointly continuously, φ : (G′ ×X) � (h,x)�
hx =: φ(h,x) ∈ X, φ(e,x) = x for each x ∈ X, φ(v,φ(h,x)) = φ(vh,x) for

each v and h∈G′ and each x ∈X. If φ is the Borel function, then it is jointly

continuous [3, 7].

Theorem 2.10. LetX be an infinite Polish topological space with aσ -additive

σ -finite nonnegative nonzero ergodic Borel measure ν with supp(ν) = X and

quasi-invariant relative to an infinite dense in itself Polish topological group G′

acting on X by the Borel function φ. If

(i) spC{ψ |ψ(g) := (νh(dg)/ν(dg))1/2, h∈G′} is dense in H,

(ii) for each f1,j and f2,j inH, j = 1, . . . ,n, n∈N, and each ε > 0 there exists

h∈G′ such that |(Thf1,j ,f2,j)| ≤ ε|(f1,j ,f2,j)|, when |(f1,j ,f2,j)|> 0,

then the regular representation T :G′ →U(H) is topologically irreducible.
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Proof. From condition (i), it follows that the vector f0 is cyclic, where f0 ∈
H and f0(g)= 1 for each g ∈X. In view of card(X)≥ ℵ0 and the ergodicity of ν
for each n∈N, there are subsets Uj ∈ Bf(X) and gj ∈G′ such that ν((gjUj)∩
(
⋃
i=1,...,j−1,j+1,...,nUi)) = 0 and

∏n
j=1νj(Uj) > 0. Together with condition (ii),

this implies that there is no finite-dimensional G′-invariant subspace H′ in

H such that ThH′ ⊂ H′ for each h ∈ G′ and H′ �= {0}. Hence, if there is a

G′-invariant closed subspace H′ �= 0 in H, it is isomorphic with the subspace

L2(V ,ν,C), where V ∈ Bf(X) with ν(V) > 0.

Each Polish space is Čech-complete. By the Baire-category theorem in a Čech-

complete space X, the union A=⋃∞i=1Ai of a sequence of nowhere dense sub-

sets Ai is a codense subset (see [5, Theorem 3.9.3]). On the other hand, in view

of [8, Theorem 5.8], a subgroup of a topological group is discrete if and only

if it contains an isolated point. Therefore, we can choose a Radon probability

measure λ on G′ such that λ has no atoms and supp(λ) = G′. In view of the

strong continuity of the regular representation, there exists the Bochner inte-

gral
∫
X Thf(g)ν(dg) for each f ∈ H, which implies its existence in the weak

Pettis sense. The final part of the proof, follows from [18, Section II.3.2] (see

also [16, 19]).

Theorem 2.11. On a loop or a diffeomorphism group G, there exists a sto-

chastic process, which generates a quasi-invariant measure µ relative to a dense

subgroup G′ such that the associated regular unitary representation Tµ : G′ →
U(L2(G,µ,C)) is irreducible.

Proof. Pseudodifferentiable measures of order l can be used, either for

each l ∈ N or for each −l ∈ N, for the verification of Theorem 2.10(i). Transi-

tion measures corresponding to stochastic processes that are quasi-invariant

and pseudodifferentiable, each of order b ∈ C with Re(b) ≤ 0, can be analo-

gously constructed starting with the corresponding measures µS . To satisfy

the conditions of this theorem, for example, in Theorem 2.7, it can be taken

a= 0, E nondegenerate independent from t, and each ak,l = 0 besides a0,1 = 1;

in Theorem 2.9 it can be taken a = 0, E nondegenerate independent from t,
and ak,l is defined by the exponential mapping for G.

From the construction of G′ and µ in Theorem 2.7, it follows that if a func-

tion f ∈ L1(G,µ,C) satisfies the following condition: fh(g) = f(g) (modµ)
by g ∈ G for each h ∈ G′, then f(x) = const(modµ), where fh(g) := f(hg),
g ∈G.

In view of Theorem 2.7 and [18, 21] and references therein, the stochastic

process on the Banach manifold G induces the stochastic process on the Ba-

nach space TeG with the help of the manifold non-Archimedean exponential

locally affine mapping. Then, the left action Lh of G′ on G induces the local left

action of G′ on a neighbourhood V of 0 in TeG with ν(V) > 0, where ν is in-

duced by µ. A class of compact subsets approximates from below each measure

µf , µf (dg) := |f(g)|µ(dg), where f ∈ L2(G,µ,C) =: H. Finally, we get from
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Theorem 2.7 that there exists µ, which is ergodic, and that conditions (i) and

(ii) of Theorem 2.10 are satisfied. Evidently, G′ and G are infinite and dense in

themselves. Hence, from Theorem 2.10 the statement of this theorem follows.

Notes 2.12. In view of [22, Proposition II.1] for the separable Hilbert space

H, the unitary group endowed with the strong operator topology U(H)s is

the Polish group. Let U(H)n be the unitary group with the metric induced by

the operator norm. In view of the Pickrell’s theorem (see [22, Section II.2]),

if π : U(H)n → U(V)s is a continuous representation of U(H)n on the sepa-

rable Hilbert space V , then π is also continuous as a homomorphism from

U(H)s into U(V)s . Therefore, if T :G′ →U(H)s is a continuous representation,

then there are new representations π ◦ T : G′ → U(V)s . On the other hand,

the unitary representation theory of U(H)n is the same as that of U∞(H) :=
U(H)∩(1+L0(H)), since the group U∞(H) is dense in U(H)s .

Two theorems about induced representations of the dense subgroups G′

were proved in [12], which are also applicable to the cases considered here.

3. Stochastic antiderivational equations and measures

on a loop monoid and a path space

Theorem 3.1. On the monoid G = Ωξ(M,N) from [18, Part I] and for each

b0 ∈ C with Re(b0)≥ 0, there exists a stochastic process η(t,ω) on G such that

the transition measure P is quasi-invariant and pseudodifferentiable each of or-

der b ∈ Cwith Re(b)≥ Re(b0) relative to the dense submonoidG′ :=Ω{k}ξ (M,N)
from Note 2.2 (with c > 0 and c′ > 0).

Proof. In view of [18, Lemma I.2.17], it is sufficient to consider the case

of M with the finite atlas At′(M). The rest of the proof is quite analogous

to that of Theorem 2.7 using the definitions of the quasi-invariance and the

pseudodifferentiability for semigroups from [18].

Definition and Note 3.2. In view of [18, Definition and Note I.2.9], each

space Nξ has the additive group structure when N = B(Y ,0,R), 0<R ≤∞.

Therefore, the factorization by the equivalence relation Kξ×id produces the

monoid of paths Cθ0 (ξ,M̄ → N)/(Kξ × id) =: Sξ(M,N) in which compositions

are defined not for all elements, where y1 idy2 if and only if y1 = y2 ∈ N.

There exists a composition f1f2 = (g1g2,y) if and only if y1 = y2 = y , where

fi = (gi,yi), gi ∈ Ωξ(M,N), and yi ∈ Nξ , i ∈ {1,2}. The latter semigroup has

elements ey such that f = ey ◦f = f ◦ey for each f when their composition is

defined, wherey ∈Nξ , f = (g,y), g ∈Ωξ(M,N), ey = (e,y). IfNξ is a monoid,

then Sξ(M,N) can be supplied with the structure of a direct product of two

monoids. Therefore, Pξ(M,N) := Lξ(M,N)×Nξ is called the path group.

Theorem 3.3. On the path groupG = Pξ(M,N) from Definition and Note 3.2

when N = B(Y ,0,R) and Nξ is supplied with the additive group structure, and
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each b0 ∈ Cwith Re(b0)≥ 0, there exists a stochastic process η(t,ω) for which a

transition measure P is quasi-invariant and pseudodifferentiable each of order

b ∈ C with Re(b)≥ Re(b0) relative to a dense subgroup G′.

Proof. Since Pξ(M,N) = Lξ(M,N)×Nξ , it is sufficient to construct two

stochastic processes on Lξ(M,N) and Nξ and to consider transition measures

for them. In view of Theorems 2.7 and 2.9, the desired processes and transition

measures for them exist.

Definition 3.4. Let the topology of Ωξ(M,N) be defined relative to count-

able At(M). If F is the free Abelian group corresponding to Ωξ(M,N), then

there exists a set W̄ generated by formal finite linear combinations over Z of

elements from C0
0 (ξ,(M,s0) → (N,y0)) and a continuous extension K̄ξ of Kξ

onto Wξ(M,N) and a subset B̄ of W̄ generated by elements [f +g]−[f ]−[g]
such that Wξ(M,N)/K̄ξ is isomorphic with Lξ(M,N), where

Wξ(M,N) := W̄/B̄, (3.1)

f and g ∈ C0
0 (ξ,(M,s0) → (N,y0)), [f ] is an element in W̄ corresponding to

f , W̄ is in a topology inherited from the space C0
0 (ξ,(M,s0) → (N,y0))Z in

the Tychonoff product topology. We call Wξ(M,N) an O-group. Clearly, the

composition in C0
0 (ξ,(M,s0)→ (N,y0)) induces the composition in Wξ(M,N).

Then, Wξ(M,N) is not the algebraic group, but associative compositions are

defined for its elements due to the homomorphism χ∗ given by [18, formulas

I.2.6.2.(5,6)], hence Wξ(M,N) is the monoid without the unit element.

Let µh(A) := µ(h◦A) for each A∈ Bf(Wξ(M,N)) and h∈Wξ(M,N), then as

in [18, Sections I.3.3, 3.4] we get the definition of quasi-invariant and pseudo-

differentiable measures.

Now letG′ :=W {k}
ξ (M,N) be generated by C0

0,{k}(ξ,(M,s0)→ (N,0)) as in [18,

Section II.5.1], then it is the dense O-subgroup in Wξ(M,N), where c > 0 and

c′ > 0.

Theorem 3.5. Let G :=Wξ(M,N) be the O-group as in Definition 3.4, At(M)
finite, and b0 ∈ C with Re(b0)≥ 0. Then there exists a stochastic process η(t,ω)
on G for which the transition measure P is quasi-invariant and pseudodiffer-

entiable each of order b ∈ C with Re(b) ≥ Re(b0) on G relative to a dense

O-subgroup G′.

Proof. The uniform space C0
0 (ξ,M →N) has the embedding as the clopen

subset intoC0
0 (ξ,M → Y) (see [14]). Here, we can takea∈ TG′ andA∈ L1,s(θ,τ)

without relations with DLh, where s = q or s = 1, respectively. Then, repeating

the major parts of the proof of Theorem 2.7 without Lh and so more simply,

but using actions of vectors fields of TG′ by ρX on G, we get the statement of

this theorem, since (DXρX)Y and [(∇X)n(DXρX)]Y are products of two oper-

ators of class Ln+2,q((TG′)n+2,TG) and also of class Ln+2,1((TG′)n+2,TG) for

each C∞-vector fields X and Y on G′ and for each n ∈ N. In view of Note 2.8,
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there exists a stochastic process η(t,ω) for which the transition measure P is

quasi-invariant and pseudodifferentiable relative to each 1-parameter diffeo-

morphism group of G′ associated with a �G×�Y ′ -C∞-vector field on G′.
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