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It is proved that cosymplectic hypersurfaces of six-dimensional Hermitian sub-
manifolds of the octave algebra are ruled manifolds. A necessary and sufficient
condition for a cosymplectic hypersurface of a Hermitian submanifold M6 ⊂ O
to be a minimal submanifold of M6 is established. It is also proved that a six-
dimensional Hermitian submanifold M6 ⊂O satisfying the g-cosymplectic hyper-
surfaces axiom is a Kählerian manifold.
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1. Introduction. One of the most important properties of a hypersurface of

an almost Hermitian manifold is the existence of such a hypersurface of an

almost contact metric structure determined in a natural way. This structure

has been studied mainly in the case of Kählerian [8, 17] and quasi-Kählerian

[13, 15] manifolds. In the case the ambient manifold is Hermitian, however,

comparatively little is known about the geometry of its hypersurfaces. In the

present paper, certain results obtained in this direction by using the Cartan

structural equations of such hypersurfaces are given.

2. Preliminaries. We consider an almost Hermitian manifold, that is, a 2n-

dimensional manifold M2n with Riemannian metric g = 〈·,��〉 and an almost

complex structure J. Moreover, the following condition must hold:

〈JX,JY 〉 = 〈X,Y 〉, ∀X,Y ∈ ℵ(M2n), (2.1)

where ℵ(M2n) is the module of smooth vector fields onM2n. All the considered

manifolds, tensor fields, and similar objects are assumed to be the class C∞.

The specification of an almost Hermitian structure on a manifold is equiv-

alent to the setting of a G-structure, where G is the unitary group U(n) [1].

Its elements are the frames adapted to the structure (A-frames). They look as

follows:

(
p,ε1, . . . ,εn,ε1̂, . . . ,εn̂

)
, (2.2)
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where p ∈ M2n, εa are the eigenvectors corresponding to the eigenvalue i =√−1, and εâ are the eigenvectors corresponding to the eigenvalue −i. Here the

index a ranges from 1 to n, and â= a+n.
Therefore, the matrix of the operator of the almost complex structure writ-

ten in an A-frame looks as follows:

(
Jkj
)
=
(
iIn
0

∥∥∥∥∥ 0
−iIn

)
, (2.3)

where In is the identity matrix and k,j = 1, . . . ,n.

We recall that the fundamental (or Kählerian [2]) form of an almost Hermitian

manifold is determined by

F〈X,Y 〉 = 〈X,JY 〉, X,Y ∈ ℵ(M2n). (2.4)

By direct computation, it is easy to obtain that in an A-frame the fundamental

form matrix looks as follows:

(
Fkj

)=
(

0
−iIn

∥∥∥∥∥ iIn0
)
. (2.5)

Let O ≡ R8 be the Cayley algebra. It is well known that two nonisomorphic

three-fold vector cross products are defined on it as (see [10])

P1(X,Y ,Z)=−X
(
YZ

)+〈X,Y 〉Z+〈Y ,Z〉X−〈Z,X〉Y ,
P2(X,Y ,Z)=−

(
XY

)
Z+〈X,Y 〉Z+〈Y ,Z〉X−〈Z,X〉Y , (2.6)

whereX,Y ,Z ∈O, 〈·,·〉 is the scalar product inO, andX →X is the conjugation

operator. Moreover, any other threefold vector cross product in the octave

algebra is isomorphic to one of the above-mentioned cross products.

If M6 ⊂ O is a six-dimensional oriented submanifold, then the induced al-

most Hermitian structure {Jθ,g = 〈·,·〉} is determined by the relation

Jθ(X)= Pθ
(
X,e1,e2

)
, θ = 1,2, (2.7)

where {e1,e2} is an arbitrary orthonormal basis of the normal space of M6 at

the point p, X ∈ Tp(M6) [10]. The submanifold M6 ⊂ O is called Hermitian if

the almost Hermitian structure induced on it is integrable. The point p ∈M6

is called general [11] if

e0 ∉ Tp
(
M6), Tp

(
M6)⊆ L(e0

)⊥, (2.8)

where e0 is the unit of Cayley algebra and L(e0)⊥ is its orthogonal supplement.

A submanifold M6 ⊂ O consisting only of general points is called a general-

type submanifold [11]. In what follows, all submanifolds M6 to be considered

are assumed to be of general type.
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3. Cosymplectic hypersurfaces of HermitianM6 ⊂O. LetN be an oriented

hypersurface of a Hermitian submanifold M6 ⊂ O and let σ be the second

fundamental of the immersion of N into M6. As it is well known [15, 17], the

almost Hermitian structure on M6 induces an almost contact metric structure

onN. We recall [13, 15] that an almost contact metric structure on the manifold

N is defined by the system {Φ,ξ,η,g} of tensor fields on this manifold, where

ξ is a vector, η is a covector, Φ is a tensor of a type (1,1), and g is a Riemannian

metric on N such that

η(ξ)= 1, Φ(ξ)= 0, η�Φ = 0, Φ2 = id+ξ⊗η,
〈ΦX,ΦY 〉 = 〈X,Y 〉−η(X)η(Y), X,Y ∈ ℵ(N). (3.1)

The almost contact metric structure is called cosymplectic [15] if

∇η=∇Φ = 0. (3.2)

(Here ∇ is the Levi-Civita connection of the metric g). The first group of the

Cartan structural equations written in an A-frame of a hypersurface of a Her-

mitian manifold looks as follows [16]:

dωa =ωa
bΛω

b+Babc ωcΛωb+
(√

2Ba3
b +iσab

)
ωbΛω

+
(
− 1√

2
Bab3 +iσab

)
ωbΛω;

dωa =−ωb
aΛωb+BcabωcΛωb+

(√
2Bba3−iσba

)
ωbΛω

+
(
− 1√

2
B3
ab+iσab

)
ωbΛω;

dω=
(√

2B3a
b −

√
2Ba3b−2iσab

)
ωbΛωa+

(
B3

3b+iσ3b
)
ωΛωb

+(B3b
3 −iσb3

)
ωΛωb.

(3.3)

Here and in what follows, a,b,c = 1,2; â = a+3; α,β,γ,µ = 1,2,3; ϕ = 7,8;

k,j = 1,2,3,4,5,6. Note that {Babc } and {Bcab} are the components of the

Kirichenko structural tensor of the Hermitian manifold. These complex ten-

sors form a complete system of first-order differential-geometrical invariants

of an arbitrary almost Hermitian structure [2, 6]. According to [6, definition (1)],

the components of the Kirichenko tensors are connected to the components

of ∇J:

Babc =− i
2
Jab̂,c , Bcab =

i
2
Jâb,ĉ , (3.4)

where these tensors satisfy the equations

dBabc +Babd ωd
c −Bdbc ωa

d−Badc ωb
d = Badc,kωk,

dBcab−Bdabωc
d+Bcdbωa

d+Bcadωd
b = Bcab,kωk.

(3.5)
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with the properties

Babc +Bbac = 0, Bcab+Bcba = 0, Babc = Bcab (3.6)

and they are skew-symmetric on the first pair indices.

Taking into account that the first group of the Cartan structural equations

of the cosymplectic structure must look as follows [9]:

dωa =ωa
bΛω

b,

dωa =−ωb
aΛωb,

dω= 0,

(3.7)

we get the conditions whose simultaneous fulfillment is a criterion for the

hypersurface N to be cosymplectic:

Babc = 0, (3.8a)√
2Ba3

b +iσab = 0, (3.8b)

− 1√
2
Bab3 +iσab = 0, (3.8c)√

2B3a
b −

√
2Ba3b−2iσab = 0, (3.8d)

B3b
3 −iσb3 = 0, (3.8e)

and the formulas are obtained by complex conjugation (so there is no need to

write them down explicitly).

Now, we analyze the obtained conditions. From (3.8c), it follows that

σab =− i√
2
Bab3 . (3.9)

By alternating this relation, we get

0= σ[ab] =− i√
2
B[ab]3 =− i√

2

(
Bab3 −Bba3

)
=− i√

2
Bab3 . (3.10)

Therefore, Bab3 = 0 and consequently σab = 0. From (3.8b), we get that B3a
b =

(i/
√

2)σab . We substitute this value in (3.8d). As a result, we have

σab = i
√

2Ba3b. (3.11)

Now, we use the relation for the Kirichenko structure tensors of six-dimen-

sional Hermitian submanifolds of Cayley algebra [2, 4]:

Bαβγ = 1√
2
εαβµDµγ, Bγαβ =

1√
2
εαβµDµγ, (3.12)

where

Dµγ =±T 8
µγ+iT 7

µγ, Dµγ =Dµ̂γ̂ =±T 8
µ̂γ̂−iT 7

µ̂γ̂ . (3.13)
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Here Tϕkj are components of the configuration tensor (in Gray’s notation [9], or

of the Euler curvature tensor [7]) of the Hermitian submanifoldM6 ⊂O; εαβµ =
εαβµ123 and εαβµ = ε123

αβµ are components of the third-order Kronecher tensor [14].

From (3.8a), we obtain

Babc = 0⇐⇒ 1√
2
εabγDγc = 0⇐⇒ 1√

2
εab3D3c = 0⇐⇒D3c = 0. (3.14)

The same reasoning can be applied in reference to the condition

Bab3 = 0 (3.15)

to obtain

Bab3 = 0⇐⇒ 1√
2
εabγDγ3 = 0⇐⇒ 1√

2
εab3D33 = 0⇐⇒D33 = 0. (3.16)

So, D3c =D33 = 0, that is,

D3α = 0. (3.17)

From (3.8e), we get

σb3 = σ3b̂ =−iB3b
3 =−i 1√

2
ε3bγDγ3 = 0. (3.18)

We have σab = σâb̂ = σ3b = σ3b̂ = 0. Using (3.8b), we will compute the rest of

the components of the second fundamental form

σâb = σab = i
√

2Ba3
b = i

√
2

1√
2
εa3γDγb = iεa3cDcb. (3.19)

Then

σ1̂1 = iε13cDc1 = iε132D21 =−iD21,

σ1̂2 = iε13cDc2 = iε132D22 =−iD22,

σ2̂1 = iε23cDc1 = iε231D11 =+iD11,

σ2̂2 = iε23cDc2 = iε231D12 =+iD12,

σ11̂ = σ1̂1 = iD12,

σ12̂ = σ1̂2 = iD22,

σ21̂ = σ2̂1 =−iD11,

σ22̂ = σ2̂2 =−iD12.

(3.20)
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We obtain that the matrix of the second fundamental form of the immersion

of the cosymplectic hyperspace N into M6 ⊂O looks as follows:

σ =




0 0 0 iD12 −iD11

0 0 0 iD22 −iD12

0 0 σ33 0 0

−iD12 −iD22 0 0 0

iD11 iD22 0 0 0



. (3.21)

Using, from [2], the identities

D11D22 = (D12)2, D11D22 =
(
D12

)2, (3.22)

we obtain that the matrices(−iD12 −iD22

iD11 iD12

)
,

(
iD12 −iD11

iD22 −iD12

)
(3.23)

are degenerate. Therefore the matrix σ is also degenerate (rankσ ≤ 3).

Hence, we have obtained the following result.

Theorem 3.1. Every cosymplectic hypersurface of a six-dimensional Hermit-

ian submanifold of Cayley algebra is a ruled manifold.

Studying the matrix σ , we come to another result. Indeed, the criterion of

the minimality of the hypersurface is the following identity [1, 2]:

gkjσkj = 0. (3.24)

Knowing how the matrix of the metric tensor looks [15],




0 0 0 1 0

0 0 0 0 1

0 0 1 0 0

1 0 0 0 0

0 1 0 0 0



, (3.25)

we have

gkjσkj = gabσab+gâb̂σâb̂+gâbσâb+gab̂σab̂+g33σ33

= iD12−iD12+iD12−iD12+σ33 = σ33.
(3.26)

That is why gkjσkj = 0� σ33 = 0. The equality σ33 = 0 means that σ(ξ,ξ)= 0.

Thus we have proved the following theorem.

Theorem 3.2. The cosymplectic hypersurface of a six-dimensional Hermit-

ian submanifold of Cayley algebra is minimal if and only if its second funda-

mental form satisfies the condition σ(ξ,ξ)= 0.
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As the hypersurface N is a totally geodesic submanifold of a Hermitian sub-

manifold M6 ⊂O precisely when the matrix σ vanishes, we can conclude that

the conditions

D11 =D12 =D22 =D11 =D12 =D22 = σ33 = 0 (3.27)

form a criterion for N to be a totally geodesic submanifold of M6.

We recall [5] that the almost Hermitian manifold satisfies the g-cosymplectic

hypersurfaces axiom if through every point of this manifold passes a totally

geodesic cosymplectic hypersurface. That is why for the Hermitian submani-

foldM6 ⊂O, satisfying the g-cosymplectic hypersurfaces axiom, the equalities

(3.27) hold at every point ofM6. As we have proved previously [2, 4], the matrix

(Dkj) of a six-dimensional Hermitian submanifold of the octave algebra looks

as follows:

D =




D11 D12 D13 0 0 0

D21 D22 D23 0 0 0

D31 D32 D33 0 0 0

0 0 0 D11 D12 D13

0 0 0 D21 D22 D23

0 0 0 D31 D32 D33



. (3.28)

If M6 satisfies the g-cosymplectic hypersurfaces axiom, then, taking into

account (3.17) and (3.27), we get that this matrix vanishes. But the matrix (Dkj)
vanishes at every point of a six-dimensional almost Hermitian submanifold of

the Cayley algebra precisely when the given submanifold is Kählerian [2, 3, 4,

12]. That is why we have the following theorem.

Theorem 3.3. Every six-dimensional Hermitian submanifold of Cayley alge-

bra satisfying the g-cosymplectic hypersurfaces axiom is a Kählerian manifold.
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