α -COMPACTNESS IN SMOOTH TOPOLOGICAL SPACES

CHUN-KEE PARK, WON KEUN MIN, and MYEONG HWAN KIM

Received 3 March 2003

We introduce the concepts of smooth α -closure and smooth α -interior of a fuzzy set which are generalizations of smooth closure and smooth interior of a fuzzy set defined by Demirci (1997) and obtain some of their structural properties.

2000 Mathematics Subject Classification: 54A40.

1. Introduction. Badard [1] introduced the concept of a smooth topological space which is a generalization of Chang's fuzzy topological space [2]. Many mathematical structures in smooth topological spaces were introduced and studied. In particular, Gayyar et al. [5] and Demirci [3, 4] introduced the concepts of smooth closure and smooth interior of a fuzzy set and several types of compactness in smooth topological spaces and obtained some properties of them.

In this paper, we define the smooth α -closure and smooth α -interior of a fuzzy set and investigate some of their properties. In fact, the smooth α -closure and smooth α -interior of a fuzzy set coincide with the smooth closure and smooth interior of a fuzzy set defined in [3] when $\alpha=0$. We also introduce the concepts of several types of α -compactness using smooth α -closure and smooth α -interior of a fuzzy set and investigate some of their properties.

2. Preliminaries. In this section, we give some notations and definitions which are to be used in the sequel. Let X be a set and let I = [0,1] be the unit interval of the real line. Let I^X denote the set of all fuzzy sets of X. Let 0_X and 1_X denote the characteristic functions of ϕ and X, respectively.

A smooth topological space (s.t.s.) [6] is an ordered pair (X, τ) , where X is a nonempty set and $\tau: I^X \to I$ is a mapping satisfying the following conditions:

- (1) $\tau(0_X) = \tau(1_X) = 1$;
- (2) for all $A, B \in I^X$, $\tau(A \cap B) \ge \tau(A) \wedge \tau(B)$;
- (3) for every subfamily $\{A_i : i \in J\} \subseteq I^X$, $\tau(\cup_{i \in J} A_i) \ge \wedge_{i \in J} \tau(A_i)$.

Then the mapping $\tau: I^X \to I$ is called a smooth topology on X. The number $\tau(A)$ is called the degree of openness of A.

A mapping $\tau^*: I^X \to I$ is called a smooth cotopology [6] if and only if the following three conditions are satisfied:

- (1) $\tau^*(0_X) = \tau^*(1_X) = 1$;
- (2) for all $A, B \in I^X$, $\tau^*(A \cup B) \ge \tau^*(A) \wedge \tau^*(B)$;

(3) for every subfamily $\{A_i : i \in J\} \subseteq I^X$, $\tau^*(\cap_{i \in J} A_i) \ge \wedge_{i \in J} \tau^*(A_i)$.

If τ is a smooth topology on X, then the mapping $\tau^*: I^X \to I$, defined by $\tau^*(A) = \tau(A^c)$ where A^c denotes the complement of A, is a smooth cotopology on X. Conversely, if τ^* is a smooth cotopology on X, then the mapping $\tau: I^X \to I$, defined by $\tau(A) = \tau^*(A^c)$, is a smooth topology on X [6].

For the s.t.s. (X,τ) and $\alpha \in [0,1]$, the family $\tau_{\alpha} = \{A \in I^X : \tau(A) \geq \alpha\}$ defines a Chang's fuzzy topology (CFT) on X [2]. The family of all closed fuzzy sets with respect to τ_{α} is denoted by τ_{α}^* and we have $\tau_{\alpha}^* = \{A \in I^X : \tau^*(A) \geq \alpha\}$. For $A \in I^X$ and $\alpha \in [0,1]$, the τ_{α} -closure (resp., τ_{α} -interior) of A, denoted by $\mathrm{cl}_{\alpha}(A)$ (resp., $\mathrm{int}_{\alpha}(A)$), is defined by $\mathrm{cl}_{\alpha}(A) = \cap \{K \in \tau_{\alpha}^* : A \subseteq K\}$ (resp., $\mathrm{int}_{\alpha}(A) = \cup \{K \in \tau_{\alpha} : K \subseteq A\}$).

Demirci [3] introduced the concepts of smooth closure and smooth interior in smooth topological spaces as follows.

Let (X, τ) be an s.t.s. and $A \in I^X$. Then the τ -smooth closure (resp., τ -smooth interior) of A, denoted by \bar{A} (resp., A^o), is defined by $\bar{A} = \cap \{K \in I^X : \tau^*(K) > 0, A \subseteq K\}$ (resp., $A^o = \cup \{K \in I^X : \tau(K) > 0, K \subseteq A\}$).

Let (X,τ) and (Y,σ) be two smooth topological spaces. A function $f:X\to Y$ is called smooth continuous with respect to τ and σ [6] if and only if $\tau(f^{-1}(A))\geq\sigma(A)$ for every $A\in I^Y$. A function $f:X\to Y$ is called weakly smooth continuous with respect to τ and σ [6] if and only if $\sigma(A)>0\Rightarrow \tau(f^{-1}(A))>0$ for every $A\in I^Y$.

A function $f: X \to Y$ is smooth continuous with respect to τ and σ if and only if $\tau^*(f^{-1}(A)) \ge \sigma^*(A)$ for every $A \in I^Y$. A function $f: X \to Y$ is weakly smooth continuous with respect to τ and σ if and only if $\sigma^*(A) > 0 \Rightarrow \tau^*(f^{-1}(A)) > 0$ for every $A \in I^Y$ [6].

A function $f: X \to Y$ is called smooth open (resp., smooth closed) with respect to τ and σ [6] if and only if $\tau(A) \le \sigma(f(A))$ (resp., $\tau^*(A) \le \sigma^*(f(A))$) for every $A \in I^X$.

A function $f: X \to Y$ is called smooth preserving (resp., strict smooth preserving) with respect to τ and σ [5] if and only if $\sigma(A) \ge \sigma(B) \Leftrightarrow \tau(f^{-1}(A)) \ge \tau(f^{-1}(B))$ (resp., $\sigma(A) > \sigma(B) \Leftrightarrow \tau(f^{-1}(A)) > \tau(f^{-1}(B))$) for every $A, B \in I^Y$.

If $f: X \to Y$ is a smooth preserving function (resp., a strict smooth preserving function) with respect to τ and σ , then $\sigma^*(A) \ge \sigma^*(B) \Leftrightarrow \tau^*(f^{-1}(A)) \ge \tau^*(f^{-1}(B))$ (resp., $\sigma^*(A) > \sigma^*(B) \Leftrightarrow \tau^*(f^{-1}(A)) > \tau^*(f^{-1}(B))$) for every $A, B \in I^Y$ [5].

A function $f: X \to Y$ is called smooth open preserving (resp., strict smooth open preserving) with respect to τ and σ [5] if and only if $\tau(A) \ge \tau(B) \Rightarrow \sigma(f(A)) \ge \sigma(f(B))$ (resp., $\tau(A) > \tau(B) \Rightarrow \sigma(f(A)) > \sigma(f(B))$) for every $A, B \in I^X$.

3. Smooth α -closure and smooth α -interior. In this section, we introduce the concepts of smooth α -closure and smooth α -interior of a fuzzy set in smooth topological spaces and investigate some properties of them.

DEFINITION 3.1. Let (X, τ) be an s.t.s., $\alpha \in [0, 1)$, and $A \in I^X$. The τ -smooth α -closure (resp., τ -smooth α -interior) of A, denoted by \overline{A}_{α} (resp., A_{α}^{o}), is defined by $\overline{A}_{\alpha} = \cap \{K \in I^X : \tau^*(K) > \alpha \tau^*(A), A \subseteq K\}$ (resp., $A_{\alpha}^{o} = \cup \{K \in I^X : \tau(K) > \alpha \tau(A), K \subseteq A\}$).

THEOREM 3.2. Let (X,τ) be an s.t.s., $\alpha \in [0,1)$, and $A,B \in I^X$. Then

- (a) $\tau^*(\overline{A}_{\alpha}) \geq \alpha \tau^*(A)$,
- (b) $\tau(A^o_\alpha) \ge \alpha \tau(A)$,
- (c) $A \subseteq B$ and $\tau^*(A) \le \tau^*(B) \Rightarrow \overline{A}_{\alpha} \subseteq \overline{B}_{\alpha}$,
- (d) $A \subseteq B$ and $\tau(B) \le \tau(A) \Rightarrow A_{\alpha}^{o} \subseteq B_{\alpha}^{o}$.

PROOF. (a) and (b) follow directly from Definition 3.1.

- (c) If $A \subseteq B$ and $\tau^*(A) \le \tau^*(B)$, then $K \in \{K \in I^X : \tau^*(K) > \alpha \tau^*(B), B \subseteq K\} \Rightarrow K \in \{K \in I^X : \tau^*(K) > \alpha \tau^*(A), A \subseteq K\}$. Hence $\overline{A}_{\alpha} \subseteq \overline{B}_{\alpha}$.
 - (d) The proof is similar to the proof of (c).

THEOREM 3.3. Let (X,τ) be an s.t.s., $\alpha \in [0,1)$, and $A \in I^X$. Then

- (a) $(\overline{A}_{\alpha})^c = (A^c)^o_{\alpha}$
- (b) $\overline{A}_{\alpha} = ((A^c)_{\alpha}^o)^c$,
- (c) $(A^o_\alpha)^c = \overline{(A^c)}_\alpha$,
- (d) $A^o_\alpha = (\overline{(A^c)}_\alpha)^c$.

PROOF. (a) From Definition 3.1, we have

$$(\overline{A}_{\alpha})^{c} = (\cap \{K \in I^{X} : \tau^{*}(K) > \alpha \tau^{*}(A), A \subseteq K\})^{c}$$

$$= \cup \{K^{c} : K \in I^{X}, \tau(K^{c}) = \tau^{*}(K) > \alpha \tau^{*}(A) = \alpha \tau(A^{c}), K^{c} \subseteq A^{c}\}$$

$$= \cup \{U \in I^{X} : \tau(U) > \alpha \tau(A^{c}), U \subseteq A^{c}\}$$

$$= (A^{c})^{o}_{\alpha}.$$

$$(3.1)$$

(b), (c), and (d) are easily obtained from (a).

THEOREM 3.4. Let (X,τ) be an s.t.s., $\alpha \in [0,1)$, and $A,B \in I^X$. Then

- (a) $\overline{(0_X)}_{\alpha} = 0_X$,
- (b) $A \subseteq \overline{A}_{\alpha}$,
- (c) $\overline{A}_{\alpha} \subseteq (\overline{A}_{\alpha})_{\alpha}$,
- (d) $\overline{A}_{\alpha} \cap \overline{B}_{\alpha} \subseteq \overline{(A \cup B)}_{\alpha}$.

PROOF. (a) and (b) are easily obtained from Definition 3.1. (c) follows directly from (b).

(d) For every $A, B \in I^X$, we have

$$\overline{(A \cup B)}_{\alpha} = \bigcap \{ K \in I^X : \tau^*(K) > \alpha \tau^*(A \cup B), \ A \cup B \subseteq K \}$$
$$\supseteq \bigcap \{ K \in I^X : \tau^*(K) > \alpha \tau^*(A) \land \alpha \tau^*(B), \ A \cup B \subseteq K \}$$

$$= \bigcap \{ K \in I^{X} : \tau^{*}(K) > \alpha \tau^{*}(A)$$
or $\tau^{*}(K) > \alpha \tau^{*}(B)$, $A \subseteq K$, $B \subseteq K \}$

$$= \bigcap \{ K \in I^{X} : (\tau^{*}(K) > \alpha \tau^{*}(A), A \subseteq K, B \subseteq K)$$
or $(\tau^{*}(K) > \alpha \tau^{*}(B), A \subseteq K, B \subseteq K) \}$

$$\supseteq \bigcap [\{ K \in I^{X} : \tau^{*}(K) > \alpha \tau^{*}(A), A \subseteq K \}$$

$$\cup \{ K \in I^{X} : \tau^{*}(K) > \alpha \tau^{*}(B), B \subseteq K \}]$$

$$= [\bigcap \{ K \in I^{X} : \tau^{*}(K) > \alpha \tau^{*}(A), A \subseteq K \}]$$

$$\bigcap [\bigcap \{ K \in I^{X} : \tau^{*}(K) > \alpha \tau^{*}(B), B \subseteq K \}]$$

$$= \overline{A}_{\alpha} \cap \overline{B}_{\alpha}.$$

(3.2)

THEOREM 3.5. Let (X,τ) be an s.t.s., $\alpha \in [0,1)$, and $A,B \in I^X$. Then

- (a) $(1_X)^o_{\alpha} = 1_X$,
- (b) $A^o_{\alpha} \subseteq A$,
- (c) $(A^o_\alpha)^o_\alpha \subseteq A^o_\alpha$,
- (d) $(A \cap B)^o_\alpha \subseteq A^o_\alpha \cup B^o_\alpha$.

PROOF. The proof is similar to the proof of Theorem 3.4. \Box

THEOREM 3.6. Let (X,τ) be an s.t.s., $\alpha \in [0,1)$, and $A \in I^X$. Then

- (a) $\tau^*(A) > 0 \Rightarrow A_\alpha = A$,
- (b) $\tau(A) > 0 \Rightarrow A^o_\alpha = A$.

PROOF. (a) Let $\tau^*(A) > 0$. Then $A \in \{K \in I^X : \tau^*(K) > \alpha \tau^*(A), \ A \subseteq K\}$. By Definition 3.1, $\overline{A}_{\alpha} \subseteq A$. By Theorem 3.4, $A \subseteq \overline{A}_{\alpha}$. Hence $\overline{A}_{\alpha} = A$.

(b) Let
$$\tau(A) > 0$$
. Then $A \in \{K \in I^X : \tau(K) > \alpha \tau(A), K \subseteq A\}$. By Definition 3.1, $A \subseteq A^o_\alpha$. By Theorem 3.5, $A^o_\alpha \subseteq A$. Hence $A^o_\alpha = A$.

REMARK 3.7. Let (X, τ) be an s.t.s., $\alpha_1, \alpha_2 \in [0, 1)$ with $\alpha_1 \le \alpha_2$, and $A \in I^X$. Then $\overline{A}_{\alpha_1} \subseteq \overline{A}_{\alpha_2}$ and $A_{\alpha_2}^o \subseteq A_{\alpha_1}^o$.

THEOREM 3.8. Let (X,τ) be an s.t.s., $\alpha \in [0,1)$, and $A \in I^X$. Then

- (a) $\overline{A}_{\alpha} = \bigcap_{\beta > \alpha \tau^*(A)} \operatorname{cl}_{\beta}(A)$,
- (b) $A^o_{\alpha} = \bigcup_{\beta > \alpha \tau(A)} \operatorname{int}_{\beta}(A)$.

PROOF. (a) For each $x \in X$, we have

$$\overline{A}_{\alpha}(x) = \left[\cap \left\{ K \in I^X : \tau^*(K) > \alpha \tau^*(A), \ A \subseteq K \right\} \right](x)$$

$$= \inf \left\{ K(x) : K \in I^X, \ \tau^*(K) > \alpha \tau^*(A), \ A \subseteq K \right\}$$

$$= \inf_{\beta > \alpha \tau^*(A)} \inf \left\{ K(x) : K \in I^X, \ \tau^*(K) \ge \beta, \ A \subseteq K \right\}$$

$$= \inf_{\beta > \alpha \tau^*(A)} \left[\cap \left\{ K \in I^X : \tau^*(K) \ge \beta, \ A \subseteq K \right\} \right](x)$$

$$= \inf_{\beta > \alpha \tau^*(A)} \operatorname{cl}_{\beta}(A)(x)$$

$$= \left[\cap_{\beta > \alpha \tau^*(A)} \operatorname{cl}_{\beta}(A) \right](x). \tag{3.3}$$

Hence, $\overline{A}_{\alpha} = \bigcap_{\beta > \alpha \tau^*(A)} \operatorname{cl}_{\beta}(A)$.

(b) The proof is similar to that of (a).

REMARK 3.9. Let (X, τ) be an s.t.s., $\alpha \in [0, 1)$, and $A \in I^X$. From Theorems 3.4, 3.5, and 3.8, we easily obtain the following:

- (a) if there exists a $\beta \in (\alpha \tau^*(A), 1]$ such that $A = \operatorname{cl}_{\beta}(A)$, then $A = \overline{A}_{\alpha}$;
- (b) if there exists a $\beta \in (\alpha \tau(A), 1]$ such that $A = \operatorname{int}_{\beta}(A)$, then $A = A_{\alpha}^{o}$.

DEFINITION 3.10. Let (X,τ) and (Y,σ) be two smooth topological spaces and let $\alpha \in [0,1)$. A function $f: X \to Y$ is called smooth α -preserving (resp., strict smooth α -preserving) with respect to τ and σ if and only if $\sigma(A) \ge \alpha\sigma(B) \Leftrightarrow \tau(f^{-1}(A)) \ge \alpha\tau(f^{-1}(B))$ (resp., $\sigma(A) > \alpha\sigma(B) \Leftrightarrow \tau(f^{-1}(A)) > \alpha\tau(f^{-1}(B))$) for every $A, B \in I^Y$.

A function $f: X \to Y$ is called smooth open α -preserving (resp., strict smooth open α -preserving) with respect to τ and σ if and only if $\tau(A) \ge \alpha \tau(B) \Rightarrow \sigma(f(A)) \ge \alpha \sigma(f(B))$ (resp., $\tau(A) > \alpha \tau(B) \Rightarrow \sigma(f(A)) > \alpha \sigma(f(B))$) for every $A, B \in I^X$.

THEOREM 3.11. Let (X,τ) and (Y,σ) be two smooth topological spaces and let $\alpha \in [0,1)$. If $f: X \to Y$ is a smooth α -preserving function (resp., a strict smooth α -preserving function) with respect to τ and σ , then $\sigma^*(A) \ge \alpha \sigma^*(B)$ $\Leftrightarrow \tau^*(f^{-1}(A)) \ge \alpha \tau^*(f^{-1}(B))$ (resp., $\sigma^*(A) > \alpha \sigma^*(B) \Leftrightarrow \tau^*(f^{-1}(A)) > \alpha \tau^*(f^{-1}(B))$) for every $A, B \in I^Y$.

PROOF. If $f: X \to Y$ is a smooth α -preserving function with respect to τ and σ , then

$$\sigma^{*}(A) \geq \alpha \sigma^{*}(B) \iff \sigma(A^{c}) \geq \alpha \sigma(B^{c})$$

$$\iff \tau(f^{-1}(A^{c})) \geq \alpha \tau(f^{-1}(B^{c}))$$

$$\iff \tau((f^{-1}(A))^{c}) \geq \alpha \tau((f^{-1}(B))^{c})$$

$$\iff \tau^{*}(f^{-1}(A)) \geq \alpha \tau^{*}(f^{-1}(B))$$
(3.4)

for every $A, B \in I^Y$.

The proof is similar when $f: X \to Y$ is a strict smooth α -preserving function with respect to τ and σ .

THEOREM 3.12. Let (X,τ) and (Y,σ) be two smooth topological spaces and let $\alpha \in [0,1)$. If a function $f: X \to Y$ is injective and strict smooth α -preserving with respect to τ and σ , then $f(\overline{A}_{\alpha}) \subseteq \overline{(f(A))}_{\alpha}$ for every $A \in I^X$.

PROOF. For every $A \in I^X$, we have

$$f^{-1}(\overline{(f(A))}_{\alpha}) = f^{-1}[\cap \{U \in I^{Y} : \sigma^{*}(U) > \alpha\sigma^{*}(f(A)), f(A) \subseteq U\}]$$

$$\supseteq f^{-1}[\cap \{U \in I^{Y} : \tau^{*}(f^{-1}(U)) > \alpha\tau^{*}(A), A \subseteq f^{-1}(U)\}]$$

$$= \cap \{f^{-1}(U) \in I^{X} : \tau^{*}(f^{-1}(U)) > \alpha\tau^{*}(A), A \subseteq f^{-1}(U)\} \quad (3.5)$$

$$\supseteq \cap \{K \in I^{X} : \tau^{*}(K) > \alpha\tau^{*}(A), A \subseteq K\}$$

$$= \overline{A}_{\alpha}.$$

Hence,
$$f(\overline{A}_{\alpha}) \subseteq \overline{(f(A))_{\alpha}}$$
.

THEOREM 3.13. Let (X,τ) and (Y,σ) be two smooth topological spaces and let $\alpha \in [0,1)$. If a function $f: X \to Y$ is strict smooth α -preserving with respect to τ and σ , then

(a)
$$\overline{(f^{-1}(A))}_{\alpha} \subseteq f^{-1}(\overline{A}_{\alpha})$$
 for every $A \in I^{Y}$,

(b)
$$f^{-1}(A^o_\alpha) \subseteq (f^{-1}(A))^o_\alpha$$
 for every $A \in I^Y$.

PROOF. (a) For every $A \in I^Y$, we have

$$f^{-1}(\overline{A}_{\alpha}) = f^{-1}[\cap \{U \in I^{Y} : \sigma^{*}(U) > \alpha\sigma^{*}(A), A \subseteq U\}]$$

$$\supseteq f^{-1}[\cap \{U \in I^{Y} : \tau^{*}(f^{-1}(U)) > \alpha\tau^{*}(f^{-1}(A)), f^{-1}(A) \subseteq f^{-1}(U)\}]$$

$$= \cap \{f^{-1}(U) \in I^{X} : \tau^{*}(f^{-1}(U)) > \alpha\tau^{*}(f^{-1}(A)), f^{-1}(A) \subseteq f^{-1}(U)\}$$

$$\supseteq \cap \{K \in I^{X} : \tau^{*}(K) > \alpha\tau^{*}(f^{-1}(A)), f^{-1}(A) \subseteq K\}$$

$$= \overline{(f^{-1}(A))}_{\alpha}.$$
(3.6)

(b) For every $A \in I^Y$, we have

$$f^{-1}(A_{\alpha}^{o}) = f^{-1} \left[\cup \left\{ U \in I^{Y} : \sigma(U) > \alpha \sigma(A), \ U \subseteq A \right\} \right]$$

$$\subseteq f^{-1} \left[\cup \left\{ U \in I^{Y} : \tau(f^{-1}(U)) > \alpha \tau(f^{-1}(A)), \ f^{-1}(U) \subseteq f^{-1}(A) \right\} \right]$$

$$= \cup \left\{ f^{-1}(U) \in I^{X} : \tau(f^{-1}(U)) > \alpha \tau(f^{-1}(A)), \ f^{-1}(U) \subseteq f^{-1}(A) \right\}$$

$$\subseteq \cup \left\{ K \in I^{X} : \tau(K) > \alpha \tau(f^{-1}(A)), \ K \subseteq f^{-1}(A) \right\}$$

$$= (f^{-1}(A))_{\alpha}^{o}.$$
(3.7)

THEOREM 3.14. Let (X,τ) and (Y,σ) be two smooth topological spaces and let $\alpha \in [0,1)$. If a function $f: X \to Y$ is strict smooth open α -preserving with respect to τ and σ , then $f(A^o_\alpha) \subseteq (f(A))^o_\alpha$ for every $A \in I^X$.

PROOF. For every $A \in I^X$, we have

$$f(A_{\alpha}^{o}) = f\left[\cup \left\{ U \in I^{X} : \tau(U) > \alpha \tau(A), \ U \subseteq A \right\} \right]$$

$$\subseteq f\left[\cup \left\{ U \in I^{X} : \sigma(f(U)) > \alpha \sigma(f(A)), \ f(U) \subseteq f(A) \right\} \right]$$

$$= \cup \left\{ f(U) \in I^{Y} : \sigma(f(U)) > \alpha \sigma(f(A)), \ f(U) \subseteq f(A) \right\}$$

$$= \cup \left\{ K \in I^{Y} : \sigma(K) > \alpha \sigma(f(A)), \ K \subseteq f(A) \right\}$$

$$= (f(A))_{\alpha}^{o}.$$

$$(3.8)$$

4. Types of smooth α **-compactness.** In this section, we introduce the concepts of several types of smooth α -compactness in smooth topological spaces and investigate some properties of them.

DEFINITION 4.1 [5]. An s.t.s. (X, τ) is called smooth compact if and only if for every family $\{A_i : i \in J\}$ in $\{A \in I^X : \tau(A) > 0\}$ covering X, there exists a finite subset J_0 of J such that $\bigcup_{i \in J_0} A_i = 1_X$.

THEOREM 4.2 [4]. Let (X,τ) and (Y,σ) be two smooth topological spaces and $f: X \to Y$ a surjective weakly smooth continuous function with respect to τ and σ . If (X,τ) is smooth compact, then so is (Y,σ) .

DEFINITION 4.3. Let $\alpha \in [0,1)$. An s.t.s. (X,τ) is called smooth nearly α -compact if and only if for every family $\{A_i : i \in J\}$ in $\{A \in I^X : \tau(A) > 0\}$ covering X, there exists a finite subset J_0 of J such that $\bigcup_{i \in J_0} (\overline{(A_i)}_{\alpha})_{\alpha}^o = 1_X$.

DEFINITION 4.4. Let $\alpha \in [0,1)$. An s.t.s. (X,τ) is called smooth almost α -compact if and only if for every family $\{A_i: i \in J\}$ in $\{A \in I^X: \tau(A) > 0\}$ covering X, there exists a finite subset J_0 of J such that $\bigcup_{i \in J_0} \overline{(A_i)}_{\alpha} = 1_X$.

DEFINITION 4.5. Let $\alpha \in [0,1)$. An s.t.s. (X,τ) is called smooth α -regular if and only if each fuzzy set $A \in I^X$ satisfying $\tau(A) > 0$ can be written as $A = \bigcup \{K \in I^X : \tau(K) \ge \tau(A), \overline{K}_{\alpha} \subseteq A\}$.

DEFINITION 4.6. A smooth topology $\tau: I^X \to I$ on X is called monotonic increasing (resp., monotonic decreasing) if and only if $A \subseteq B \Rightarrow \tau(A) \le \tau(B)$ (resp., $A \subseteq B \Rightarrow \tau(A) \ge \tau(B)$) for every $A, B \in I^X$.

THEOREM 4.7. Let (X,τ) be an s.t.s., $\alpha \in [0,1)$, and τ a monotonic decreasing smooth topology. If (X,τ) is smooth compact, then (X,τ) is smooth nearly α -compact.

PROOF. Let (X, τ) be a smooth compact s.t.s. Then for every family $\{A_i : i \in J\}$ in $\{A \in I^X : \tau(A) > 0\}$ covering X, there exists a finite subset J_0 of J such

that $\cup_{i\in J_0}A_i=1_X$. Since $\tau(A_i)>0$ for each $i\in J$, we have $A_i=(A_i)^o_\alpha$ for each $i\in J$ by Theorem 3.6. Since τ is monotonic decreasing and $A_i\subseteq \overline{(A_i)}^o_\alpha$ for each $i\in J$, we have $\tau(A_i)\geq \tau(\overline{(A_i)}^o_\alpha)$ for each $i\in J$. Hence from Theorem 3.2, we have $A_i=(A_i)^o_\alpha\subseteq (\overline{(A_i)}^o_\alpha)^o_\alpha$ for each $i\in J$. Thus $1_X=\cup_{i\in J_0}A_i\subseteq \cup_{i\in J_0}(\overline{(A_i)}^o_\alpha)^o_\alpha$, that is, $\cup_{i\in J_0}(\overline{(A_i)}^o_\alpha)^o_\alpha=1_X$. Hence (X,τ) is smooth nearly α -compact. \square

THEOREM 4.8. Let $\alpha \in [0,1)$. Then a smooth nearly α -compact s.t.s. (X,τ) is smooth almost α -compact.

PROOF. Let (X, τ) be a smooth nearly α -compact s.t.s. Then for every family $\{A_i: i \in J\}$ in $\{A \in I^X: \tau(A) > 0\}$ covering X, there exists a finite subset J_0 of J such that $\bigcup_{i \in J_0} (\overline{(A_i)}_{\alpha})_{\alpha}^o = 1_X$. Since $\overline{(A_i)}_{\alpha} \cap \alpha \subseteq \overline{(A_i)}_{\alpha}$ for each $i \in J$ by Theorem 3.5, $1_X = \bigcup_{i \in J_0} (\overline{(A_i)}_{\alpha})_{\alpha}^o \subseteq \bigcup_{i \in J_0} \overline{(A_i)}_{\alpha}$. So $\bigcup_{i \in J_0} \overline{(A_i)}_{\alpha} = 1_X$. Hence (X, τ) is smooth almost α -compact.

THEOREM 4.9. Let (X,τ) and (Y,σ) be two smooth topological spaces, $\alpha \in [0,1)$, and $f: X \to Y$ a surjective, weakly smooth continuous, and strict smooth α -preserving function with respect to τ and σ . If (X,τ) is smooth almost α -compact, then so is (Y,σ) .

PROOF. Let $\{A_i: i \in J\}$ be a family in $\{A \in I^Y: \sigma(A) > 0\}$ covering Y, that is, $\cup_{i \in J} A_i = 1_Y$. Then $1_X = f^{-1}(1_Y) = \cup_{i \in J} f^{-1}(A_i)$. Since f is weakly smooth continuous, $\tau(f^{-1}(A_i)) > 0$ for each $i \in J$. Since (X,τ) is smooth almost α -compact, there exists a finite subset J_0 of J such that $\cup_{i \in J_0} \overline{(f^{-1}(A_i))}_{\alpha} = 1_X$. From the surjectivity of f we have $1_Y = f(1_X) = f(\cup_{i \in J_0} (f^{-1}(A_i))_{\alpha}) = \bigcup_{i \in J_0} f(\overline{(f^{-1}(A_i))}_{\alpha})_{\alpha}$. Since $f: X \to Y$ is strict smooth α -preserving with respect to τ and σ , from Theorem 3.13 we have $\overline{(f^{-1}(A_i))}_{\alpha} \subseteq f^{-1}(\overline{(A_i)}_{\alpha})$ for each $i \in J$. Hence we have $1_Y = \cup_{i \in J_0} f(\overline{(f^{-1}(A_i))}_{\alpha}) \subseteq \cup_{i \in J_0} f(f^{-1}(\overline{(A_i)}_{\alpha})) = \bigcup_{i \in J_0} \overline{(A_i)}_{\alpha}$, that is, $\bigcup_{i \in J_0} \overline{(A_i)}_{\alpha} = 1_Y$. Thus (Y,σ) is smooth almost α -compact.

We obtain the following corollary from Theorems 4.8 and 4.9.

COROLLARY 4.10. Let (X,τ) and (Y,σ) be two smooth topological spaces, $\alpha \in [0,1)$, and $f: X \to Y$ a surjective, weakly smooth continuous, and strict smooth α -preserving function with respect to τ and σ . If (X,τ) is smooth nearly α -compact, then (Y,σ) is smooth almost α -compact.

THEOREM 4.11. Let (X,τ) and (Y,σ) be two smooth topological spaces, $\alpha \in [0,1)$, and $f: X \to Y$ a surjective, weakly smooth continuous, strict smooth α -preserving, and strict smooth open α -preserving function with respect to τ and σ . If (X,τ) is smooth nearly α -compact, then so is (Y,σ) .

PROOF. Let $\{A_i: i \in J\}$ be a family in $\{A \in I^Y: \sigma(A) > 0\}$ covering Y, that is, $\cup_{i \in J} A_i = 1_Y$. Then $1_X = f^{-1}(1_Y) = \cup_{i \in J} f^{-1}(A_i)$. Since f is weakly smooth continuous, $\tau(f^{-1}(A_i)) > 0$ for each $i \in J$. Since (X, τ) is smooth nearly α -compact, there exists a finite subset J_0 of J such that $\cup_{i \in J_0} (\overline{(f^{-1}(A_i))}_{\alpha})_{\alpha}^o = 1_X$.

From the surjectivity of f we have $1_Y = f(1_X) = f(\bigcup_{i \in J_0} (\overline{(f^{-1}(A_i))}_\alpha)_\alpha^o) = \bigcup_{i \in J_0} f((\overline{(f^{-1}(A_i))}_\alpha)_\alpha^o)$. Since $f: X \to Y$ is strict smooth open α -preserving with respect to τ and σ , from Theorem 3.14 we have $f((\overline{(f^{-1}(A_i))}_\alpha)_\alpha^o) \subseteq (f(\overline{(f^{-1}(A_i))}_\alpha))_\alpha^o$ for each $i \in J$. Since $f: X \to Y$ is strict smooth α -preserving with respect to τ and σ , from Theorem 3.13 we have $\overline{(f^{-1}(A_i))}_\alpha \subseteq f^{-1}(\overline{(A_i)}_\alpha)$ for each $i \in J$. Hence, we have

$$1_{Y} = \bigcup_{i \in J_{0}} f((\overline{(f^{-1}(A_{i}))}_{\alpha})_{\alpha}^{o})$$

$$\subseteq \bigcup_{i \in J_{0}} (f(\overline{(f^{-1}(A_{i}))}_{\alpha}))_{\alpha}^{o}$$

$$\subseteq \bigcup_{i \in J_{0}} (f(f^{-1}(\overline{(A_{i})}_{\alpha})))_{\alpha}^{o}$$

$$= \bigcup_{i \in J_{0}} (\overline{(A_{i})}_{\alpha})_{\alpha}^{o}.$$

$$(4.1)$$

Hence, $\bigcup_{i \in J_0} (\overline{(A_i)}_{\alpha})_{\alpha}^o = 1_Y$. Thus (Y, σ) is smooth nearly α -compact. \square

THEOREM 4.12. Let $\alpha \in [0,1)$. Then a smooth almost α -compact smooth α -regular s.t.s. (X,τ) is smooth compact.

PROOF. Let $\{A_i: i \in J\}$ be a family in $\{A \in I^X: \sigma(A) > 0\}$ covering X, that is, $\bigcup_{i \in J} A_i = 1_X$. Since (X, τ) is smooth α -regular, $A_i = \bigcup_{j \in J_i} \{K_{j_i} \in I^X: \tau(K_{j_i}) \geq \tau(A_i), \overline{(K_{j_i})}_{\alpha} \subseteq A_i\}$ for each $i \in J$. Since $\bigcup_{i \in J} A_i = \bigcup_{i \in J} [\bigcup_{j_i \in J_i} K_{j_i}] = 1_X$ and (X, τ) is smooth almost α -compact, there exists a finite subfamily $\{K_l \in I^X: \tau(K_l) > 0, \ l \in L\}$ such that $\bigcup_{l \in L} \overline{(K_l)}_{\alpha} = 1_X$. Since for each $l \in L$ there exists $i \in J$ such that $\overline{(K_l)}_{\alpha} \subseteq A_i$, we have $\bigcup_{i \in J_0} A_i = 1_X$, where J_0 is a finite subset of J. Hence (X, τ) is smooth compact.

We obtain the following corollary from Theorems 4.8 and 4.12.

COROLLARY 4.13. Let $\alpha \in [0,1)$. Then a smooth nearly α -compact smooth α -regular s.t.s. (X,τ) is smooth compact.

REFERENCES

- [1] R. Badard, Smooth axiomatics, First IFSA Congress, Palma de Mallorca, 1986.
- [2] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182-190.
- [3] M. Demirci, *On several types of compactness in smooth topological spaces*, Fuzzy Sets and Systems **90** (1997), no. 1, 83–88.
- [4] ______, Three topological structures of smooth topological spaces, Fuzzy Sets and Systems 101 (1999), no. 1, 185–190.
- [5] M. K. El Gayyar, E. E. Kerre, and A. A. Ramadan, Almost compactness and near compactness in smooth topological spaces, Fuzzy Sets and Systems 62 (1994), no. 2, 193–202.
- [6] A. A. Ramadan, Smooth topological spaces, Fuzzy Sets and Systems 48 (1992), no. 3, 371–375.

Chun-Kee Park: Department of Mathematics, Kangwon National University, Chuncheon 200-701, Korea

E-mail address: ckpark@kangwon.ac.kr

Won Keun Min: Department of Mathematics, Kangwon National University, Chuncheon 200-701, Korea

E-mail address: wkmin@cc.kangwon.ac.kr

Myeong Hwan Kim: Department of Mathematics, Kangwon National University, Chuncheon 200-701, Korea

E-mail address: kimmw@kangwon.ac.kr