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1. Introduction. Existence and nonexistence of solutions of the quasilinear

elliptic system

−div
(|∇u|p−2∇u)= f(u,v), x ∈RN,

−div
(|∇v|q−2∇v)= g(u,v), x ∈RN, (1.1)

have received much attention recently. See, for example, [5, 7, 9, 18, 26, 27, 28].

Problem (1.1) arises in the theory of quasiregular and quasiconformal map-

pings or in the study of non-Newtonian fluids. In the latter case, the pair (p,q)
is a characteristic of the medium. Media with (p,q) > (2,2) are called dilatant

fluids and those with (p,q) < (2,2) are called pseudoplastics. If (p,q)= (2,2),
they are Newtonian fluids.

When p = q = 2, system (1.1) becomes

−�u= f(u,v), x ∈RN,
−�v = g(u,v), x ∈RN, (1.2)

for which the existence and the nonexistence of positive solutions have been

investigated extensively. We list here, for example, [2, 4, 10, 13, 16, 17, 20, 22,

23, 24].

Explosive solutions of the problem

�u(x)= f (u(x)), x ∈Ω,
u|∂Ω =∞,

(1.3)

where Ω is a bounded domain in RN (N ≥ 1) have been extensively studied,

see [1, 6, 11, 12, 14, 25].

http://dx.doi.org/10.1155/S0161171203212394
http://dx.doi.org/10.1155/S0161171203212394
http://dx.doi.org/10.1155/ijmms
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In this paper, we study the existence of entire explosive positive solutions

of the system

div
(|∇u|p−2∇u)=m(|x|)vα, x ∈RN,

div
(|∇v|q−2∇v)=n(|x|)uβ, x ∈RN, (1.4)

where α > 0, β > 0, p > 1, and q > 1. As far as the author knows, there are

no results that contain existence criteria of entire explosive positive solutions

to the elliptic system (1.4). Motivated by this fact, we will study mainly this

problem here. When p = q = 2, the related results have been obtained by [13].

Our theorem for existence extends the results [13].

A solution (u,v) of the system

div
(|∇u|p−2∇u)= f(x,u,v), div

(|∇v|q−2∇v)= g(x,u,v) (1.5)

is called an explosive solution if u(x) → ∞ and v(x) → ∞ as x → ∂Ω if Ω is

bounded. If Ω is unbounded, then (u,v) is an explosive solution of (1.5) on

Ω if u(x) → ∞ and v(x) → ∞ as x → ∂Ω, and u(x) → ∞ and v(x) → ∞ as

|x| → ∞ within Ω. In particular, when Ω = RN , the solution (u,v) is called

an entire explosive solution of (1.5) and satisfies u(x)→∞ and v(x)→∞ as

|x| →∞. Such problems arise in the study of the subsonic motion of a gas [21],

the electric potential in some bodies [15], and Riemannian geometry [3].

2. Preliminaries. We first consider quasilinear elliptic inequalities of the

form

div
(|∇u|p−2∇u)≥m(x)f(u), x ∈RN (N ≥ 2), (2.1)

where p > 1, ∇u= (∇1u,. . . ,∇Nu), andm(x) :RN → (0,∞), f : (0,∞)→ (0,∞)
are continuous functions. A positive function u ∈ C1(RN) is defined to be a

positive entire solution of inequality (2.1) if it satisfies inequality (2.1) at every

point of RN .

Throughout the section, we make the following assumptions without further

mention:

(H1) f : (0,∞)→ (0,∞) is locally Lipschitz continuous and strictly increasing,

(H2) f is superlinear in the sense that

∫∞
1

(∫ u
0
f(s)ds

)−1/p
du <∞,

∫ 1

0

(∫ u
0
f(s)ds

)−1/p
du=∞. (2.2)

An important special case of (2.1) satisfying the above hypotheses is the equal-

ity

div
(|∇u|p−2∇u)=m(x)uγ, x ∈RN, (2.3)

where γ > p−1.
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Lemma 2.1 (weak comparison principle). Let Ω be a bounded domain in

RN (N ≥ 2) with smooth boundary ∂Ω and θ : (0,∞)→ (0,∞) continuous and

nondecreasing. Let u1,u2 ∈W 1,p(Ω) satisfy

∫
Ω

∣∣∇u1

∣∣p−2∇u1∇ψdx+
∫
Ω
θ
(
u1
)
ψdx

≤
∫
Ω

∣∣∇u2

∣∣p−2∇u2∇ψdx+
∫
Ω
θ
(
u2
)
ψdx

(2.4)

for all nonnegative ψ∈W 1,p
0 (Ω). Then the inequality

u1 ≤u2 on ∂Ω (2.5)

implies that

u1 ≤u2 in Ω. (2.6)

Proof. Let η=∇u1, η′ = ∇u2, and ψ=max{u1−u2,0}. Since u1 ≤u2 on

∂Ω, ψ belongs to W 1,p
0 (Ω). Inserting this function ψ into (2.4), we have

∫
{u1>u2}

[(|η|p−2η−|η′|p−2η′
)
(η−η′)+(θ(u1

)−θ(u2
))(
u1−u2

)]
dx ≤ 0.

(2.7)

Since θ is nondecreasing, we know that

∫
{u1>u2}

[(|η|p−2η−|η′|p−2η′
)
(η−η′)]dx ≤ 0. (2.8)

We suppose that 	(
) := {x : |η(x)| ≤ (≥)|η′(x)|}, then

1
4
|η−η′| ≤ |η′ +t(η−η′)| ≤ 1+|η|+|η′| in 	(
), (2.9)

for all t ∈ [0,1/4](or [3/4,1]). Therefore, write ai(η)= |η|p−2ηi and

0≥
∫
{u1>u2}

(|η|p−2η−|η′|p−2η′
)
(η−η′)dx

=
∫
{u1>u2}

∫ 1

0

N∑
0

∂ai

∂ηj

(
η′ +t(η−η′))(ηi−η′i)(ηj−η′j)dtdx

≥ γ0




∫
{u1>u2}

(
1+|η|+|η′|)p−2|η−η′|2dx, if p < 2,∫

{u1>u2}
|η−η′|pdx, if p ≥ 2,

(2.10)

where γ0 > 0. This is a contradiction, which implies that Lemma 2.1 is true.
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Lemma 2.2. Let f(u) satisfy the following conditions:

(i) f(s) is a single-value real continuous function defined for all real values

of s and there exists a positive nondecreasing continuous function F(s)
such that f(s)≥ F(s) and

∫∞
0

[∫ x
0
F(z)dz

]−1/p
dx <∞; (2.11)

(ii) m(x)≥ β > 0 for x ∈RN , and u is a solution of

div
(|∇u|p−2∇u)≥m(x)f(u), x ∈RN (N ≥ 2), (2.12)

in a domain D ⊂ RN and continuous on its boundary S. Then there exists a

decreasing function g(R) determined by F(u) such that

u(P)≤ g(R(P)). (2.13)

Here P denotes a point in D and R(P) denotes its distance from S. The function

g(R) has the limits

g(R) �→∞ as R �→ 0,

g(R) �→−∞ as R �→∞. (2.14)

Proof. Each point P ∈D can be the centre of a sphere of radius R(P)which

lies in D. Therefore, it suffices to prove the theorem in D as a sphere of radius

R, and suppose that u is defined continuously on S. We define a function v in

D and S as the solution of the problem

div
(|∇v|p−2∇v)= F1(v), x ∈D,

v =α on S.
(2.15)

In (2.15), F1(v)= θF(v), where F(v) is the function occurring in condition (i)

and θ is a constant, 0< θ < β. Thus, from conditions (i) and (ii) and (2.15), we

have

div
(|∇u|p−2∇u)−F1(u)≥ div

(|∇v|p−2∇v)−F1(v). (2.16)

Moreover, α is a positive constant which satisfies

u≤α on S. (2.17)

The existence and uniqueness of a positive solution v of (2.15) are assured

because F1 is a nondecreasing function. In fact, the existence can be obtained

by the standard variational method and the uniqueness can be obtained by an

idea similar to that in the proof of Lemma 2.1 (see [8]). From (2.1), (2.15), and

Lemma 2.1, we have

u≤ v in D. (2.18)
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We now define a function g(R) by

g(R)= lim
α→∞v(P). (2.19)

Then, since v is an increasing function of α, we have v(P)≤ g(R) for every α.

Combining this inequality with (2.18), we obtain

u(P)≤ g(R). (2.20)

Inequality (2.20) is the desired inequality (2.13) of Lemma 2.2. It remains to

show that g(R) is finite in order that (2.20) is nontrivial and that g(R) satisfies

(2.14) and is a decreasing function of R.

To this end, we must examine v , the solution of (2.15). First we show that

v must be a function of r only where r denotes the distance from the cen-

tre of the sphere. We can find a positive radial solution v(r) of (2.15) by the

variational method to the equivalent form of (2.15) in r :

(
Φp(v′)

)′ + N−1
r

Φp(v′)= F1(v), v′(0)= 0, (2.21)

v(R)=α, (2.22)

where Φp(s) = |s|p−2s. The uniqueness of the positive solution v of (2.15)

implies that v is just the radial solution v(r) of problem (2.21) and (2.22).

Since v(0) is a monotonic increasing function of α, α is itself uniquely de-

termined by v(0). Let v(0)= v0. As v0 increases, α= v(R) also increases. We

will show that α= v(R) becomes infinite for some finite value of v0.

This value of v0 is denoted by limα→∞v0, which can be used to define the

function g(R) in this lemma.

It is convenient to rewrite (2.21) in the form

(
rN−1Φp(v′)

)′ = rN−1F1(v). (2.23)

Integrating (2.23) from 0 to r yields

Φp(v′)= r 1−N
∫ r

0
sN−1F1

(
v(s)

)
ds. (2.24)

From (2.24), we see that v′ ≥ 0. Therefore, v is a nondecreasing function, and

we can obtain from (2.24) that

Φp(v′)≤ r 1−N[F1
(
v(r)

)]rN
N
= r
N
F1
[
v(r)

]
. (2.25)

Inserting (2.25) into (2.21), we have

(
Φp(v′)

)′ ≥ F1(v)
N

. (2.26)
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Since v′ ≥ 0, (2.21) also yields (Φp(v′))′ ≤ F1(v). Combining this with (2.26)

leads to

F1(v)≥
(
Φp(v′)

)′ ≥ F1(v)
N

. (2.27)

We now multiply (2.27) by v′ and integrate from 0 to r to obtain

∫ r
0
F1(v)v′(s)ds ≥

(
p−1
p

)
(v′)p ≥

∫ r
0

1
N
F1
(
v(s)

)
v′(s)ds, (2.28)

that is,

H
(
v,v0

)≥ (v′)p ≥ 1
N
H
(
v,v0

)
, (2.29)

where

H
(
v,v0

)= p
p−1

∫ v
v0

F1(z)dz. (2.30)

This implies

H1/p(v,v0
)≥ v′ ≥ (1/N)1/pH1/p(v,v0

)
. (2.31)

Then we consider r as a function of v , and we have
∫ v
v0

H−1/p(z,v0
)
dz ≤ r ≤N1/p

∫ v
v0

H−1/p(z,v0
)
dz. (2.32)

By condition (i), the integral in (2.32) converges as v becomes infinite when

v0 = 0. But then the integral also converges for any value of v0 > 0. If we

denote its limit by A(v0), letting v →∞, (2.32) yields

A
(
v0
)≤ r∞ ≤N1/pA

(
v0
)
, (2.33)

where

A
(
v0
)=

∫∞
v0

H−1/p(z,v0
)
dz, r∞ = lim

v→∞r(v). (2.34)

From (2.34), we see that, for each v0,v becomes infinite at a finite value of r∞
in the range indicated in (2.33). Therefore, r∞ is a function of v0 and is denoted

by r∞(v0).
The function r∞(v0) is continuous and nonincreasing. If it were increasing,

then two solutions corresponding to different values of v0 would have to be

equal at some value of r . This is impossible because a solution of (2.21) with a

prescribed value on the surface of a sphere is unique. Furthermore, the integral

A(v0) tends to+∞ asv0 tends to−∞, and to zero asv0 tends to+∞. Therefore,

by (2.33), r∞(v0) behaves in the same way. We now define g(R) := min{v0 |
r∞(v0)= R}. This function is decreasing and satisfies (2.14), so it is the desired

g(R) of Lemma 2.2. This completes the proof of Lemma 2.2.
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Lemma 2.3. If f(u) is nondecreasing and satisfies Lemma 2.2, then in any

bounded domain D there exists a solution of (2.1) which becomes infinite on S.

Proof. We note that, for any constant α and any domain D, there exists

in D a solution uα of (2.1) which is equal to α on S provided that f(u) is

nondecreasing (see [8]). Furthermore, at each point of D,uα increases with

α. If f(u) satisfies Lemma 2.2(i), then Lemma 2.2 holds, and at each point P
in D, all of the uα are bounded above. Thus, in every closed subdomain, uα
converges uniformly to a limit u. This limit is also a solution of (2.1). As P
approaches S, u(P) increases infinitely since on S, uα = α becomes infinite.

Thus, u is the desired solution and Lemma 2.3 is proved.

Lemma 2.4. Suppose that m ∈ C(RN), m(x) =m(|x|) ≥ C > 0 for x ∈ RN ,

and

∫∞
0

(
t1−N

∫ t
0
sN−1m(s)ds

)1/(p−1)
dt <∞. (2.35)

Then (2.3) has an entire explosive positive radial solution if γ > p−1.

Proof. From Lemma 2.3, we have that for each k∈N, the boundary value

problem

div
(∣∣∇vk∣∣p−2∇vk

)=m(|x|)vγk , |x|< k,
vk(x) �→∞ as |x| �→ k (2.36)

has a positive solution. Furthermore,

v1 ≥ v2 ≥ ··· ≥ vk ≥ vk+1 ≥ ···> 0 (2.37)

in RN . To prove our result, we only need to prove that

(A) there exists w ∈ C(RN), w > 0, such that vk ≥w in RN for all k;

(B) v →∞ as |x| →∞, where v = limk→∞vk.
To prove (A), condition (2.35) implies

z(r)= C−
(
γ−p+1
p−1

)∫ r
0

(
t1−N

∫ t
0
sN−1m(s)ds

)1/(p−1)
dt, (2.38)

where

C =
(
γ−p+1
p−1

)∫∞
0

(
t1−N

∫ t
0
sN−1m(s)ds

)1/(p−1)
dt (2.39)

is the unique positive solution of the following problem:

div
(|∇z|p−2∇z)=−(γ−p+1

p−1

)p−1

m(r), x ∈RN, r = ‖x‖,
z �→ 0, |x| �→∞.

(2.40)
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We claim that v(p−1−γ)/(p−1)
k ≤ z on |x| ≤ k. Clearly, this inequality holds for

|x| = k, where v(p−1−γ)/(p−1)
k = 0. Letting g = v(p−1−γ)/(p−1)

k gives

div
(|∇g|p−2∇g)≥−(γ−p+1

p−1

)p−1

m(r)

+
(
γ−p+1
p−1

)p−1

γv−γ−1
k

∣∣∇vk∣∣p.
(2.41)

Thus

−div
(|∇g|p−2∇g)≤−div

(|∇z|p−2∇z) in |x|< k, (2.42)

and from Lemma 2.1, we obtain g = v(p−1−γ)/(p−1)
k ≤ z if |x| ≤ k. Let w =

(1/z)(p−1)/(γ−p+1) and note that vk ≥w in RN . Consequently, v ≥w in RN and

(A) is proved. Sincew →∞ as |x| →∞, it is clear that (B) follows easily from (A).

Lemma 2.5. Suppose that p−1<α≤ β, β > q−1, and p,q > 1. The problem

div
(|∇g|p−2∇g)=m(|x|)gα+n(|x|)gβ, (2.43)

div
(|∇h|q−2∇h)=m(|x|)hα+n(|x|)hβ (2.44)

has an entire explosive positive radial solution provided that theC(RN) functions

m(x),n(x)≥ C > 0 and satisfy

∫∞
0

(
t1−N

∫ t
0
sN−1m(s)ds

)1/(p−1)
dt <∞,

∫∞
0

(
t1−N

∫ t
0
sN−1n(s)ds

)1/(q−1)
dt <∞.

(2.45)

Proof. From Lemma 2.3, for each natural number k, let vk be a positive

solution of the boundary value problem

div
(∣∣∇vk∣∣p−2∇vk

)=m(|x|)vαk +n(|x|)vβk , |x|< k,
vk �→∞, |x| �→ k. (2.46)

Again, by the maximum principle, we can show that

v1 ≥ v2 ≥ ··· ≥ vk ≥ vk+1 ≥ ···> 0 (2.47)

inRN . To complete the proof, it is sufficient to show that there exists a function

w ∈ C(RN) such thatw →∞ as |x| →∞ and vk ≥w in RN for all k. To do this,

we first consider the equation

div
(|∇u|p−2∇u)= [m(|x|)+n(|x|)]uβ. (2.48)
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By Lemma 2.4, (2.48) has a positive solution u on RN such that u(x)→∞ as

|x| → ∞. We claim that w = u−1 is a desired lower boundary for vk. Indeed,

since

div
(|∇(vk+1

)|p−2∇(vk+1
))= div

(∣∣∇vk∣∣p−2∇vk
)=mvαk +nvβk

≤m(vk+1
)α+n(vk+1

)β
≤ (m+n)(vk+1

)β
for |x|> k,

(2.49)

and clearly vk+1>u as |x| → k, Lemma 2.1 implies that vk+1≥u for |x| ≤ k.

Hence, v = limk→∞vk ≥ u−1 on RN . Again, by the standard regularity argu-

ment for elliptic problems, it is a straightforward argument to prove that v is

the desired solution of (2.43). By a similar argument, we can show that (2.44)

has an entire explosive positive radial solution.

Lemma 2.6. Suppose that gR and hR are positive radial solutions of the prob-

lem

div
(∣∣∇gR∣∣p−2∇gR

)=m(r)gαR +n(r)gβR, 0≤ r < R,
gR(r) �→∞, r �→ R−,

div
(∣∣∇hR∣∣q−2∇hR

)=m(r)hαR+n(r)hβR, 0≤ r < R,
hR(r) �→∞, r �→ R−,

(2.50)

where m and n are nonnegative C([0,∞)) functions and p−1 < α ≤ β, β >
q−1, p > 1, and q > 1. Then limR→0+ gR(0)=∞ and limR→0+ hR(0)=∞.

Proof. Since g′R(r)≥ 0 and m, n are bounded on [0,1], we get

(
g′R(r)

)p−1 = r 1−N
∫ r

0
sN−1

[
m(s)gαR(s)+n(s)gβR(s)

]
ds

≤
∫ r

0

[
m(s)gαR(s)+n(s)gβR(s)

]
ds

≤ agαR(r)+bgβR(r),

(2.51)

then

g′R(r)≤
(
agαR(r)+bgβR(r)

)1/(p−1)

≤


a1/(p−1)gα/(p−1)

R (r)+b1/(p−1)gβ/(p−1)
R , for p ≥ 2,

2(2−p)/(p−1)
(
a1/(p−1)gα/(p−1)

R (r)+b1/(p−1)gβ/(p−1)
R

)
, for 1<p < 2,

(2.52)

where

a=
∫ 1

0
m(s)ds, b =

∫ 1

0
n(s)ds. (2.53)
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Thus we have

g′R(r)
a1/(p−1)gα/(p−1)

R (r)+b1/(p−1)gβ/(p−1)
R

≤ 1 for p ≥ 2,

g′R(r)

2(2−p)/(p−1)
(
a1/(p−1)gα/(p−1)

R (r)+b1/(p−1)gβ/(p−1)
R

) ≤ 1 for 1<p < 2,

(2.54)

which implies that

− d
dr

∫∞
gR(r)

ds
a1/(p−1)sα/(p−1)+b1/(p−1)sβ/(p−1) ≤ 1 for p ≥ 2,

− d
dr

∫∞
gR(r)

ds
2(2−p)/(p−1)

(
a1/(p−1)sα/(p−1)+b1/(p−1)sβ/(p−1)

) ≤1 for 1<p < 2.

(2.55)

Now, integrating from 0 to R and recalling that gR(r)→∞ as r → R−, we get

∫∞
gR(0)

ds
a1/(p−1)sα/(p−1)+b1/(p−1)sβ/(p−1) ≤ R for p ≥ 2,

∫∞
gR(0)

ds
2(2−p)/(p−1)

(
a1/(p−1)sα/(p−1)+b1/(p−1)sβ/(p−1)

) ≤ R for 1<p < 2.

(2.56)

Letting R→ 0+ yields

lim
R→0+

∫∞
gR(0)

ds
a1/(p−1)sα/(p−1)+b1/(p−1)sβ/(p−1) = 0. (2.57)

Hence, we have gR(0)→∞ as R→ 0+. By a similar argument, we can show that

hR(0)→∞ as R→ 0+.

Lemma 2.7. Let g, h be any entire explosive positive radial solutions of (2.43),

(2.44) given in Lemma 2.5 and define the sequences {uk} and {vk} by

uk(r)= a+
∫ r

0

(
t1−N

∫ t
0
sN−1m(s)vαk−1(s)ds

)1/(p−1)
dt, r ≥ 0, (2.58)

vk(r)= b+
∫ r

0

(
t1−N

∫ t
0
sN−1n(s)uβk−1(s)ds

)1/(q−1)
dt, r ≥ 0, (2.59)

whereu0 = a, 0≤ a≤min{g(0),h(0)}, andv0(r)= b, 0≤ b≤min{g(0),h(0)}.
Then

(a) uk(r)≤uk+1(r); vk(r)≤ vk+1(r), r ∈R+, k≥ 1;

(b) uk(r)≤ g(r) and vk(r)≤ h(r), r ∈R+, k≥ 1.

Thus {uk} and {vk} converge and the limit functions are entire positive radial

solutions of system (1.4).
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Proof. (a) Obviously, v0 < v1. This then yields u1 < u2 by (2.58). Conse-

quently, v1 < v2 by (2.59), which yields u2 <u3 by (2.58). Continuing this line

of reasoning, we obtain that the sequences {uk} and {vk} are monotonically

increasing.

(b) We note first that, since g is radial, we get

g(r)= g(0)+
∫ r

0

(
t1−N

∫ t
0
sN−1[m(s)gα(s)+n(s)gβ(s)]ds)1/(p−1)

dt.

(2.60)

Now, it is clear (since g′(r) ≥ 0) that b = v0 ≤ g(0) ≤ g(r) for all r ≥ 0. Thus

we have

u1(r)≤ a+
∫ r

0

(
t1−N

∫ t
0
sN−1m(s)gα(s)ds

)1/(p−1)
dt

≤ g(0)+
∫ r

0

(
t1−N

∫ t
0
sN−1[m(s)gα(s)+n(s)gβ(s)]ds)1/(p−1)

dt = g(r).
(2.61)

Thus we have u1 ≤ g. Similar arguments will show, in sequence, that v1 ≤ h,

u2 ≤ g,. . . .

3. Main results. By a modification of the method given in [13], we establish

the following results.

Theorem 3.1. Suppose that m and n are C(RN) functions and m(x) =
m(|x|), n(x) = n(|x|) ≥ C > 0, 0 < α ≤ p−1, and 0 < α ≤ β ≤ q−1. Then

there exists an entire positive radial solution of (1.4) with any central values

u(0)= a≥ 0, v(0)= b ≥ 0. (3.1)

If, in addition, the functions m and n satisfy

∫∞
0

(
t1−N

∫ t
0
sN−1m(s)ds

)1/(p−1)
dt =∞,

∫∞
0

(
t1−N

∫ t
0
sN−1n(s)ds

)1/(q−1)
dt =∞,

(3.2)

then all entire positive radial solutions of (1.4) are large solutions. On the other

hand, if m and n satisfy

∫∞
0

(
t1−N

∫ t
0
sN−1m(s)ds

)1/(p−1)
dt <∞,

∫∞
0

(
t1−N

∫ t
0
sN−1n(s)ds

)1/(q−1)
dt <∞,

(3.3)

then all entire positive radial solutions of (1.4) are bounded.
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Proof. Note that radial solutions of (1.4) are solutions of the ordinary dif-

ferential equation system

(
Φp(u′)

)′ + N−1
r

Φp(u′)=m(r)vα,
(
Φq(v′)

)′ + N−1
r

Φq(v′)=n(r)uβ.
(3.4)

Thus solutions of (1.4) are simply solutions of

u(r)= a+
∫ r

0

(
t1−N

∫ t
0
sN−1m(s)vα(s)ds

)1/(p−1)
dt, r ≥ 0,

v(r)= b+
∫ r

0

(
t1−N

∫ t
0
sN−1n(s)uβ(s)ds

)1/(q−1)
dt, r ≥ 0.

(3.5)

Let {uk} and {vk} be as defined in Lemma 2.7, where the central values (a,b)
may be any ordered pair of nonnegative numbers. We will show that the mono-

tonically increasing sequences {uk} and {vk} are bounded above whenever r
is bounded and hence converge on RN . Indeed, we note that, since v′k(r)≥ 0,

uk(r)≤uk+1(r)≤ a+vα/(p−1)
k (r)

∫ r
0

(
t1−N

∫ t
0
sN−1m(s)ds

)1/(p−1)
dt

= a+vα/(p−1)
k (r)f (r),

(3.6)

where

f(r)=
∫ r

0

(
t1−N

∫ t
0
sN−1m(s)ds

)1/(p−1)
dt. (3.7)

Similarly, we get vk(r)≤ b+uβ/(q−1)
k (r)g(r), where

g(r)=
∫ r

0

(
t1−N

∫ t
0
sN−1n(s)ds

)1/(q−1)
dt. (3.8)

Combining these, we get

uk(r)≤ a+f(r)
(
b+uβ/(q−1)

k (r)g(r)
)α/(p−1)

. (3.9)

Since 0 < α < p−1, we know that (c+d)α/(p−1) ≤ cα/(p−1)+dα/(p−1) for any

nonnegative constants c and d. Therefore, by applying this inequality, we get

uk(r)≤ a+f(r)
(
bα/(p−1)+uαβ/(p−1)(q−1)

k gα/(p−1))
= c(r)+uαβ/(p−1)(q−1)

k h(r).
(3.10)

If αβ< (p−1)(q−1), using the elementary inequality (see [19, page 30])

x1/my1/n ≤ x
m
+ y
n
, (3.11)
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where x ≥ 0, y ≥ 0, and 1/m+1/n= 1 with m> 1, we observe that

uk(r)≤ c(r)+ αβ
(p−1)(q−1)

uk+
(

1− αβ
(p−1)(q−1)

)
h1/(1−αβ/(p−1)(q−1)).

(3.12)

Thus

uk(r)≤ c(r)+
(
1−αβ/(p−1)(q−1)

)
h1/(1−αβ/(p−1)(q−1))

1−αβ/(p−1)(q−1)
∀k. (3.13)

Similarly, there exists a function ψ such that vk(r) ≤ ψ(r) for all k if αβ <
(p−1)(q−1). On the other hand, if αβ = (p−1)(q−1) so that α = p−1 and

β= q−1, we substitute (3.6) into the equation for vk to get

vk(r)≤ b+
∫ r

0

(
t1−N

∫ t
0
sN−1q(s)

[
a+f(s)vk(s)

]q−1ds
)1/(q−1)

dt. (3.14)

We consider two cases here: (i) q ≥ 2 and (ii) 1< q < 2.

In case (i), we have that q−1≥ 1. Using the inequality (1+x)q−1 ≤ 2q−2(1+
xq−1) for x ≥ 0, we have

vk(r)≤ b+
∫ r

0
2(q−2)/(q−1)

(
t1−N

∫ t
0
sN−1[aq−1+vq−1fq−1(s)

]
q(s)ds

)1/(q−1)
dt

≤ b+
∫ r

0
2(q−2)/(q−1)

[
t1−N

∫ t
0
sN−1aq−1q(s)ds

+t1−N
∫ t

0
sN−1vq−1(s)f q−1(s)q(s)ds

]1/(q−1)
dt

≤ b(r)

+2(q−2)/(q−1)
∫ r

0
t(1−N)/(q−1)

(∫ t
0
sN−1vq−1fq−1(s)q(s)ds

)1/(q−1)
dt

≤ b(r)+2(q−2)/(q−1)
∫ r

0
vk(t)

(∫ t
0

(
s
t

)N−1

fq−1(s)q(s)ds
)q−1

dt.

(3.15)

Letting a(r)= ∫ r0 vk(t)(∫ t0(s/t)N−1fq−1(s)q(s)ds)q−1dt, then

a′(r)= vk(r)
(∫ r

0

(
s
r

)N−1

fq−1(s)q(s)ds
)1/(q−1)

. (3.16)

Therefore,

a′(r)≤ b(r)
(∫ r

0

(
s
r

)N−1

fq−1(s)q(s)ds
)1/(q−1)

+2(q−2)/(q−1)a(r)
(∫ r

0

(
s
r

)N−1

fq−1(s)q(s)ds
)1/(q−1)

.
(3.17)
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Letting

d′(r)= 2(q−2)/(q−1)
(∫ r

0

(
s
r

)N−1

fq−1(s)q(s)ds
)1/(q−1)

,

c(r)= b(r)
(∫ r

0

(
s
r

)N−1

fq−1(s)q(s)ds
)1/(q−1)

,
(3.18)

then

(
e−d(r)a(r)

)′ ≤ c(r)e−d(r)⇐⇒ a(r)≤K(r). (3.19)

Thus

vk(r)≤ c(r). (3.20)

Similarly, there exists a function d(r) such that uk(r) ≤ d(r) for all k if α =
p−1. Thus the sequences {uk} and {vk} are bounded above on bounded sets

and therefore converge. Let u(r)= limk→∞uk(r) and v(r)= limk→∞vk(r). By

standard elliptic regularity theory, it can be shown that (u,v) is the desired

solution of (1.4).

In case (ii), we have that 0 < q− 1 < 1 using the inequality (1+x)q−1 ≤
1+xq−1 for x ≥ 0. Similarly, as in (i), there exist functions c(r) and d(r) such

that uk(r)≤ c(r) and vk(r)≤ d(r) for all k if α= p−1 and β= q−1.

If (3.2) hold and (u,v) is a positive solution of (3.5), then, clearly,

u(r)≥ a+bα/(p−1)f (r), (3.21)

and, similarly, v(r)≥ b+aβ/(q−1)g(r). However, limr→∞f(r)= limr→∞g(r)=
∞. Thus, (u,v) is an entire explosive radial solution.

On the other hand, if the inequalities (3.3) hold, then limr→∞f(r) <∞ and

limr→∞g(r) <∞ so that the estimates above providing upper bounds for the

sequences {uk} and {vk}may be chosen independent of r so that the solution

(u,v) is bounded above (and, in fact, any solution of (3.5) will be bounded

when the inequalities (3.3) hold).

We now give our main theorems for the superlinear case, where p−1<α≤
β, β≥ q−1, and 2≤ q ≤ p. We use the notation R+ = [0,∞) and define the set

G as

G = {(a,b)∈R+×R+ |u(0)= a, v(0)= b,
(u,v) is an entire radial solution of (1.4)

}
.

(3.22)

Theorem 3.2. There are infinitely many entire positive radial solutions of

system (1.4) provided that the C(RN) functionsm and n satisfy (3.3). The set G
is a closed bounded convex subset of R+×R+. Furthermore, the set G satisfies

T ⊂G ⊂ R, (3.23)
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where the triangle T and the rectangle R are given by

T =
{
(u,v)∈R+×R+ | u

A
+ v
B
≤ 1

}
, R = [0,A]×[0,B], (3.24)

in which A= sup{a∈R+ | (a,0)∈G} and B = sup{b ∈R+ | (0,b)∈G}.

Proof. From Lemma 2.7, it is clear that [0,g(0)]×[0,h(0)] ⊂ G so that G
is nonempty. We will show that G is a bounded, closed, and convex set and

then prove relationship (3.23).

As a preliminary, note that, if (a,b) ∈ G, then any pair (a0,b0) for which

0 ≤ a0 ≤ a and 0 ≤ b0 ≤ b must be in G since the process used in Lemma 2.7

can be repeated with

uk(r)= a0+
∫ r

0

(
t1−N

∫ t
0
sN−1m(s)vαk−1(s)ds

)1/(p−1)
dt,

vk(r)= b0+
∫ r

0

(
t1−N

∫ t
0
sN−1n(s)uβk−1(s)ds

)1/(q−1)
dt,

(3.25)

and v0 = b, u0 = a. Then, as in Lemma 2.7, the sequences {uk} and {vk} are

monotonically increasing. Then, letting (U,V) be the solution of (3.5) with cen-

tral values (a,b), we can easily prove, since b0 ≤ b, that v0 ≤ V . Thus, u1 ≤ U
(since, also, a0 ≤ a), and consequently v1 ≤ V , and so on. Hence, we get uk ≤U
and vk ≤ V , and therefore, u≤ U and v ≤ V , where (u,v)= limk→∞(uk,vk) is

a solution of (1.4) (with central values (a0,b0)).
To prove that G is bounded, assume that it is not. Therefore, since [0,a]×

[0,b] ⊂ G whenever (a,b) ∈ G, we must have either [0,∞)×{0} ⊂ G or {0}×
[0,∞) ⊂ G. Without loss of generality, we assume that [0,∞)×{0} ⊂ G. Let

m(r)=min{m(r),n(r)} and let h be a positive radial solution of

div
(|∇h|p−2∇h)= 2−αm(r)hα, 0≤ r ≤ 1,

h(r) �→∞, r �→ 1−.
(3.26)

(See Lemma 2.3 for the proof of existence.) Let (u,v) be any solution, which

exists by hypothesis, to (3.5) with a > h(0) and b = 0. Without loss of gen-

erality, we will assume that a ≥ 1. We now show that h ≤ u+v for all r ≥ 0

which, if proven, will contradict the fact that u+v exists for all r ≥ 0. Clearly,

h(0) < a ≤ u(0)+v(0). Thus there exists ε > 0 such that h(r) < u(r)+v(r)
for all r ∈ [0,ε). Let

R0 = sup
{
ε > 0 | h(r) < u(r)+v(r), ∀r ∈ [0,ε)}. (3.27)
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We claim that R0 = 1. Indeed, suppose that R0 < 1. Since h(r) < u(r)+v(r) in

[0,R0), elementary estimates yield

h
(
R0
)= h(0)+

∫ R0

0

(
t1−N

∫ t
0
sN−12−αm(s)hα(s)ds

)1/(p−1)
dt

< h(0)+
∫ R0

0

(
t1−N

∫ t
0
sN−12−αm(s)[u+v]α(s)ds

)1/(p−1)
dt

≤ h(0)+
∫ R0

0

(
t1−N

∫ t
0
sN−1m(s)

(
uα(s)+vα(s))ds)1/(p−1)

dt

≤ h(0)+
∫ R0

0

(
t1−N

∫ t
0
sN−1(mvα(s)+nuα(s))ds)1/(p−1)

dt

≤ h(0)+
∫ R0

0

(
t1−N

∫ t
0
sN−1(mvα(s)+nuβ(s))ds)1/(p−1)

dt

< a+
∫ R0

0

(
t1−N

∫ t
0
sN−1mvα(s)ds

)1/(p−1)
dt

+
∫ R0

0

(
t1−N

∫ t
0
sN−1nuβ(s)ds

)1/(q−1)
dt

< u
(
R0
)+v(R0

)
.

(3.28)

Thus, since h(R0) < u(R0)+v(R0), there exists δ > 0 such that h(r) < u(r)+
v(r) in [0,R0 + δ). This contradicts the fact that R0 is a supremum. Thus,

R0 = 1, establishing the boundedness of the set G.

To prove that G is closed, we let (a0,b0) ∈ ∂G and show that (a0,b0) ∈ G.

Let (u,v) be the solution of (3.5) which corresponds to a = a0 and b = b0.

Without loss of generality, we may assume that max{a0,b0}>K = g(0), where

the function g is given in Lemma 2.7. If max{a0,b0} = a0, then K ≤ a0−1/n
for large n so that un(r)≥K for all r ≥ 0 and for all n sufficiently large where

un = a0− 1
n
+
∫ r

0

(
t1−N

∫ t
0
sN−1m(s)vαn−1(s)ds

)1/(p−1)
dt,

vn = b0+
∫ r

0

(
t1−N

∫ t
0
sN−1n(s)uβn−1(s)ds

)1/(q−1)
dt.

(3.29)

Thus we note that

mvαn ≥m(r)vαn ,
nuβn ≥nuβ−αn uαn ≥nKβ−αuαn ≥m(r)uαn,

(3.30)

where m(r)=min{1,Kβ−α}min{m(r),n(r)}. Thus

div
(∣∣∇un∣∣p−2∇un

)≥m(r)vαn ,
div

(∣∣∇vn∣∣q−2∇vn
)≥m(r)uαn. (3.31)
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Let h1(r) and h2(r) be positive solutions of

div
(∣∣∇h1

∣∣p−2∇h1
)=m(r)hα1 , 0≤ r < R0,

h1(r) �→∞, r �→ R−0 ,
div

(∣∣∇h2

∣∣q−2∇h2
)=m(r)hα2 , 0≤ r < R0,

h2(r) �→∞, r �→ R−0 ,

(3.32)

where R0 is an arbitrary positive real number. It is now easy to show by Lemma

2.1 that un ≤ h1 and vn ≤ h2; thus un+vn ≤ h1+h2 in [0,R0]. Hence, u+v =
limn→∞(un +vn) ≤ h1 +h2 on [0,R0]. Since R0 is arbitrary, the functions u
and v exist on RN and are hence entire so that (a0,b0) ∈ G. On the other

hand, if max{a0,b0} = b0, then K ≤ b0 − 1/n for large n so that vn ≥ K
for all r ≥ 0 and for all sufficiently large n. Then un(r) ≥ Kαf(r), where

f(r) = ∫ r
0 (t1−N

∫ t
0 sN−1m(s)ds)1/(p−1)dt, and the proof continues as before

with K replaced by Kαf(r).
To prove that G is convex, suppose that (a,b) ∈ G and (a,b) ∈ G. Let λ ∈

(0,1), let (u,v) be the solution of (3.5), and let (U,V) be the solution of (3.5)

when (a,b) is replaced by (a,b). We need to prove that λ(a,b)+(1−λ)(a,b)∈
G. To do this, we let {un}, {vn}, {Un}, and {Vn} be the increasing sequences

of functions, as developed in Lemma 2.7, such that un ↗ u, vn ↗ v , Un ↗ U ,

and Vn ↗ V . Likewise, let {wn} and {zn} be the sequences developed again as

in Lemma 2.7 corresponding to central values λa+(1−λ)a and λb+(1−λ)b,

respectively. We also let z0 = λb+ (1−λ)b. We will show that the increasing

sequences {wn} and {zn} satisfy

wn ≤ λun+(1−λ)Un,
zn ≤ λvn+(1−λ)Vn, (3.33)

which, in turn, implies that {wn} and {zn} converge, and hence, their limits

are entire, giving λ(a,b)+(1−λ)(a,b)∈G. Clearly, z0 ≤ λv0+(1−λ)V0. Then

w1(r)= λa+(1−λ)a+
∫ r

0

(
t1−N

∫ t
0
sN−1m(s)zα0 (s)ds

)1/(p−1)
dt

≤ λa+(1−λ)a+
∫ r

0

(
t1−N

∫ t
0
sN−1m(s)

[
λv0+(1−λ)V0

]α(s))1/(p−1)
dt.

(3.34)

Since α > p−1≥ 1, however, we know that (λc+(1−λ)d)α ≤ λcα+(1−λ)dα
for any nonnegative numbers c and d. Applying this inequality, we get

w1(r)≤ λa+(1−λ)a

+
∫ r

0

(
t1−N

∫ t
0
sN−1m(s)

[
λvα0 +(1−λ)Vα0

]
(s)ds

)1/(p−1)
dt

= λu1+(1−λ)U1.

(3.35)
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Using this result, we can prove similarly that z1 ≤ λv1+ (1−λ)V1 which, in

turn, can be used to get w2 ≤ λu2 + (1−λ)U2. Continuing this process will

produce (3.33).

To prove (3.23), it is clear that, since (A,0) and (0,B) are in G and G is

convex, the line x/A+y/B = 1 is in G. And, as noted earlier, if (a,b)∈G, then

(x0,y0) ∈ G whenever 0 ≤ x0 ≤ a and 0 ≤ y0 ≤ b. Hence, T ⊂ G. Similarly,

G ⊂ R for if (a0,b0)∈G, then (a0,0)∈G and (0,b0)∈G. Thus 0≤ a0 ≤A and

0≤ b0 ≤ B so that (a0,b0)∈R. This completes the proof.

Theorem 3.3. Let E(G) be the closure of the set {(a,b)∈ ∂G | a> 0, b > 0}.
Any entire positive radial solution (u,v) of (1.4) with central value (u(0),v(0))
∈ E(G) is an explosive solution.

Proof. Let un and vn be defined as positive solutions of

un =u(0)+ 1
n
+
∫ r

0

(
t1−N

∫ t
0
m(s)vαn(s)ds

)1/(p−1)
dt,

vn = v(0)+ 1
n
+
∫ r

0

(
t1−N

∫ t
0
n(s)uβn(s)ds

)1/(q−1)
dt,

(3.36)

where (u(0),v(0))∈ E(G). We note that u′n(r)≥ 0 and v′n(r)≥ 0. Also, since

(u(0)+1/n,v(0)+1/n) �∈G, for each n= 1,2,3, . . . , there exists Rn <∞ such

that

lim
r→R−n

un(r)=∞, lim
r→R−n

vn(r)=∞,

R1 ≤ R2 ≤ R3 ≤ ··· .
(3.37)

From (3.36) and the fact that v′n ≥ 0, we get

vn(r)≤ v(0)+ 1
n
+uβ/(q−1)

n (r)
∫∞

0

(
t1−N

∫ t
0
sN−1n(s)ds

)1/(q−1)
dt, (3.38)

which implies that

vn(r)≤ Cun(r)+Kuβ/(q−1)
n (r), (3.39)

where C is any upper bound on (v(0)+1/n)/(u(0)+1/n) and

K =
∫∞

0

(
t1−N

∫ t
0
sN−1n(s)ds

)1/(q−1)
dt <∞. (3.40)

Since un satisfies

div
(|∇u|p−2∇u)=mvαn , (3.41)

we use (3.39) to get

div
(|∇u|p−2∇u)≤mf (un), (3.42)
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where f(s)= (Cs+Ksβ/(q−1))α. Define

F(s)=
∫∞
s

dt
f 1/(p−1)(t)

, (3.43)

which is well defined for s > 0 since α>p−1. Note also that

F ′(s)=− 1
f 1/(p−1)(s)

, F ′′(s)= f ′(s)
(p−1)(f 1/(p−1))p

> 0. (3.44)

Thus

div
(∣∣∇F(un)∣∣p−2∇F(un))=−∣∣F ′(un)∣∣p−1

div
(∣∣∇un∣∣p−2∇un

)
+(p−1)

∣∣F ′(un)∣∣p−2F ′′
(
un
)∣∣∇un∣∣p

≥−∣∣F ′(un)∣∣p−1mf
(
un
)=−m.

(3.45)

Hence,

div
(∣∣∇F(un)∣∣p−2∇F(un))≥−m(r) (3.46)

or

(
rN−1

∣∣F ′(un)∣∣p−2F ′
(
un
))′ ≥ −rN−1m(r). (3.47)

Integrate this over [0,r ] where 0< r < Rn to get

d
dr
F
(
un
)≥−(r 1−N

∫ r
0
sN−1m(s)ds

)1/(p−1)
. (3.48)

Now integrate this over [r ,Rn]. Noting that un(r)→∞ as r → R−n (and hence,

F(un(r))→ 0 as r → R−n ), we get

−F(un(r))≥−
∫ Rn
r

(
s1−N

∫ s
0
tN−1m(t)dt

)1/(p−1)
ds. (3.49)

Thus we have

F
(
un
)≤

∫ Rn
r

(
s1−N

∫ s
0
tN−1m(t)dt

)1/(p−1)
ds. (3.50)

Since F ′(s) < 0 for s > 0, we have

un(r)≥ F−1

(∫ Rn
r

(
s1−N

∫ s
0
tN−1m(t)dt

)1/(p−1)
ds
)
. (3.51)

Now, let n→∞ so that Rn→ R ≤∞ and un→u to produce

un(r)≥ F−1

(∫ R
r

(
s1−N

∫ s
0
tN−1m(t)dt

)1/(p−1)
ds
)
, 0≤ r < R. (3.52)



2926 YANG ZUODONG

Letting r → R− and since from Lemma 2.6,

lim
s→0+

F−1(s)=∞, (3.53)

we have

lim
r→R−

u(r)≥ lim
r→R
F−1

(∫ R
r

(
s1−N

∫ s
0
tN−1m(t)dt

)1/(p−1)
ds
)
=∞. (3.54)

Since u is entire, we conclude that R =∞ and limr→∞u(r)=∞. This completes

the proof.
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