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Accurate estimates for the norms of the solutions of a vector difference equation
are derived. They give us stability conditions and bounds for the region of attrac-
tion of the stationary solution. Our approach is based on estimates for the powers
of a constant matrix. We also discuss applications of our main results to partial
reaction-diffusion difference equations and to a Volterra difference equation.
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1. Introduction. Let Cn be the set of n-complex vectors endowed with the

Euclidean norm ‖·‖. Consider the equation

xk+1 =Axk+fk
(
xk
)
, k= 0,1,2, . . . , (1.1)

where A is an n×n complex matrix and fk : Cn→ Cn are given functions.

A well-known result of Perron which dates back to 1929 (see [8], [12, page

270], and [10, Theorem 9.14]) states that (1.1) is asymptotically stable provided

that A is stable (i.e., the spectral radius ρ(A) of A is less than 1) and fk(x) =
f̃ (x)= o(‖x‖). Clearly, this kind of results for the perturbed equation (1.1) is

purely local. It gives no information about the size of the region of asymptotic

stability and the norms of solutions.

In this paper, we derive accurate estimates for the norms of solutions. They

give us stability conditions for (1.1) and bounds for the region of attraction

of the stationary solution. Our approach is based on recent estimates for the

powers of a constant matrix, namely, Corduneanu [3] established that for any

constant matrix A, there exists a constant N ≥ 1, independent of the integers

k= 0,1,2, . . . , such that

∥∥Ak∥∥≤Nρk(A) for k= 0,1,2, . . . . (1.2)

In particular, if A= (aij) is a triangular constant matrix, then N = 1. On the

other hand, Gil’ [5, Theorem 1.2.1] established a very sharp estimate for the

powers Ak of a constant matrix A. In order to establish Theorems 2.1 and 2.3,

we use a method introduced by Gil’ and Cheng [7] which deals with perturbed

linear discrete dynamical systems.
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We also discuss the applications of our main results to a partial reaction-

diffusion difference equation and to the discrete analogous of an integrodif-

ferential equation, respectively.

2. Main results. For a positive number r ≤∞, denote the ball Br = {x ∈ Cn :

‖x‖ ≤ r} and assume that there are constants q,µ ≥ 0 such that

∥∥fk(x)∥∥≤ q‖x‖+µ (
x ∈ Br , k= 0,1,2, . . .

)
. (2.1)

Assume that

0< ρ(A) < 1 (2.2)

and put θ =N/(1−ρ(A)).
Now, we are in a position to formulate the main result of this paper.

Theorem 2.1. Under conditions (2.1) and (2.2), let qθ < 1. Then any solution

{xk}∞k=0 of (1.1) satisfies the inequality

sup
k=1,2,...

∥∥xk∥∥≤ N∥∥x0

∥∥+µθ
1−qθ (2.3)

provided that

(
N
∥∥x0

∥∥+µθ)(1−qθ)−1 ≤ r . (2.4)

Proof. By inductive arguments, it is easy to check that the unique solution

{xk}∞k=0 of (1.1) under the initial condition x0 is given by

xk =Akx0+
k−1∑
j=0

Ak−j−1fj
(
xj
)
, k= 0,1,2, . . . . (2.5)

There are two cases to consider: r =∞ and r <∞.

Assuming first that r =∞, hence

∥∥xk∥∥≤ ∥∥Ak∥∥∥∥x0

∥∥+k−1∑
j=0

∥∥Ak−j−1
∥∥(q∥∥xj∥∥+µ), k= 0,1,2, . . . . (2.6)

Let Γ = supk≥0‖Ak‖. It follows that

∥∥xk∥∥≤ Γ∥∥x0

∥∥+q max
i=0,1,...,k−1

∥∥xi∥∥k−1∑
j=0

∥∥Ak−j−1
∥∥

+µ
k−1∑
j=0

∥∥Ak−j−1
∥∥, k= 0,1,2, . . . .

(2.7)
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By (1.2) and (2.2), we have

Γ = sup
m≥0

∥∥Am∥∥≤ sup
m≥0

(
Nρm(A)

)=N sup
m≥0

ρm(A)=N. (2.8)

Furthermore, since 0< ρ(A) < 1, we obtain

∞∑
m=0

∥∥Am∥∥≤N ∞∑
m=0

ρm(A)= N
1−ρ(A) = θ. (2.9)

In view of (2.7) and the condition qθ < 1, it follows that

∥∥xk∥∥≤N∥∥x0

∥∥+q max
i=0,1,...,k−1

∥∥xi∥∥ ∞∑
j=0

∥∥Aj∥∥+µ ∞∑
j=0

∥∥Aj∥∥, k= 0,1,2, . . . . (2.10)

Consequently,

max
i=0,1,...,k

∥∥xi∥∥≤N∥∥x0

∥∥+qθ max
i=0,1,...,k

∥∥xi∥∥+µθ. (2.11)

Hence, it follows that

sup
i≥0

∥∥xi∥∥(1−qθ)≤N∥∥x0

∥∥+µθ,
sup
i≥0

∥∥xi∥∥≤ N∥∥x0

∥∥+µθ
1−qθ .

(2.12)

Next, we will consider the case r <∞.

Define the function

f̃k(x)=
fk(x), ‖x‖ ≤ r ,

0, ‖x‖> r. (2.13)

Since ‖f̃k(x)‖ ≤ q‖x‖ + µ (k = 0,1,2, . . . ) and x ∈ B∞, then the sequence

{x̃k}∞k=0 defined by

x̃0 = x0,

x̃k+1 =Ax̃k+ f̃k
(
x̃k
)
, k= 0,1, . . . ,

(2.14)

satisfies the inequality

sup
k≥0

∥∥x̃k∥∥≤ N∥∥x0

∥∥+µθ
1−qθ ≤ r (2.15)

provided that (N‖x0‖+µθ)(1−qθ)−1 ≤ r .

But fk(x) and f̃k(x) coincide on Br . From this, we infer that xk = x̃k for

k= 0,1,2, . . . , and therefore (2.3) is satisfied, concluding the proof.



3062 RIGOBERTO MEDINA

Remarks. (a) Under (2.1) with µ = 0, fk(0) = 0 so that {0} is a solution

of (1.1). Under condition qθ < 1, Theorem 2.1 asserts that the trivial solution

is stable and that any initial vector x0 ∈ Br , satisfying the condition ‖x0‖ ≤
(1−qθ)/N, belongs to the region of attraction.

(b) If q = 0, then, by (2.4), every solution of (1.1) with the initial vector x0

satisfying N‖x0‖+µθ ≤ r is bounded.

Corollary 2.2. If A is a triangular matrix and q < 1− ρ(A), then any

solution {xk}∞k=0 of (1.1) satisfies

sup
k≥0

∥∥xk∥∥≤ (1−ρ(A))∥∥x0

∥∥+µ
1−(q+ρ(A)) (2.16)

provided that

[(
1−ρ(A))∥∥x0

∥∥+µ][1−(q+ρ(A))]−1 ≤ r . (2.17)

Theorem 2.3. Suppose that fk : Cn→ Cn satisfies the condition

∥∥fk(x)∥∥≤ qk‖x‖+µ (
x ∈ Br , k= 0,1,2, . . .

)
(2.18)

such that
∑∞
j=0qjρj(A) = β <∞. If βN < 1, then any solution {xk}∞k=0 of (1.1)

satisfies

sup
k=1,2,...

∥∥xk∥∥≤ N∥∥x0

∥∥+µθ
1−βN (2.19)

provided that (N‖x0‖+µθ)(1−βN)−1 ≤ r .

By using arguments similar to those in Theorem 2.1, the result follows, thus

we will omit the proof.

3. Applications. In this section, we will illustrate our main results by con-

sidering a partial difference equation and the discrete analogous of an inte-

grodifferential equation, respectively.

We consider a simple three-level discrete reaction-diffusion equation of the

form

u(j+1)
i = au(j)i−1+bu(j)i +cu(j)i+1+g(j)i +fj

(
u(j)i

)
, (3.1)

defined on Ω = {(i,j) : i = 0,1,2, . . . ,n+ 1; j = 0,1,2, . . .}, where g = {g(j)i }
is a complex function defined on Ω and fj : C → C (j = 0,1,2, . . .) are given

functions.
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Assume that the side conditions

u(j)0 = δj ∈ C, j = 0,1,2, . . . ,

u(j)n+1 = γj ∈ C, j = 0,1,2, . . . ,

u(0)i = τi ∈ C, i= 1,2, . . . ,

(3.2)

are imposed, where τ = col(τ1,τ2, . . . ,τn) ∈ Cn. A solution of problem (3.1),

(3.2) is a discrete function u = {u(j)i }(i,j)∈Ω which satisfies the relations (3.1)

and (3.2).

The existence and uniqueness of solutions of that problem is obvious pro-

vided the functions fj are well defined.

With the notation

u(j) = col
(
u(j)1 ,u

(j)
2 , . . . ,u

(j)
n
)
, (3.3)

the sequence {u(j)i }∞j=0 satisfies the vector equation

u(j+1) =Au(j)+Gj+Fj
(
u(j)

)
, j = 0,1,2, . . . , (3.4)

and the initial condition u(0) = τ , where

A=



b c 0 ··· ··· 0

a b c 0 ··· 0

0 a b c ··· 0
...

...
...

...
...

...

0 ··· ··· 0 a b


,

Gj = col
(
g(j)1 , . . . ,g

(j)
n

)
+col

(
aδj,0, . . . ,0,cνj

)
,

Fj(x)= col
(
fj
(
x1
)
, . . . ,fj

(
xn
))
, x = (x1, . . . ,xn

)
.

(3.5)

Thus, we can write the considered problem as (1.1) with fj(x)= Fj(x)+Gj .
Assume that there are nonnegative constants q1 and µ1 such that

∥∥Fj(x)∥∥≤ q1‖x‖+µ1
(
x ∈ Br , j = 0,1,2, . . .

)
. (3.6)

In addition, assume that

µ2 =
∞∑
j=0

∥∥Gj∥∥<∞. (3.7)

Hence, condition (2.1) holds with µ = µ1+µ2.
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We want to point out that if ac > 0, then the spectral radius ρ(A) is equal

to |b|+2
√
ac cos(π/(n+1)) and when ac < 0, then

ρ(A)=
√
b2−4ac cos2

(
π
n+1

)
. (3.8)

Then, as a direct consequence of Theorem 2.1, we get the following theorem.

Theorem 3.1. Assume that

(i) ac > 0 and |b|+2
√
ac cos(π/(n+1)) < 1, or

(ii) ac < 0 and b2−4ac cos2(π/(n+1)) < 1,

(iii) condition (2.1) holds with µ = µ1+µ2.

Then, for any x0 = τ such that (N‖τ‖+µθ)/(1−q1θ) ≤ r , the unique solu-

tion xj = {u(j)i }(i,j)∈Ω of problem (3.1), (3.2) satisfies

sup
j=1,2,...

∣∣u(j)i ∣∣≤ N‖τ‖+µθ1−q1θ
for i= 0,1,2, . . . ,n+1. (3.9)

Remarks. (1) An important class of admissible perturbation functions fj
for (3.1) is the polynomial functions. For example, if we consider

fj
(
xi
)= p∑

l=0

j
j2+1

xβli +ηi, j = 0,1,2, . . . , i= 0,1,2, . . . ,n, (3.10)

where p is a nonnegative integer and ηi and βl, l= 0,1,2, . . . ,p, are nonnegative

real numbers, then we infer that the requirements of Theorem 3.1 are satisfied

taking q1 =
∑p
l=0 rβl−1 and µ1 =

∑n
i=0ηi.

Indeed, if u(j) ∈ Br , then

∣∣fj(u(j)i )∣∣≤ p∑
l=0

∣∣u(j)i ∣∣∣∣u(j)i ∣∣βl−1+ηi

≤
p∑
l=0

rβl−1
∣∣u(j)i ∣∣+ηi

≤
 p∑
l=0

rβl−1

∣∣u(j)i ∣∣+ηi.
(3.11)

Hence,

∥∥Fj(u(j))∥∥= ∥∥(fj(u(j)1

)
, . . . ,fj

(
u(j)n

))∥∥
≤
 p∑
l=0

rβl−1

∣∣u(j)1

∣∣+η1+···+
 p∑
l=0

rβl−1

∣∣u(j)n ∣∣+ηn
≤
 p∑
l=0

rβl−1

∥∥u(j)∥∥+µ1.

(3.12)
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(2) We want to point out that Theorem 3.1 compares favorably with [11,

Theorems 1 and 2] and [2, Theorems 1–4]. On the other hand, Theorems 2.1

and 2.3 are comparable with the main results in [7]. However, our results,

though different in their approach in general, have very little overlapping with

those in [2, 7, 11]. Other important related results can be found in [1, pages

237–245], [6], [4, pages 196–204], and [9, pages 102–104].

We now consider the analogous of the integrodifferential equation

dx
dt

= Bx(t)+
∫ t

0
f
(
s,x(s)

)
ds, t ≥ 0. (3.13)

Consider the discrete equation

xk+1 =Axk+
k∑
j=0

fj
(
xj
)
, k≥ 0, (3.14)

where A is an n×n complex matrix and fj : Cn → Cn (j = 0,1,2, . . .) are given

functions, satisfying

∥∥fj(x)∥∥≤ qj‖x‖+µ (
x ∈ Br , j = 0,1,2, . . .

)
. (3.15)

Define

S(A)=
∞∑
k=0

kρk(A), ψ(A;f)=
∞∑
k=0

ρk(A)

 k∑
i=0

qi

. (3.16)

We are now in a position to establish the next theorem.

Theorem 3.2. Under condition (3.15), assume that

S(A) <∞, Nψ(A;f) < 1. (3.17)

Then any solution {xk}∞k=0 of (3.14) satisfies the inequality

sup
k=1,2,...

∥∥xk∥∥≤ N∥∥x0

∥∥+µNS(A)
1−Nψ(A;f)

(3.18)

provided that

(
N
∥∥x0

∥∥+µNS(A))(1−Nψ(A;f)
)−1 ≤ r . (3.19)

Proof. The variation of parameters formula yields

xk =Akx0+
k−1∑
j=0

Ak−j−1

 j∑
i=0

fi
(
xi
), k= 0,1,2, . . . . (3.20)

There are two cases to consider: r =∞ and r <∞.
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Assuming first that (3.15) is valid for r =∞, hence

∥∥xk∥∥≤ ∥∥Ak∥∥∥∥x0

∥∥+k−1∑
j=0

∥∥Ak−j−1
∥∥ j∑

i=0

(
qi
∥∥xi∥∥+µ)

, k= 0,1,2, . . . . (3.21)

Thus, following the lines of the proof of Theorem 2.3, the result follows.
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