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We prove that the boundedness and compactness of the Toeplitz operator on the
Bergman space with a BMO1 symbol is completely determined by the boundary
behaviour of its Berezin transform. This result extends the known results in the
cases when the symbol is either a positive L1-function or an L∞ function.
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1. Introduction. Toeplitz operators are one of the most widely studied

classes of concrete operators. The study of their behavior on the Hardy and

Bergman spaces has generated an extensive list of results in the operator the-

ory and in the theory of function spaces. One of the latest approaches in this

area is the use of the Berezin transform as a determining factor of the be-

haviour of the Toeplitz operator (see [1, 2, 6, 8, 10]). This method is motivated

by its connections with quantum physics and noncommutative geometry.

We start with a few of the basic definitions. For more details and references,

see [3, 9].

The Bergman space L2
a(D) is the subspace of L2(D) consisting of functions

that are analytic on the unit disk D. Let P be the Bergman projection, that is,

the projection form L2(D) onto L2
a(D) defined by

(Pg)(z)=
∫
D

g(ω)(
1−zω)2dm(ω), (1.1)

where dm denotes the normalized Lebesque area measure ofD. For a function

f in L1(D), the Toeplitz operator Tf on L2
a(D) is defined by

Tfg = P(fg). (1.2)

Since the Bergman projection kernel function P can be extended to L1(D),
the operator Tf is well defined onH∞, the space of bounded analytic functions

on D. Hence, Tf is always densely defined on L2
a(D). Since P is not bounded

on L1(D), Tf can be unbounded in general.
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For z in D, the Bergman kernel function Kz and the normalized Bergman

kernel function kz are functions in L2
a(D), defined by

Kz(ω)= 1(
1−zω)2 , kz(ω)= 1−|z|2(

1−zω)2 . (1.3)

We have that, for any g in L2
a(D),〈

g,Kz
〉= g(z). (1.4)

Also, kz is inH∞ and ‖kz‖2 = 1, where 〈·,·〉 denotes the inner product in L2(D)
and ‖·‖2 denotes the L2(D) norm.

For an operatorA on L2
a(D) that is well defined onH∞, the Berezin transform

of A is the function Ã on D defined by

Ã(z)= 〈Akz,kz〉. (1.5)

If A is bounded, then Ã is a bounded function. Since the kernels kz converge

weakly to zero as z approaches the unit circle ∂D, we have that if A is compact,

then Ã(z)→ 0 as z→ ∂D. The converse (in both cases) is not necessarily true

and we will mention some counterexamples later on. For f in L1(D), we define

the Berezin transform of f to be the function T̃f , that is,

f̃ (z)= T̃f (z)=
∫
D
f(ω)

∣∣kz(ω)∣∣2dm(ω). (1.6)

Our main result states that for f in the space BMO1(D) (to be defined later),

Tf is bounded if and only if f̃ is bounded and Tf is compact if and only if

f̃ (z)→ 0 as z→ ∂D. The same result has been proven for positive L1(D) sym-

bols f by Luecking and Zhu in [5, 8], and for L∞(D) symbols f by Axler and

Zheng in [1]. We will see that both of these classes of symbols are contained

in BMO1(D) and so our result covers the above two cases.

We mention few more properties of the Berezin transform function (more

details can be found in [1, 3, 9]).

(1) The map A→ Ã is one to one.

(2) The function Ã(z) is in C∞(D). More precisely, Ã(z) is real analytic on D
with a power series expansion

Ã(z)= (1−|z|2)2
∞∑

m,n=0

(m+1)(n+1)
〈
Azn,zm

〉
znzm. (1.7)

(3) For f in L1(D), f is harmonic on D if and only if f = f̃ .

While (1) and (2) are fairly easy to obtain, property (3) is a very deep result

that was an open conjecture for a number of years, until it was proved inde-

pendently by Ahern, Flores, and Rudin in 1993 and by English in 1994. For

detailed references, see [3].
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There are several examples in the literature of noncompact operators with

Berezin transform vanishing at the boundary (see, e.g., [1]). We mention one

of them and then give an example of an unbounded operator with a bounded

Berezin transform. Both of the operators will be radial operators, that is, op-

erators that are diagonal with respect to the standard basis {en} of L2
a(D),

where en(z) =
√
n+1zn (see [10] for more details on radial operators and

their Berezin transform).

Example 1.1 (see [1, page 392]). Let A be the diagonal operator on L2
a(D)

defined by

Aen =
0, n≠ 2m,

1, n= 2m,
(1.8)

wherem∈N. Then Ã(z)= (1−|z|2)2∑∞
m=1(2m+1)(|z|2)2m → 0 as z→ ∂D, but

A is not compact since it is a projection on an infinite-dimensional subspace

of L2
a(D).

Example 1.2. Let A be the diagonal operator on L2
a(D) defined by

Aen =
0, n≠ 2m,

m, n= 2m,
(1.9)

where m∈N. The operator A is unbounded on L2
a(D). We will show that

Ã(z)= (1−|z|2)2
∞∑
m=1

m
(
2m+1

)(|z|2)2m
(1.10)

is bounded on D.

Since 2m+1≤ 3·2m−1 and 2m−1 =∑2m

k=2m−1+1 1 for all m in N, we have that

∞∑
m=1

m
(
2m+1

)(|z|2)2m ≤ 3
∞∑
m=1

m2m−1(|z|2)2m

= 3
∞∑
m=1

2m∑
k=2m−1+1

m
(|z|2)2m

≤ 3
∞∑
m=1

2m∑
k=2m−1+1

(k+1)
(|z|2)k

= 3
2|z|2(

1−|z|2)2 .

(1.11)

Thus Ã(z)≤ 6|z|2 ≤ 6 for all z in D.

Note that none of the operators in Examples 1.1 and 1.2 is a Toeplitz oper-

ator with symbol in L1(D) (see [10] for details).
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We will define the BMO1(D) spaces forp ≥ 1 in Section 2 and we will describe

some of the properties of the functions belonging to these spaces. The proof

of our main result will be presented in Section 3.

Throughout the paper, we will use the letter c to denote a generic positive

constant that can change its value at each occurrence.

2. BMOp spaces. Let f ∈ L1(D) and let ψz denote the disk automorphism

defined by

ψz(ω)= z−ω
1− z̄ω. (2.1)

For p ≥ 1, we say that f belongs to BMOp(D) whenever

sup
∥∥f ◦ψz− f̃ (z)∥∥p <∞, (2.2)

where ‖·‖p denotes the Lp(D) norm, and f̃ is the Berezin transform of f . We

define

‖f‖BMOp = sup
z∈D

∥∥f ◦ψz− f̃ (z)∥∥p,∣∣‖f‖∣∣p = ‖f‖BMOp +
∣∣f̃ (0)∣∣. (2.3)

Note that ‖·‖BMOp does not distinguish constants, while |‖ ·‖|p is a norm in

BMOp(D).
BMOp(D) spaces were introduced for p = 2 by Békollé et al. (see [2]) and for

general p ≥ 1 (and general pseudoconvex domains) by Li and Luecking in [4].

There are several equivalent norms on BMOp(D) that appear in the literature.

We will mention another definition stemming from the traditional approach

to the BMO spaces on the unit circle. This definition gives a geometric view of

the BMOp(D) spaces by explicitly using the Bergman metric.

For z, ω in D, let β(z,ω) = (1/2) log((1+|ψz(ω)|)/(1−|ψz(ω)|)) be the

Bergman metric on D. Let D(z) = {ω ∈ D; β(z,ω) < 1/2} be the Bergman

metric disk (also called hyperbolic disk) with center z and radius 1/2. The nor-

malized area of D(z), denoted by |D(z)|, is equivalent to 1/(1−|z|2)2. For

more details, see [3, 9].

For f in L1(D), the average of f over D(z) is defined by

f̂ (z)= 1∣∣D(z)∣∣
∫
D(z)

f (ω)dm(ω). (2.4)

Using properties of the Bergman metric and results from [4], it follows that

‖f‖BMOp is finite if and only if

sup
z∈D

1∣∣D(z)∣∣
∫
D(z)

∣∣f(ω)− f̂ (z)∣∣pdm(ω) <∞. (2.5)



TOEPLITZ OPERATORS WITH BMO SYMBOLS . . . 2933

Thus, functions in BMOp(D) have bounded mean oscillation in the Bergman

metric. Note that any other choice for the radius of the hyperbolic disk D(z)
gives the same set of functions. Since BMOp(D) functions are locally in Lp(D),
the spaces are different for different p. It is not hard to see that

L∞(D)⊂ BMOp(D)⊂ Lp(D), for p ≥ 1,

BMOq(D)⊂ BMOp(D)⊂ BMO1(D), for 1≤ p < q. (2.6)

Details regarding (2.6) could be found in [4, 7, 9].

Since the space BMO1(D) is the largest among the BMOp(D) spaces forp ≥ 1,

from now on we will be mainly interested in functions belonging to this class.

We will also drop the reference to the unit disk and simply write BMOp instead

of BMOp(D).
The next proposition says more about the Berezin transform of BMO1 func-

tions. Similar properties have been proven about BMO2 functions (see [2]).

Proposition 2.1. Let f be in BMO1. Then

(a) supz∈D(|̃f |(z)−|f̃ (z)|) <∞,

(b) f̃ is Lipschitz with respect to the Bergman metric,

(c) supz∈D(1−|z|2)|∇f̃ (z)|<∞,

(d) supz∈D
˜|f − f̃ |(z) <∞.

Proof. (a) For z in D, we have that

(
|̃f |(z)−∣∣f̃ (z)∣∣)= ∫

D

(∣∣f(ω)∣∣−∣∣f̃ (z)∣∣)∣∣kz(ω)∣∣2dm(ω)

≤
∫
D

∣∣f(ω)− f̃ (z)∣∣∣∣kz(ω)∣∣2dm(ω)

=
∫
D

∣∣f ◦ψz(v)− f̃ (z)∣∣dm(v)
= ∥∥f ◦ψz(v)− f̃ (z)∥∥1,

(2.7)

where we have used the change of variableω=ψz(v) in the third line of (2.7).

Since f ∈ BMO1, supz∈D‖f ◦ψz(v)− f̃ (z)‖1 < ∞ and so supz∈D(|̃f |(z)−
|f̃ (z)|) <∞ as well.

(b) We have to show that there exists a constant c > 0 such that, for every

z,ω∈D,

∣∣f̃ (z)− f̃ (ω)∣∣≤ cβ(z,ω). (2.8)

Békollé et al. have established in [2] that the same property for f̃ is true in the

case when f belongs to BMO2. We will explain the main idea of the proof and

the part where our proof differs from that in [2].

For z,ω∈D, let α(t) denote the geodesic from z =α(0) toω=α(1) in the

Bergman metric, and let s = s(t) denote the arc length of α(t) in the Bergman
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metric. Since

∣∣f̃ (z)− f̃ (ω)∣∣≤ ∫ 1

0

∣∣∣∣ ddt (f̃ (α(t)))
∣∣∣∣dt, (2.9)

it suffices to estimate (d/dt)(f̃ (α(t))), for f in BMO1.

The following inequality can be found in [3, page 48] and is a part of the

above-mentioned proof in [2] that we use here:∣∣∣∣ ddt (f̃ (α(t)))
∣∣∣∣

≤ 4
∫
D

∣∣f(ω)− f̃ (α(t))∣∣∣∣kα(t)(ω)∣∣∣∣α′(t)∣∣∣∣ω−α(t)∣∣∣∣1−α(t)ω∣∣3 dm(ω).
(2.10)

Since ∣∣α′(t)∣∣
1−∣∣α(t)∣∣2 =

ds
dt

(2.11)

and since ∣∣ω−α(t)∣∣∣∣1−α(t)ω∣∣ = ∣∣ψα(t)(ω)∣∣≤ 1, (2.12)

we get that∣∣α′(t)∣∣∣∣ω−α(t)∣∣∣∣1−α(t)ω∣∣3 =
∣∣α′(t)∣∣

1−∣∣α(t)∣∣2

1−∣∣α(t)∣∣2∣∣1−α(t)ω∣∣2

∣∣ψα(t)(ω)∣∣
≤ ds
dt
∣∣kα(t)(ω)∣∣.

(2.13)

Hence,∣∣∣∣ ddt (f̃ (α(t)))
∣∣∣∣≤ 4

ds
dt

∫
D

∣∣f(ω)− f̃ (α(t))∣∣∣∣kα(t)(ω)∣∣2dm(ω)

= 4
ds
dt
∥∥f ◦ψα(t)− f̃ (α(t))∥∥1

≤ 4
ds
dt
‖f‖BMO1 .

(2.14)

So,

∣∣f̃ (z)− f̃ (ω)∣∣≤ 4‖f‖BMO1

∫
D

ds
dt
dt = 4‖f‖BMO1β(z,ω), (2.15)

and the constant c can be chosen to be equal to 4‖f‖BMO1 .

(c) We will show that |∇f̃ (z)| ≤ c/(1−|z|2), where ∇f̃ (z) is the complex

vector (∂f̃ /∂x,∂f̃ /∂y) for z = x+iy and

∣∣∇f̃ (z)∣∣2 =
∣∣∣∣∂f̃∂x

∣∣∣∣2

+
∣∣∣∣ ∂f̃∂y

∣∣∣∣2

. (2.16)
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Using the fact that limh→0(β(z+h,z)/|h|)= 1/(1−|z|2) and part (b), we get

that

∣∣∣∣ ∂∂x f̃ (z)
∣∣∣∣≤ lim

h→0

∣∣f̃ (x+h+iy)− f̃ (x+iy)∣∣
|h|

≤c lim
h→0

β(x+h+iy,x+iy)
|h| = c

1−|z|2 .
(2.17)

Similarly,

∣∣∣∣ ∂∂y f̃ (z)
∣∣∣∣≤ c

1−|z|2 , (2.18)

and so |∇f̃ (z)|2 ≤ 2(c2/(1−|z|2)2).
(d) Since |f − f̃ | ≥ 0, by [8] we have that

˜|f − f̃ | is bounded if and only if
̂|f − f̃ | is bounded. Using part (b) and the fact that for ω in D(z), 1/|D(z)|�
|kz(ω)|2, we get that

̂∣∣f − f̃∣∣(z)= 1∣∣D(z)∣∣
∫
D(z)

∣∣f(ω)− f̃ (ω)∣∣dm(ω)
≤ 1∣∣D(z)∣∣

∫
D(z)

∣∣f(ω)− f̃ (z)∣∣dm(ω)
+ 1∣∣D(z)∣∣

∫
D(z)

∣∣f(z)− f̃ (ω)∣∣dm(ω)
≤ c

∫
D

∣∣f(ω)− f̃ (z)∣∣∣∣kz(ω)∣∣2dm(ω)

+c 1∣∣D(z)∣∣
∫
D(z)

β(z,ω)dm(ω)

≤ c∥∥f ◦ψz− f̃ (z)∥∥1+
1
2
c <∞,

(2.19)

since supz∈D‖f ◦ψz− f̃ (z)‖1 <∞.

Proposition 2.2. Let f be in L1(D).
(a) Let f̃ be bounded in D. Then supz∈D(|̃f |(z)−|f̃ (z)|) <∞ implies that f

is in BMO1.

(b) There exists c ≥ 0 such that (f̂ (z)− f̃ (z))≤ c‖f ◦ψz− f̃ (z)‖1 for every z
in D.

Proof. (a) Whenever f̃ is bounded and supz∈D(|̃f |(z)− |f̃ (z)|) < ∞, we

have that |̃f | is also bounded. But, since

∥∥f ◦ψz− f̃ (z)∥∥1 ≤
∥∥f ◦ψz∥∥1+

∣∣f̃ (z)∣∣= |̃f |(z)+∣∣f̃ (z)∣∣, (2.20)

we get that supz∈D‖f ◦ψz− f̃ (z)‖1 <∞ and thus f is in BMO1.
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(b) Using the fact that for ω in D(z) we have that 1/|D(z)| ≤ c|kz(ω)|2, it

follows that

∣∣f̂ (z)− f̃ (z)∣∣≤ 1∣∣D(z)∣∣
∫
D(z)

∣∣f(ω)− f̃ (z)∣∣dm(ω)
≤ c

∫
D(z)

∣∣f(ω)− f̃ (z)∣∣∣∣kz(ω)∣∣2dm(ω)

≤ c∥∥f ◦ψz− f̃ (z)∥∥1.

(2.21)

As a consequence of the results in Propositions 2.1 and 2.2, we get the fol-

lowing corollary.

Corollary 2.3. Let f be in L1(D).
(a) For f in BMO1, f̃ being bounded implies that Tf is bounded on L2

a(D).
(b) Every f in BMO1 can be written as f = f1+f2 with f1 in the (real) Bloch

space and f2 such that supz∈D |̃f2|(z) <∞.

(c) If f ≥ 0 on D and if f̃ is bounded, then f belongs to BMO1.

(d) For f in BMO1, f̃ is bounded if and only if f̂ is bounded.

Proof. (a) Using the fact that for every f in L1(D) we have

∣∣f̃ (z)∣∣= ∣∣∣∣∫
D
f(ω)

∣∣kz(ω)∣∣2dm(ω)
∣∣∣∣

≤
∫
D
f(ω)

∣∣kz(ω)∣∣2dm(ω)= |̃f |(z),
(2.22)

it follows from Proposition 2.1(a) that whenever f is in BMO1 and f̃ is bounded,

we have that |̃f | is also bounded. Since |f | ≥ 0, by results from [5, 8], |̃f | being

bounded implies that T|f | is bounded. Then it is not hard to see that Tf has to

be bounded too.

(b) Take f1 = f̃ and f2 = f − f̃ . Then the rest follows from Proposition 2.1(c)

and (d).

(c) For f ≥ 0, we have |̃f |(z) = |f̃ |(z) = f̃ (z). In case f̃ is bounded, using

Proposition 2.2(a), we get that f belongs to BMO1.

(d) It follows directly from Proposition 2.2(b).

3. Proof of the main theorem. Our main theorem (Theorem 3.1) expands

the class of functions f for which it is known that f̃ (z)→ 0, as z→ ∂D implies

that Tf is compact. It includes L∞ functions and positive L1 functions with

bounded Berezin transform, and so the theorem is an extension of the results

of Axler and Zheng (see [1]) and Luecking and Zhu (see [5, 8]).

Theorem 3.1. Let f belong to BMO1. Then f̃ (z)→ 0, as z→ ∂D implies that

Tf is compact on L2
a(D).

Before we proceed with the proof, we state two lemmas that contain some

of the more technical parts used in the proof.
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Lemma 3.2. Let f be in L1(D) and let Tf be bounded on L2
a(D). Then for

every z in D, the following is true:

(a) (TfKz)(u)=Kz(u)P(f ◦ψz)(ψz(u)),
(b) ‖Tfkz‖2 = ‖Tf◦ψz1‖2,

(c) for f in BMO1, each Tf◦ψz is bounded on L2
a(D).

Proof. (a) We have the following equalities:

(
TfKz

)
(u)= 〈P(fKz),Ku〉

=
∫
D
f(ω)Kz(ω)Ku(ω)dm(ω)

=
∫
D
f
(
ψz(v)

)
Kz
(
ψz(v)

)
Ku
(
ψz(v)

)∣∣kz(v)∣∣2dm(v),

(3.1)

where we have used the change of variable ω = ψz(v), and the fact that

|ψ′z(v)| = |kz(v)|.
Using the equations

Kz
(
ψz(v)

)
kz(v)= 1

1−|z|2 ,

Ku
(
ψz(v)

)
kz(v)= kz(v)Kψz(u)(v)

(3.2)

(which can be checked directly from the definitions of the functions involved),

we get that

(
TfKz

)
(u)=

∫
D

(
f ◦ψz

)
(v)

1
1−|z|2 kz(u)Kψz(u)(v)dm(v)

=Kz(u)
∫
D

(
f ◦ψz

)
(v)Kψz(u)(v)dm(v)

=Kz(u)P
(
f ◦ψz

)(
ψz(u)

)
.

(3.3)

(b) We have that

∥∥Tfkz∥∥2
2 =

∥∥P(fkz)∥∥2
2

=
∫
D

∣∣P(fkz)(ω)∣∣2dm(ω)

=
∫
D

∣∣P(fkz)(ψz(u))∣∣2∣∣ψ′z(u)∣∣2dm(u),

(3.4)

by the change of the variable ω=ψz(u). Using the fact that

Kψz(u)(ω)ψ
′
z(u)= kz(ω)Ku

(
ψz(ω)

)
, (3.5)
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we can continue with the following equations:

∫
D

∣∣P(fkz)(ψz(u))∣∣2∣∣ψ′z(u)∣∣2dm(u)

=
∫
D

∣∣∣∣∫
D
f(ω)kz(ω)Kψz(u)(ω)ψ

′
z(u)dm(ω)

∣∣∣∣2

dm(u)

=
∫
D

∣∣∣∣∫
D
f(ω)kz(ω)kz(ω) Ku

(
ψz(ω)

)
dm(ω)

∣∣∣∣2

dm(u)

=
∫
D

∣∣∣∣∫
D
f(ω)

∣∣kz(ω)∣∣2Ku
(
ψz(ω)

)
dm(ω)

∣∣∣∣2

dm(u)

=
∫
D

∣∣∣∣∫
D
f
(
ψz(v)

)
Ku(v)dm(v)

∣∣∣∣2

dm(u)

=
∫
D

∣∣P(f ◦ψz)(u)∣∣2dm(u)

= ∥∥P(f ◦ψz)∥∥2
2 =

∥∥Tf◦ψz1∥∥2
2,

(3.6)

where we have used the change of the variable v =ψz(ω) in the fourth equa-

tion. Thus ‖Tfkz‖2
2 = ‖Tf◦ψz1‖2

2.

(c) It follows from the definition of BMO1 that, whenever f belongs to BMO1,

f ◦ψz also belongs to BMO1, for all z in D.

Furthermore,

f̃ ◦ψz(ω)=
∫
D
f ◦ψz(u)

∣∣kω(u)∣∣2dm(u)

=
∫
D
f(v)

∣∣kω(ψz(v))∣∣2∣∣ψ′z(v)∣∣2dm(v)

=
∫
D
f(v)

∣∣kψz(ω)(v)∣∣2dm(v)

= f̃ (ψz(ω)),
(3.7)

(where we have used that |ks(v)|2 = |ψ′s(v)|2 and that (ψω ◦ ψz)(v) =
ψψz(ω)(v)). Thus, f̃ being bounded implies that f̃ ◦ψz is bounded indepen-

dently of z. By Corollary 2.3(a), it follows that for f in BMO1 and f̃ being

bounded, each Tf◦ψz is bounded on L2
a(D).

Lemma 3.3. Let p and ε be positive numbers such that p > 3 and 1/p < ε <
(1/2)(1−1/p). Then

∫
D

(
1−|v|2)−2pε/(p−1)∣∣1−zv∣∣2p(1−2ε)/(p−1) dm(v) (3.8)

is bounded in z.
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Proof. Let t = −2pε/(p−1) and let c = −t−2+2p(1−2ε)/(p−1). Then,

2pε/(p−1) < (1−1/p)p/(p−1)= 1 and c < 0, since

2pε
p−1

−2+ 2p(1−2ε)
p−1

= 2pε−2p+2+2p−4pε
p−1

= 2−2pε
p−1

<
2−2p(1/p)
p−1

= 0.
(3.9)

By [9, Lemma 4.2.2], since t >−1 and c < 0, we get that the integral is bounded

in z.

The proof of the theorem will be done in several steps. The steps follow

the standard idea of finding a sequence of compact operators that converges

to the given operator. To establish the convergence, we will use the Schur’s

test. The same approach has also been implemented in [1, 6]. The core of our

extension is contained in the first step of the proof.

Proof of Theorem 3.1

Step 1. Let f ∈ BMO1 and let f̃ be bounded. Then

sup
z∈D

∥∥Tf◦ψz1∥∥p <∞, ∀p ≥ 1. (3.10)

Proof of Step 1. For an analytic function g, its Lp norm ‖g‖p is equiva-

lent to |g(0)|+‖(1−|z|2)g′(z)‖p . For details, see, for example, [9].

The Bloch spaces B is defined by

B =
{
g analytic on D; sup

z∈D

(
1−|z|2)∣∣g′(z)∣∣<∞}. (3.11)

For g, being a function in the Bloch space B, let ‖g‖B = |g(0)| + ‖(1 −
|z|2)|g′(z)|‖∞. It follows that

‖g‖p ≤ c
(∣∣g(0)∣∣+∥∥(1−|z|2)g′(z)∥∥p)

≤ c
(∣∣g(0)∣∣+∥∥(1−|z|2)g′(z)∥∥∞)

= c‖g‖B.
(3.12)

It has been proven by Li and Luecking in [4] that the Bergman projection P
is a bounded operator from BMO1 into B, for all p ≥ 1. Since, for f in BMO1 we

have that f ◦ψz is in BMO1 for all z in D, we get that P(f ◦ψz)∈ B. Hence

∥∥P(f ◦ψz)∥∥p ≤ c∥∥P(f ◦ψz)∥∥B ≤ c∣∣∥∥f ◦ψz∥∥∣∣1

= c
(∣∣f̃ ◦ψz(0)∣∣+sup

z∈D

∥∥f ◦ψz ◦ψω− f̃ ◦ψz(ω)∥∥1

)
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= c
(∣∣f̃ (z)∣∣+ sup

ψz(ω)∈D

∥∥f ◦ψψz(ω)− f̃ (ψz(ω))∥∥1

)

= c
(∣∣f̃ (z)∣∣+sup

u∈D

∥∥f ◦ψu− f̃ (u)∥∥1

)
.

(3.13)

So, for f in BMO1 and f̃ being bounded, we get that

sup
z∈D

∥∥Tf◦ψz1∥∥p = sup
z∈D

∥∥P(f ◦ψz)∥∥p <∞, ∀p ≥ 1. (3.14)

Step 2. Let Tf be bounded on L2
a(D) and let f̃ (z) → 0 as z → ∂D. Then

Tf◦ψz1→ 0 weakly as z→ ∂D.

Proof of Step 2 (see [1, page 396]). The proof uses the explicit double-

series form of the Berezin transform of an operator in L2
a(D).

We mention that, since the specific nature of the Toeplitz operator is not

used in the proof, a more general statement is true.

Let A be a bounded operator on L2
a(D) and let Uz be the unitary operator on

L2
a(D), defined by

Uzg =
(
g◦ψz

)
ψ′z. (3.15)

Then Ã(z)→ 0, as z→ ∂D, implies that UzAUz1→ 0 weakly as z→ ∂D.

Step 3. Let f ∈ BMO1. Then f̃ (z)→ 0, as z→ ∂D, implies that ‖Tf◦ψz1‖2 →
0, as z→ ∂D.

Proof of Step 3. The method of the proof is similar to a part of the proof

in [1]. For the sake of completeness, we provide the details.

By Step 2, Tf◦ψz1→ 0 weakly and so it converges uniformly to zero on com-

pact subsets of D, such as rD, for 0≤ r < 1. Since

∥∥Tf◦ψz1∥∥2
2 =

∫
D

∣∣Tf◦ψz1(ω)∣∣2dm(ω)

=
∫
D\rD

∣∣Tf◦ψz1(ω)∣∣2dm(ω)

+
∫
rD

∣∣Tf◦ψz1(ω)∣∣2dm(ω),

(3.16)

we also need to estimate the first integral of the last line. We will do that by

using the Cauchy-Schwartz inequality and the result of Step 1:∫
D\rD

∣∣Tf◦ψz1(ω)∣∣2dm(ω)

≤
(∫

D\rD

∣∣Tf◦ψz1(ω)∣∣4dm(ω)
)1/2(∫

D\rD
dm(ω)

)1/2

≤ ∥∥Tf◦ψz1∥∥2
4

(
1−r 2)1/2 ≤ c(1−r 2)1/2.

(3.17)
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We can make the integral over D\rD as small as we wish, independently of

z, by choosing r close enough to 1. Then, for the same r , take z close enough

to ∂D such that the integral over rD is also as small as we wish.

Step 4. Let f ∈ BMO1. Then f̃ (z)→ 0, as z→ ∂D, implies that ‖Tf◦ψz1‖p → 0

as z→ ∂D, for all p ≥ 1.

Proof of Step 4. For p < 2, we have that ‖Tf◦ψz1‖p ≤ ‖Tf◦ψz1‖2 and the

rest follows from Step 3. For p > 2,

∥∥Tf◦ψz1∥∥pp ≤ ∥∥Tf◦ψz1∥∥2

∥∥Tf◦ψz1∥∥p−1
2p−2 (3.18)

by Hölder’s inequality. The proof follows from Steps 3 and 1, since 2p−2 >
2≥ 1.

Step 5. Let f ∈ BMO1 and let f̃ (z)→ 0 as z→ ∂D. For 0 < r < 1, let Tfr be

the operator from L2
a(D) into L2(D), defined by

Tfr =MχrDTf , (3.19)

where MχrD is the multiplication operator on L2
a(D) with χrD being the char-

acteristic function of rD. Let Tf denote the operator Tf as an operator from

L2
a(D) into L2(D). Then Tfr is compact and limr→1‖Tf −Tfr ‖ = 0.

Proof of Step 5. It is well known that the operator MχrD is compact on

L2(D) since χrD(z) = 0 for |z| ≥ r . Thus, Tfr is also compact, as a product of

a compact and a bounded operator.

For g in L2
a(D), we have that

(
Tf −Tfr

)
g(z)= ((1−χrD)Tfg)(z)

= χD\rD(z)
〈
Tfg,Kz

〉= χD\rD(z)〈g,TfKz〉
=
∫
D
g(u)χD\rD(z)TfKz(u)dm(u).

(3.20)

So, Tf −Tfr is an integral operator with kernel Kfr (z,u)= χD\rD(z)TfKz(u). By

Schur’s test, whenever there exist a positive measurable function h on D and

constants c1 and c2 such that

∫
D

∣∣∣Kfr (z,u)∣∣∣h(z)dm(z)≤ c1h(u), ∀u in D,∫
D

∣∣∣Kfr (z,u)∣∣∣h(u)dm(u)≤ c2h(z), ∀z in D,
(3.21)

we have that ‖Tf −Tfr ‖2 ≤ c1c2.
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Let p > 3, 1/p < ε < (1/2)(1−1/p) and let h(z)= (Kz(z))ε = 1/(1−|z|2)2ε.
We will show that the Schur’s test works with constants

c1 = c sup
z∈D

∥∥Tf◦ψz1∥∥p, c2 = c sup
|z|≥r

∥∥Tf◦ψz1∥∥p. (3.22)

We have that∫
D

∣∣Kfr (z,u)∣∣h(u)dm(u)= χD\rD(z)∫
D

∣∣TfKz(u)∣∣(Ku(u))εdm(u), (3.23)

which by Lemma 3.2(a) equals

χD\rD(z)
∫
D

∣∣Kz(u)∣∣∣∣P(f ◦ψz)(ψz(u))∣∣(Ku(u))εdm(u). (3.24)

By the change of variableψz(u)= v and by Hölder’s inequality withp as above,

we get that∫
D

∣∣∣Kfr (z,u)∣∣∣h(u)dm(u)
= χD\rD(z)

∫
D

∣∣P(f ◦ψz)(v)∣∣∣∣Kz(ψz(v))∣∣
×(Kψz(v)(ψz(v)))ε∣∣kz(v)∣∣2dm(v)

= χD\rD(z)
∫
D

∣∣P(f ◦ψz)(v)∣∣ 1
1−|z|2

1
1−|v|2

1(
1−∣∣ψz(v)∣∣2

)2ε−1dm(v)

≤ χD\rD(z) 1
1−|z|2

(∫
D

∣∣P(f ◦ψz)(v)∣∣pdm(v))1/p

×
(∫

D

(
1−|v|2)−p/(p−1)(

1−∣∣ψz(v)∣∣2)(2ε−1)(p/(p−1)) dm(v)
)1−1/p

.

(3.25)

To get the last equality, we have used the equation

1−∣∣ψz(v)∣∣2 =
(
1−|z|2)(1−|v|2)

|1−zv|2 . (3.26)

Using it one more time and then applying Lemma 3.3 in the last inequality, we

get that∫
D

∣∣∣Kfr (z,u)∣∣∣h(u)dm(u)
≤ χD\rD(z) 1

1−|z|2
∥∥P(f ◦ψz)∥∥p

×
(∫

D

1(
1−|v|2)2pε/(p−1)

∣∣1−zv∣∣2p(2ε−1)/(p−1)(
1−|z|2)(2ε−1)(p/(p−1)) dm(v)

)(p−1)/p
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= χD\rD(z)
∥∥Tf◦ψz1∥∥p 1(

1−|z|2)2ε

×
(∫

D

(
1−|v|2)−2pε/(p−1)∣∣1−zv∣∣2p(1−2ε)/(p−1) dm(v)

)(p−1)/p

≤ c sup
|z|≥r

∥∥Tf◦ψz1∥∥ph(z)= c2h(z).

(3.27)

We get the first inequality of the Schur’s test in a similar way, noting that

∫
D

∣∣Kfr (z,u)∣∣h(z)dm(z)= χD\rD(z)∫
D

∣∣TfKu(z)∣∣(Kz(z))εdm(z). (3.28)

By the same argument as above, the right-hand side is less than or equal to

c sup
|u|≥r

∥∥Tf◦ψu1
∥∥
ph(u)≤ c sup

u∈D

∥∥Tf◦ψu1
∥∥
ph(u)= c1h(u). (3.29)

Thus, by Schur’s test, ‖Tf −Tfr ‖2 ≤ c1c2, where c1 does not depend on r ,

and by Step 4, c2 → 0 as r → 1.

4. Comments and further generalizations. A general problem that moti-

vated the results of this paper is to determine the class of operators A on the

Bergman space for which Ã(z)→ 0, as z→ ∂D, implies that A is compact. This

class of C∞(D) functions, vanishing on the boundary, has to be an ideal of the

noncommutative algebra of Berezin transform functions on D.

Our result states that Toeplitz operators with BMO1 symbols belong to this

ideal. The method of the proof actually yields a stronger result that we state

below as Theorem 4.2. The following lemma considers the main technical gen-

eralization.

Lemma 4.1. Let f be in L1(D), let Tf be bounded in L2
a(D), and let f̃ (z)→ 0

as z→ ∂D. If there exists p > 3 such that supz∈D‖Tf◦ψz1‖p <∞, then, for every

q < p, supz∈D‖Tf◦ψz1‖q <∞ and ‖Tf◦ψz1‖q → 0 as z→ ∂D.

Proof. Since q < p, it follows that supz∈D‖Tf◦ψz1‖q <∞. Let s = p/q and

let t be such that 1/t+1/s = 1. Then

∥∥Tf◦ψz1∥∥qq = ∫
rD

∣∣Tf◦ψz1(ω)∣∣qdm(ω)
+
∫
D\rD

∣∣Tf◦ψz1(ω)∣∣qdm(ω)
= I1(z)+I2(z).

(4.1)
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By the comment in the proof of Step 2 and since f̃ (z)→ 0 as z→ ∂D, it follows

that Tf◦ψz1→ 0 weakly as z→ ∂D, and so I1(z)→ 0 as z→ ∂D. But

I2(z)≤
(∫

D\rD

∣∣Tf◦ψz1(ω)∣∣qsdm(ω))1/s(∫
D\rD

1dm(ω)
)1/t

≤ ∥∥Tf◦ψz1∥∥p/sp (
1−r 2)1/t

(4.2)

which could be made arbitrarily small independently of z by taking r close

enough to 1. Thus ‖Tf◦ψz1‖q → 0, as z→ ∂D.

Theorem 4.2. Let f be in L1(D), let Tf be bounded in L2
a(D), and suppose

that there exists p > 3 such that

sup
z∈D

∥∥Tf◦ψz1∥∥p <∞, sup
z∈D

∥∥Tf◦ψz1∥∥p <∞. (4.3)

Then f̃ (z)→ 0, as z→ ∂D, implies that Tf is compact on L2
a(D).

Proof. By Lemma 4.1, there exists q > 3 such that supz∈D‖Tf◦ψz1‖q <∞
and ‖Tf◦ψz1‖q → 0 as z→ ∂D. The same holds for ‖Tf◦ψz1‖q. Closer inspection

of the proof of Step 5 shows that this is sufficient to show that limr→1‖Tfr −
Tf‖ = 0 (where Tfr and Tf are defined in Step 5). Hence Tf is compact on

L2
a(D).

It is not known if for every bounded Toeplitz operator Tf , f̃ (z) → 0 as

z→ ∂D, guarantees that Tf is compact. Note that Tf being bounded on L2
a(D)

implies that supz∈D‖Tf◦ψz1‖2 <∞.

We ask the following question.

Question. For f in L1(D) and Tf being bounded on L2
a(D), and such that

supz∈D‖Tf◦ψz1‖p <∞ and supz∈D‖Tf◦ψz1‖p <∞ for some p > 2, does it fol-

low that f̃ (z)→ 0 as, z→ ∂D, implies that Tf is compact?
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